+ All Categories
Home > Documents > Socie 3.0 Multiaxial Fatigue

Socie 3.0 Multiaxial Fatigue

Date post: 02-Jun-2018
Category:
Upload: kuan-tek-seang
View: 230 times
Download: 0 times
Share this document with a friend

of 127

Transcript
  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    1/127

    Professor Darrell F. Socie

    Department of Mechanical and Industrial Engineering

    University of Illinois at Urbana-Champaign

    2001 Darrell Socie, All Rights Reserved

    Multiaxial Fatigue

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    2/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 1 of 125

    Contact Information

    Darrell Socie

    Mechanical Engineering1206 West Green

    Urbana, Illinois 61801

    USA

    [email protected]

    Tel: 217 333 7630Fax: 217 333 5634

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    3/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 2 of 125

    Outline

    State of Stress ( Chapter 1 )

    Fatigue Mechanisms ( Chapter 3 )

    Stress Based Models ( Chapter 5 )

    Strain Based Models ( Chapter 6 )

    Fracture Mechanics Models ( Chapter 7 )

    Nonproportional Loading ( Chapter 8 )

    Notches ( Chapter 9 )

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    4/127

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    5/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 4 of 125

    Stress Components

    X

    Z

    Y

    z

    y

    x

    zyzx

    xz

    xyyx

    yz

    Six stresses and six strains

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    6/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 5 of 125

    Stresses Acting on a PlaneZ

    Y

    X

    Y

    XZ

    x

    xz

    xy

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    7/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 6 of 125

    Principal Stresses

    3 -2(X +Y +Z ) + (XY + YZXZ -2XY -

    2YZ -

    2XZ )

    - (XYZ + 2XYYZXZ -X2

    YZ -Y2

    ZX -Z2

    XY ) = 0

    1

    3

    2

    13

    1223

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    8/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 7 of 125

    Stress and Strain Distributions

    80

    90

    100

    -20 -10 0 10 20

    %o

    fap

    pliedstress

    Stresses are nearly the same over a 10range of angles

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    9/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 8 of 125

    Tension

    x

    /2

    11 2

    3

    2=3= 0

    1

    2= 3= 1

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    10/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 9 of 125

    Torsion

    2

    xy1

    3

    2

    /2

    1

    3

    X

    Y2

    1 = xy

    3

    1

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    11/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 10 of 125

    /2

    2= y

    1= x

    3

    1= 2

    3

    1= 2

    =

    1

    2

    3

    Biaxial Tension

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    12/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 11 of 125

    1

    2

    3 3

    21

    Maximum shear stress Octahedral shear stress

    Shear Stresses

    2

    31

    13= ( ) ( ) ( )232221231oct 3

    1 ++=

    oct

    2

    3=Mises: 1313oct 94.0

    22

    3==

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    13/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 12 of 125

    State of Stress Summary

    Stresses acting on a plane

    Principal stressMaximum shear stress

    Octahedral shear stress

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    14/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 13 of 125

    Fatigue Mechanisms

    Crack nucleation

    Fracture modes

    Crack growth

    State of stress effects

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    15/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 14 of 125

    Crack Nucleation

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    16/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 15 of 125

    Slip Bands

    Loading Unloading

    Extrusion

    Undeformed

    material

    Intrusion

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    17/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 16 of 125

    Slip Bands

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    18/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 17 of 125

    Mode Iopening

    Mode IIin-plane shear

    Mode IIIout-of-plane shear

    Mode I, Mode II, and Mode III

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    19/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 18 of 125

    StageI StageII

    loading direction

    freesurface

    Stage I and Stage II

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    20/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 19 of 125

    Case A and Case B

    Growth along the surface Growth into the surface

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    21/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 20 of 125

    5 mcrackgrowthdirection

    Mode I Growth

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    22/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 21 of 125

    crack growth direction

    10 m

    slip bandsshear stress

    Mode II Growth

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    23/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 22 of 125

    1.0

    0.2

    0

    0.4

    0.8

    0.6

    1 10 102

    103

    104

    105

    106

    107

    Nucleation

    Tension

    Shear

    304 Stainless Steel - Torsion

    Fatigue Life, 2Nf

    Damage

    FractionN/Nf

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    24/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 23 of 125

    304 Stainless Steel - Tension

    1 10 102

    103

    104

    105

    106

    107

    1.0

    0.2

    0

    0.4

    0.8

    0.6 Nucleation

    Tension

    Fatigue Life, 2Nf

    Damage

    FractionN/Nf

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    25/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 24 of 125

    Nucleation

    Tension

    Shear

    1.0

    0.2

    0

    0.4

    0.8

    0.6

    1 10 102

    103

    104

    105

    106

    107

    Inconel 718 - Torsion

    Fatigue Life, 2Nf

    Damage

    FractionN/Nf

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    26/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 25 of 125

    Inconel 718 - Tension

    Shear

    Tension

    Nucleation

    1 10 102

    103

    104

    105

    106

    107

    1.0

    0.2

    0

    0.4

    0.8

    0.6

    Fatigue Life, 2Nf

    Damage

    FractionN/Nf

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    27/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 26 of 125

    Fatigue Life, 2Nf

    Damage

    FractionN/Nf

    f

    Nucleation

    Shear

    Tension

    1 10 102

    103

    104

    105

    106

    107

    1.0

    0.2

    0

    0.4

    0.8

    0.6

    1045 Steel - Torsion

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    28/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 27 of 125

    1045 Steel - Tension

    Nucleation

    Shear

    Tension

    1.0

    0.2

    0

    0.4

    0.8

    0.6

    1 10 102

    103

    104

    105

    106

    107

    Fatigue Life, 2Nf

    Damage

    FractionN/Nf

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    29/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 28 of 125

    Fatigue Mechanisms Summary

    Fatigue cracks nucleate in shear

    Fatigue cracks grow in either shear or tensiondepending on material and state of stress

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    30/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 29 of 125

    Stress Based Models

    Sines

    FindleyDang Van

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    31/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 30 of 125

    1.0

    0

    0 0.5 1.0 1.5 2.0

    Shear stress

    Octahedral stressPrincipal stress

    0.5

    Shearstressinbendin

    g

    1/2Bend

    ingfatiguelim

    it

    Shear stress in torsion1/2 Bending fatigue limit

    Bending Torsion Correlation

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    32/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 31 of 125

    Test Results

    Cyclic tension with static tension

    Cyclic torsion with static torsionCyclic tension with static torsion

    Cyclic torsion with static tension

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    33/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 32 of 125

    1.5

    1.0

    0.5

    1.5-1.5 -1.0 1.00.5-0.5 0

    A

    xialstress

    Fatiguestrength

    Mean stress

    Yield strength

    Cyclic Tension with Static Tension

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    34/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 33 of 125

    1.5

    1.0

    0.5

    1.51.00.5

    0

    ShearStre

    ssAmplitude

    ShearFatigueStrength

    Maximum Shear Stress

    Shear Yield Strength

    Cyclic Torsion with Static Torsion

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    35/127

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    36/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 35 of 125

    1.5

    1.0

    0.5

    1.5-1.5 -1.0 1.00.5-0.5 0

    Torsion

    shearstress

    Shearfatiguestrength

    Axial mean stress

    Yield strength

    Cyclic Torsion with Static Tension

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    37/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 36 of 125

    Conclusions

    Tension mean stress affects both tension

    and torsion

    Torsion mean stress does not affect tensionor torsion

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    38/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 37 of 125

    Sines

    ==

    )3(

    2h

    oct

    =++

    ++++++

    )(

    )(6)()()(6

    1

    meanz

    meany

    meanx

    2yz

    2xz

    2xy

    2zy

    2zx

    2yx

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    39/127

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    40/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 39 of 125

    Bending Torsion Correlation

    1.0

    0

    0 0.5 1.0 1.5 2.0

    Shear stress

    Octahedral stressPrincipal stress

    0.5

    Shearstressinbendin

    g

    1/2Bend

    ingfatiguelim

    it

    Shear stress in torsion

    1/2 Bending fatigue limit

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    41/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 40 of 125

    Dang Van

    ( ) ( )t a t bh+ =

    m

    V(M)

    ij(M,t) Eij(M,t)

    ij(m,t)

    ij(m,t)

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    42/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 41 of 125

    h

    h

    Loading path

    Failurepredicted

    (t) + ah(t) = b

    Dang Van ( continued )

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    43/127

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    44/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 43 of 125

    Strain Based Models

    Plastic Work

    Brown and Miller Fatemi and Socie

    Smith Watson and Topper

    Liu

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    45/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 44 of 125

    10 102 103 104 105

    0.001

    0.01

    0.1

    Cycles to failure

    Plastico

    ctahedral

    shearstrainrange Torsion

    Tension

    Octahedral Shear Strain

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    46/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 45 of 125

    1

    10

    100

    102 103 104

    A

    Fatigue Life, Nf

    Plas

    ticWorkp

    erCycle,MJ/m3

    T Torsion

    Axial0o

    90o

    180o

    135o

    45o

    30o

    T

    A T

    T

    T

    T

    T

    T

    A

    A

    AA

    A

    Plastic Work

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    47/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 46 of 125

    0.005 0.010.0

    102

    2 x102

    5 x102

    103

    2 x103

    Fatigue

    Life,

    Cycles

    Normal Strain Amplitude, n

    = 0.03

    Brown and Miller

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    48/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 47 of 125

    Case A and B

    Growth along the surface Growth into the surface

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    49/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 48 of 125

    Uniaxia

    l

    Equibiaxial

    Brown and Miller ( continued )

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    50/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 49 of 125

    Brown and Miller ( continued )

    ( ) $ max

    = + S n

    1

    max

    ', '

    ( ) ( )2

    2

    2 2+ =

    +S A E N B Nnf n mean

    fb

    f fc

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    51/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 50 of 125

    Fatemi and Socie

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    52/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 51 of 125

    C F G

    H I J

    / 3

    Loading Histories

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    53/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 52 of 125

    0

    0.5

    1

    1.5

    2

    2.5

    0 2000 4000 6000 8000 10000 12000 14000

    J-603

    F-495 H-491

    I-471 C-399

    G-304

    Cycles

    CrackLength,mm

    Crack Length Observations

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    54/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 53 of 125

    Fatemi and Socie

    cof

    'f

    bof

    'f

    y

    max,n )N2()N2(G

    k12

    +

    =

    +

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    55/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 54 of 125

    Smith Watson Topper

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    56/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 55 of 125

    SWT

    cbf'f'fb2f

    2'

    f1n )N2()N2(E2

    ++=

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    57/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 56 of 125

    Liu

    WI = (nn)max + ( )

    b2f

    2'fcb

    f'f

    'fI )N2(

    E

    4)N2(4W

    += +

    WII =(nn ) + ( )max

    bo2f

    2'

    fcobof'f'fII )N2(G

    4)N2(4W

    += +

    Virtual strain energy for both mode I and mode II cracking

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    58/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 57 of 125

    Cyclic Torsion

    Cyclic Shear Strain Cyclic Tensile Strain

    Shear Damage Tensile Damage

    Cyclic Torsion

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    59/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 58 of 125

    Cyclic TorsionStatic Tension

    Cyclic Shear Strain Cyclic Tensile Strain

    Shear Damage Tensile Damage

    Cyclic Torsion with Static Tension

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    60/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 59 of 125

    Cyclic Shear Strain Cyclic Tensile Strain

    Tensile DamageShear DamageCyclic TorsionStatic Compression

    Cyclic Torsion with Compression

    Cyclic Torsion with Tension

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    61/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 60 of 125

    Cyclic TorsionStatic Compression

    Hoop Tension

    Cyclic Shear Strain Cyclic Tensile Strain

    Tensile DamageShear Damage

    y

    and Compression

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    62/127

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    63/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 62 of 125

    Conclusions All critical plane models correctly predict

    these results

    Hydrostatic stress models can not predict

    these results

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    64/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 63 of 125

    0.006Axial strain

    -0.003

    0.003

    She

    arstrain

    Loading History

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    65/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 64 of 125

    Model Comparison Summary of calculated fatigue lives

    Model Equation Life

    Epsilon 6.5 14,060

    Garud 6.7 5,210

    Ellyin 6.17 4,450

    Brown-Miller 6.22 3,980

    SWT 6.24 9,930Liu I 6.41 4,280

    Liu II 6.42 5,420

    Chu 6.37 3,040

    Gamma 26,775Fatemi-Socie 6.23 10,350

    Glinka 6.39 33,220

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    66/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 65 of 125

    Strain Based Models Summary Two separate models are needed, one for

    tensile growth and one for shear growth

    Cyclic plasticity governs stress and strainranges

    Mean stress effects are a result of crackclosure on the critical plane

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    67/127

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    68/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 67 of 125

    Cyclic Plasticity

    p

    p

    p

    p

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    69/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 68 of 125

    Mean Stresses eq

    f meanf

    bf f

    c

    EN N=

    +

    ''( ) ( )2 2

    [ ]

    +=

    R1

    2)()(W maxnnI

    cf

    'f

    bf

    n'f

    nmax )N2()S5.05.1()N2(

    E

    2)S7.03.1(S

    2++

    +=+

    co

    f

    '

    f

    bo

    f

    'f

    y

    max,n

    )N2()N2(Gk12 +

    =

    +

    cbf

    'f

    'f

    b2f

    2'f1

    n )N2()N2(E2

    ++

    =

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    70/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 69 of 125

    Fracture Mechanics ModelsMode I growth

    Torsion

    Mode II growth

    Mode III growth

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    71/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 70 of 125

    Mode I, Mode II, and Mode IIIMode Iopening

    Mode IIin-plane shear

    Mode IIIout-of-plane shear

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    72/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 71 of 125

    Mode I

    Mode II

    Mode I and Mode II Surface Cracks

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    73/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 72 of 125

    = -1 = 0 = 1

    = -1 = 0 = 1

    = 193 MPa = 386 MPa10-3

    10-4

    10-5

    10-6

    da/dNmm/cycle

    10 100 20020 50 10 100 20020 50

    K, MPa m

    10-3

    10-4

    10-5

    10-6

    da/d

    Nmm/cycle

    Biaxial Mode I Growth

    K, MPa m

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    74/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 73 of 125

    Mode II

    Mode III

    Surface Cracks in Torsion

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    75/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 74 of 125

    Transverse Longitudinal Spiral

    Failure Modes in Torsion

    Fracture Mechanism Map

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    76/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 75 of 125

    1500

    1000YieldStren

    gth,

    MPa

    40

    30

    50

    60

    HardnessRc

    200 300 400 500

    Shear Stress Amplitude, MPa

    No Cracks

    Spiral

    Cracks

    TransverseCracks

    Longi-

    tudinal

    Fracture Mechanism Map

    Mode I and Mode III Growth

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    77/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 76 of 125

    10-6

    10-5

    10-4

    10-3

    da/dN

    ,mm/cycle

    5 10 1005020

    KI , KIII MPa m

    KI

    KIII

    Mode I and Mode III Growth

    Mode I and Mode II Growth

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    78/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 77 of 125

    1 10 100

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    da/dN

    ,mm/cycle

    m

    Mode I R = 0Mode II R = -1

    7075 T6 Aluminum

    Mode I R = -1Mode II R = -1

    SNCM Steel

    Mode I and Mode II Growth

    KI , KII MPa

    Fracture Mechanics Models

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    79/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 78 of 125

    Fracture Mechanics Models

    ( )meqKCdN

    da=

    [ ]25.0

    4III

    4II

    4Ieq )1(K8K8KK ++=

    [ ] 5.02III2II2Ieq K)1(KKK +++=

    [ ]5.02

    IIIII

    2

    Ieq KKKKK ++=

    a)EF())1(2

    EF()(K

    5.0

    2I

    2IIeq

    +

    +=

    ( ) ak1GFKys

    max,n

    eq

    +=

    Fracture Surfaces

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    80/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 79 of 125

    Bending Torsion

    Mode III Growth

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    81/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 80 of 125

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    0.2 0.4 0.6 0.8 1.0Crack length, mm

    Crackgrowthrate,mm/

    cycle K = 11.0

    K = 14.9

    K = 10.0

    K = 12.0

    K = 8.2

    Fracture Mechanics Models Summary

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    82/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 81 of 125

    y

    Multiaxial loading has little effect in Mode I

    Crack closure makes Mode II and Mode IIIcalculations difficult

    Nonproportional Loading

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    83/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 82 of 125

    p p g

    In and Out-of-phase loading

    Nonproportional cyclic hardening Variable amplitude

    In and Out-of-Phase Loading

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    84/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 83 of 125

    xxy

    y

    t

    t

    t

    tx= osin(t)

    xy= (1+)osin(t)

    In-phase

    Out-of-phase

    x

    x

    xy

    xy

    x= ocos(t)

    xy= (1+)osin(t)

    1+

    1+

    g

    In-Phase and Out-of-Phase

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    85/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 84 of 125

    1

    xy

    22xy

    x

    x

    x

    x

    xy

    2

    2xy

    Loading Histories

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    86/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 85 of 125

    x x

    x x

    xy/2 xy/2

    xy/2xy/2 cross

    diamondout-of-phase

    square

    Loading Histories

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    87/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 86 of 125

    in-phase

    out-of-phase

    diamond

    square

    cross

    Findley Model Results

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    88/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 87 of 125

    /2 MPa n,max

    MPa /2 + 0.3 n,max

    N/Nip

    in-phase 353 250 428 1.0

    90 out-of-phase 250 500 400 2.0

    diamond 250 500 400 2.0

    square 353 603 534 0.11

    cross - tension cycle 250 250 325 16

    cross - torsion cycle 250 0 250 216

    x

    xy/2cross

    x

    xy/2diamondout-of-phase

    x

    xy/2square

    in-phase

    x

    xy/2

    Nonproportional Hardening

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    89/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 88 of 125

    t

    t

    t

    tx= osin(t)

    xy= (1+)osin(t)

    In-phase

    Out-of-phase

    x

    x

    xy

    xy

    x= ocos(t)

    xy= (1+)osin(t)

    In-Phase

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    90/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 89 of 125

    600

    -600

    300

    -300

    -0.003 -0.0060.003 0.006

    Axial Shear

    90 Out-of-Phase

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    91/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 90 of 125

    Axial

    600

    -600

    -0.003 0.003

    Shear

    -300

    300

    0.006-0.006

    Critical Plane

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    92/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 91 of 125

    600

    -600

    -0.004 0.004

    Proportional

    -600

    600

    -0.004 0.004

    Out-of-phase

    Nf = 38,500

    Nf = 310,000

    Nf = 3,500

    Nf = 40,000

    Loading Histories

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    93/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 92 of 125

    0 1 2 3 4

    5 6 7 8 9

    1011 12 13

    Stress-Strain Response

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    94/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 93 of 125

    -300

    -150

    0

    15 0

    30 0

    -600 -300 0 300 600

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    -300

    -150

    0

    15 0

    30 0

    -600 -300 0 300 600

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    Case 3Case 2Case 1

    Case 4 Case 5 Case 6

    ShearStress(MPa)

    Stress-Strain Response (continued)

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    95/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 94 of 125

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    -300

    -150

    0

    150

    300

    -600 -300 0 300 600

    Case 7 Case 9 Case 10

    Case 13Case 12Case 11

    ShearStr

    ess(MPa)

    Axial Stress ( MPa )

    Maximum Stress

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    96/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 95 of 125

    1000

    200102 103 104

    EquivalentStress,M

    Pa

    2000

    Fatigue Life, Nf

    Nonproportional hardening results in lower fatigue lives

    All tests have the same strain ranges

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    97/127

    Shear Stresses

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    98/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 97 of 125

    Case A Case B Case C Case D

    xy xy xy xy

    Simple Variable Amplitude History

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    99/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 98 of 125

    -0.003 0.003

    -0.006

    0.006

    xy

    -300 300

    x

    -150

    150

    x

    xy

    Stress-Strain on 0 Plane

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    100/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 99 of 125

    -0.003 0.003x

    -300

    300

    x

    -0.005 0.005xy

    -150

    150xy

    Stress-Strain on 30 and 60 Planes

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    101/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 100 of 125

    -0.003 0.00330

    -300

    300

    -0.003 0.003

    -300

    30030 plane 60 plane

    6

    0

    3

    0

    60

    Stress-Strain on 120 and 150 Planes

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    102/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 101 of 125

    -0.003 0.003

    -300

    300

    1

    20

    -0.003 0.003

    -300

    300150 plane120 plane

    150

    120 150

    Shear Strain History on Critical Plane

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    103/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 102 of 125

    time

    -0.005

    0.005

    Shearstrain,

    Fatigue Calculations

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    104/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 103 of 125

    Load or strain history

    Cyclic plasticity model

    Stress and strain tensor

    Search for critical plane

    Nonproportional Loading Summary

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    105/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 104 of 125

    Nonproportional cyclic hardening increases

    stress levels

    Critical plane models are used to assessfatigue damage

    Notches

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    106/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 105 of 125

    Stress and strain concentrations

    Nonproportional loading and stressing

    Fatigue notch factors

    Cracks at notches

    Notched Shaft Loading

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    107/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 106 of 125

    z

    z

    MTMX

    MY

    P

    6

    Stress Concentration Factors

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    108/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 107 of 125

    0

    1

    2

    3

    4

    5

    6

    0.025 0.050 0.075 0.100 0.125Notch Root Radius, /d

    StressC

    oncentrationFactor

    To

    rsion

    Ben

    ding

    2.201.201.04

    D/d

    Dd

    Hole in a Plate

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    109/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 108 of 125

    a

    r

    r

    r

    r

    r

    4

    Stresses at the Hole

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    110/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 109 of 125

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    30 60 90 120 150 180

    Angle

    = 1

    = 0

    = -1

    Stress concentration factor depends on type of loading

    Shear Stresses during Torsion

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    111/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 110 of 125

    0

    0.5

    1.0

    1.5

    1 2 3 4 5ra

    r

    Torsion Experiments

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    112/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 111 of 125

    Multiaxial Loading

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    113/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 112 of 125

    Uniaxial loading that produces multiaxialstresses at notches

    Multiaxial loading that produces uniaxialstresses at notches

    Multiaxial loading that produces multiaxialstresses at notches

    Longitudinal Tensile Strain

    Thickness Effects

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    114/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 113 of 125

    0.004 0.008 0.0120

    0.001

    0.002

    0.003

    0.004

    0.005

    50 mm

    30 mm

    15 mm

    7 mm

    g

    TransverseCom

    pressionStra

    in

    Thickness

    100

    x

    zy

    Applied Bending Moments

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    115/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 114 of 125

    MX

    MY

    1 2 3 4

    MX

    MY

    A

    Bending Moments on the Shaft

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    116/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 115 of 125

    B

    C

    D

    A

    C

    A

    C

    BD

    B D

    Location

    MX

    MY

    Bending Moments

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    117/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 116 of 125

    M A B C D

    2.82 1 1

    2.00 3 21.41 2 1

    1.00 2

    0.71 2

    M M= 55

    A B C DM 2.49 2.85 2.31 2.84

    Torsion Loading

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    118/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 117 of 125

    t1 t2 t3 t4

    MX

    MT

    t1

    z

    1T

    T

    t2

    z

    1

    T

    T

    t3

    1= z

    t4

    T

    1= T

    Out-of-phase shear loading is needed to producenonproportional stressing

    MX

    MT

    Plate and Shell Structures

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    119/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 118 of 125

    Kt= 3 Kt= 4

    6

    Fatigue Notch Factors

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    120/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 119 of 125

    0

    1

    2

    3

    4

    5

    6

    0.025 0.050 0.075 0.100 0.125

    Notch root radius,

    Stressconce

    ntrationfactor

    Kt Bending

    Kt Torsion

    Kf Torsion

    Kf Bending

    Dd

    d

    = 2.2

    D

    d

    Fatigue Notch Factors ( continued )

    bending

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    121/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 120 of 125

    1.0

    1.5

    2.0

    2.5

    1.01.5 2.0 2.5Experimental Kf

    Ca

    lculatedKf

    conservative

    non-conservative

    bending

    torsion

    r

    a1

    1K1K Tf+

    +=

    Petersons Equation

    Fracture Surfaces in Torsion

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    122/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 121 of 125

    Circumferencial Notch

    Shoulder Fillet

    1 50

    Stress Intensity Factors

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    123/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 122 of 125

    1.00 1.50 2.00 2.50 3.000.00

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    F

    = 1

    = 0

    = 1

    R

    a

    a

    R

    ( )meqKCdN

    da= aFKI =

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    124/127

    Notches Summary

    Uniaxial loading can produce multiaxial

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    125/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 124 of 125

    Uniaxial loading can produce multiaxialstresses at notches

    Multiaxial loading can produce uniaxialstresses at notches

    Multiaxial stresses are not very important in

    thin plate and shell structures

    Multiaxial stresses are not very important incrack growth

    Final Summary

    Fatigue is a planar process involving the

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    126/127

    Multiaxial Fatigue 2001 Darrell Socie, University of Illinois at Urbana-Champaign, All Rights Reserved 125 of 125

    Fatigue is a planar process involving thegrowth of cracks on many size scales

    Critical plane models provide reasonableestimates of fatigue damage

    Multiaxial Fatigue

  • 8/11/2019 Socie 3.0 Multiaxial Fatigue

    127/127

    University of Illinois at Urbana-Champaign

    Multiaxial Fatigue


Recommended