+ All Categories
Home > Documents > Solar Car - The Report

Solar Car - The Report

Date post: 03-Apr-2018
Category:
Upload: invictuskhan
View: 227 times
Download: 2 times
Share this document with a friend

of 39

Transcript
  • 7/28/2019 Solar Car - The Report

    1/39

    Solar cars

    SOLAR CARS

    1. AN OVERVIEW

    A solar Car is a vehicle, which is powered by suns energy.A solar Car

    is a light weight, low power vehicle designed and built with a single purpose in

    mind racing. They have limited seating (usually one, sometimes two people),

    they have very little Cargo capacity, and they can only be driven during the day.

    It does, however, offer an excellent opportunity to develop future technologies

    that can be applied to practical applications.

    Figure 1: Energy Flow Diagram of a Solar Car

    The main component of a solar Car is its solar array, consisting of

    photovoltaic cells, which collect the energy from the sun and converts it into

    1

  • 7/28/2019 Solar Car - The Report

    2/39

    Solar cars

    usable electrical energy. The energy is passed either to the battery for storage, or

    to the motor to run the Car, though a device called power tracker, which convert

    it into the required voltage. The decision on whether to transfer the power to the

    motor or battery is made by a small onboard computer called the motor

    controller. It is responsible for sending the electricity smoothly to the motor

    when the accelerator is depressed, controlling the torque that goes to the motor

    such that the Car maintains the desired speed. Some Cars also use a process

    called regenerative braking, which allows some of the kinetic energy stored in

    the vehicles translating mass to be stored in the battery when the Car is slowing

    down.

    A solar Car is made up of many components that have been integrated

    together so that they work as a single system. For the ease of explanation it has

    been broken down into five primary systems:

    Driver Controls & Mechanical Systems

    Electrical System

    Drive Train

    Solar Array

    Body and Chassis

    2

  • 7/28/2019 Solar Car - The Report

    3/39

    Solar cars

    2. DRIVER CONTROLS & MECHANICAL SYSTEMSSolar Cars do have some of the standard features found in conventional

    Cars, such as turn signals (front & rear), brake lights, accelerator, rear view

    mirrors, fresh air ventilation, and usually cruise control. The drivers and

    passengers are protected safety harnesses and helmets. Drivers and passengers

    can look forward to uncomfortable seats, cramped positioning, and high cockpit

    temperatures as these Cars have very few amenities for the driver.

    2.1 REAR VISION:

    Mirrors mounted to a Car's exterior greatly increase aerodynamic drag;

    therefore, an out-of-thebox thinking is required to find a solution.

    SUNRUNNER, a solar Car developed by the University of Michigan in 1995,

    utilized a fibre optic cable connecting an eyepiece in the driver's area to a lens

    located in an aerodynamic fin mounted on top of the canopy. MAIZE & BLUE,

    a later model developed by the University, on the other hand, chose an

    electronic system consisting of a miniature camera installed in the Car's trailing

    edge and a pocket television in the driver's area. Some Cars also have externally

    mounted mirrors of mirrors within a bubble canopy.

    2.2 VENTILATION:

    High temperatures are obviously bad for the driver (and passenger), but

    they are also bad for electrical and electronic components as high temperatures

    will generally reduce the efficiency and shorten the life of solar cells, batteries,

    motors, motor controllers and other electronic equipment.

    3

  • 7/28/2019 Solar Car - The Report

    4/39

    Solar cars

    Figure 2: The comfortable interior temperature and air flow rate as a function ofoutside temperature

    Something like 10 kilograms of air would typically have to be provided

    every minute to approach passenger Car comfort levels. Obviously, that's

    seldom feasible in a solar Car due to the drag that it might impose on the

    vehicle, if such cooling flows are not also required by electrical, electronic and

    mechanical components of the vehicle.

    Vehicle designers usually use the same airflow several times over as it

    passes through the vehicle; for example cooling driver, electronics, electrics and

    motor sequentially. Placing a sizeable air inlet at the forward stagnation point of

    the vehicle minimises drag due to the opening. 'NACA ducts are an alternative

    for getting air into the Car if there's a reasonably-flat, external surface nearby

    that doesn't have significant divergent (or convergent) flow.

    The mechanical systems of a solar Car are designed to minimize friction

    and weight while maintaining the strength needed to handle the various road

    conditions. Lightweight metals like titanium and composites are commonly

    used to maximize the strength-to-weight ratio. It includes:

    4

  • 7/28/2019 Solar Car - The Report

    5/39

    Solar cars

    2.3 STEERING:

    The major design factors for steering are reliability and efficient

    performance. The steering system is designed with precise steering alignment

    because even small misalignments can cause significant losses and increase tire

    wear. Different Cars use different steering mechanisms depending on their

    budget and other considerations. The SUNRUNNER utilized a rack and pinion

    system that was attached to the steering arms by means of tie rods.

    TESSERACT, a single-seat high performance solar raceCar, uses a centre

    mounted handlebars, much like that on bicycles that connect to a rack-and-

    pinion steering system.

    2.4 BRAKES:

    To maximize efficiency, the brakes are designed to move freely,

    eliminating brake drag, which is caused by brake pads rubbing against the brake

    surface. Hydraulic disc brakes are commonplace in solar Cars because of their

    adjustability and good braking power. As a supplemental system, some teams

    have regenerative braking which allows some of the kinetic energy stored in the

    vehicles translating mass to be stored in the battery when the Car is slowing

    down. Here the Car's motor becomes a generator as regenerative braking is

    applied and adds energy to the batteries during deceleration. Both MAIZE&

    BLUE and SUNRUNNER had hydraulic disc brakes while only SUNRUNNER

    used regenerative braking.

    2.5 SUSPENSION:

    Of the available front suspension variants, MacPhearson struts or

    double A arms are most common in solar Cars. A MacPhearson strut requires a

    large vertical clearance since it is positioned perpendicular to the ground.

    5

  • 7/28/2019 Solar Car - The Report

    6/39

    Solar cars

    Double A arms require less vertical clearance, but consist of more components.

    Depending

    upon the design a suitable one is chosen. The most common rear suspension is

    a trailing arm, similar to that found in motorcycles. Due to a single degree of

    motion, the trailing arm suspension allows for convenient packaging of dampers

    and the drivetrain.

    2.6 WHEELS:

    Wheels, however, are the least efficient part of a solar Car due to rolling

    resistance. About one third of the energy used by a solar Car is lost due to this

    factor. Due to this limitation, contact with the ground should be minimized.

    Solar Cars typically have three or four wheels. The common three-wheel

    configuration is two front wheels and one rear wheel (usually the driven wheel).

    Four-wheel vehicles are sometimes configured like a conventional vehicle (withone of the rear wheels being driven). Other four-wheel vehicles have the two

    rear wheels close together near the centre (similar to the common three wheel

    configuration).

    Solar Car wheel designs are similar to those of bicycle tires. Generally,

    the wheel's rims and hubs are aluminium while the spokes are made of steel. A

    Mylar film is placed over the spokes to increase aerodynamic efficiency.Pneumatic tires are preferred over solid rubber tires because they weigh less and

    provide a smoother ride. The best tires currently available are the Bridgestone

    Ecopia tires made for solar Cars. They are very thin and operate at over one

    hundred pounds/inch pressure.

    6

  • 7/28/2019 Solar Car - The Report

    7/39

    Solar cars

    3. ELECTRICAL SYSTEM

    The heart of a solar Car is the electrical system, which is made up of

    batteries and power electronics. Power electronics include the peak power

    trackers, the motor controller, and the data acquisition system. The primary

    function of the power electronics is to monitor and control the electricity withinthe system.

    3.1 BATTERIES:

    A solar Car uses the battery pack to store energy, which will be at a later

    time. The battery pack is made up of several individual modules wired together

    to generate the required system voltage. The types of batteries used include:

    Lead-Acid

    Nickel-Metal Hydride (NiMH)

    Nickel-Cadmium (NiCad)

    Lithium Ion

    The NiCad, NiMH, and Lithium batteries offer improved power to

    weight ratio over the more common Lead-Acid batteries, but are more costly to

    maintain.

    The battery pack is made up of several individual modules wired together

    to generate the required system voltage. Typically, teams use system voltages

    between 84 and 108 volts, depending on their electrical system. For example,

    Tesseract uses 512 li-ion batteries, broken down into twelve modules, which are

    each equivalent to a Car battery, but only weigh 5 lbs each. Through an

    7

  • 7/28/2019 Solar Car - The Report

    8/39

    Solar cars

    innovative pack design, the batteries are ventilated with even airflow to

    minimize temperature differences between the modules.

    3.2 PEAK POWER TRACKERS:

    The peak power trackers condition the electricity coming from the solar

    array to maximize the power and deliver it either to the batteries for storage or

    to the motor controller for propulsion. When the solar array is charging thebatteries, the peak power trackers help to protect the batteries from being

    damaged by overcharging. Peak power trackers can be very lightweight and

    commonly reach efficiencies above 95%.

    A maximum power point tracker (MPPT) is a DC-DC converter that

    matches the output of a PV string to the battery voltage in a way that maximises

    the power generated by the PV string.

    The power generated by a PV string depends on the operating voltage.

    PV power increases steadily with operating voltage to a maximum, and then

    drops off rapidly as the voltage is increased further to the open-circuit voltage.

    A tracker allows the PV string to always operate at the most efficient point,

    independently of the battery voltage. For example, if your battery voltage is

    100V and the ideal operating point for an array string is 2A x 120V = 240W, thetracker output will be 2.4A x 100V = 240W. In practice, there is always a small

    loss of 1-2% due to inefficiencies in the tracker electronics.

    MPPTs are of three types:

    down (buck) converters, which convert the PV voltage to a lower

    battery voltage;

    8

  • 7/28/2019 Solar Car - The Report

    9/39

    Solar cars

    up (boost) converters, which convert the PV voltage to a higher

    battery voltage; and

    dual (buck-boost) converters, which will convert either way,

    though usually with a penalty in efficiency.

    3.2.1 FINDING THE MAXIMUM POWER POINT: There are two methods

    to find the maximum power point.

    1. Open-circuit voltage tracking: The tracker periodically measures

    the open circuit voltage, VOC, of the PV string, then sets the

    operating voltage to Vmp = k VOC, where k is a constant. The

    method is simple, and reasonably effective. This method is used

    by AERL trackers.

    2. Power tracking: The tracker measures changes in output power as

    it makes small changes to the operating point, and adjusts the

    operating point to maximise output power.

    3.3 MOTOR CONTROLLERS:

    This component performs the complex task of deciding how much

    current actually reaches the motor at a given time. This determination of current

    by the motor controller allows the Car to accelerate, decelerate, or stay at a

    constant speed. The better motor controllers are up to 90% efficient.

    3.4 TELEMETRY:

    A team's telemetry system is used for data acquisition. A commercial or

    custom system monitors conditions such as speed, battery voltage, power

    collection and consumption, and motor temperature. The system then relays that

    information to the driver and team strategists. Most telemetry systems allow for

    9

  • 7/28/2019 Solar Car - The Report

    10/39

    Solar cars

    two-way data transmissions and are based on microcontrollers and radio

    modems.

    4. DRIVE TRAIN

    The drive train will consist of the electric motor and the means by which

    the motor's power is transmitted to the wheel causing the vehicle to move. Due

    to the low amount of power generated (less than 5 hp) usually only one wheel in

    the rear of the Car is driven by the electric motor. The motor types that have

    been used in solar Cars include

    brushed DC motors

    DC brushless motors

    induction motors

    DC brushless motors are commonplace in solar Car racing. Rare-earth,

    permanent magnets mounted on the rotor, reacts to magnetic fields produced by

    the motor's windings. Three-phase windings allow the rotor remain at constant

    torque. A motor controller sends signals to the windings, regulating the

    magnetic field around the rotor. The most common type of motor used in solar

    Cars is the dual-winding DC brushless. It is fairly lightweight and can reach

    efficiencies of 98% at their rated rpm.

    The dual-winding motor is sometimes used as an electronic transmission.

    Switching between the dual windings changes the speed rating of the motor.

    The low speed windings provide high torque for starting and passing, while the

    high speed windings have higher efficiencies and are best for cruising.

    10

  • 7/28/2019 Solar Car - The Report

    11/39

    Solar cars

    There are several variations of two basic types of transmissions used in

    solar Cars.

    1. single reduction direct drive

    2. variable ratio belt drive

    3. hub motor

    In the past, the most common type was the direct drive transmission where

    the motor is connected to the wheel through a chain or belt with a single gear

    reduction. This is a reliable and easily maintained transmission if special Care is

    taken when aligning the components. Efficiencies above 75% can be achieved

    when designed properly.

    For a variable ratio belt drive, gear ratio changes as the speed of the

    motor increases. This gives the motor more starting torque at lower speeds, but

    still allows the Car to run efficiently at higher speeds. Variable belt drives

    require precise alignment and Careful setup to work efficiently.

    A hub motor eliminates the need for any external transmission because

    the motor shaft is connected directly to the wheel hub. This greatly increases the

    efficiency of the drive train and reduces the number of moving parts necessary

    to drive the wheel. A hub motor uses low rpm to account for the lack of gear

    reduction, which tends to drop their efficiency slightly, but they still can achieve

    efficiencies in excess of 95%.

    11

  • 7/28/2019 Solar Car - The Report

    12/39

    Solar cars

    5. SOLAR INSOLATION

    The energy from the sun strikes the earth throughout the entire day.

    However, the amount of energy changes due to the time of day, weather

    conditions and geographic location. The amount of available solar energy is

    known as the solar insolation or irradiance and is most commonly measured in

    watts per meter squared or W / m 2.

    Figure 3: Typical solar insolation for a sunny day.

    Solar irradiance is generally modelled as having three components:

    direct beam irradiance,

    12

  • 7/28/2019 Solar Car - The Report

    13/39

    Solar cars

    diffuse irradiance, from the sky, and

    reflected irradiance, from the ground.

    The sum of these components is called global irradiance. The irradiance

    that will fall on a surface depends on the many factors, including:

    the day of the year

    the position of the sun in the sky

    the inclination of the surface

    cloud cover.

    These factors should be taken into account while designing the solar array.

    13

  • 7/28/2019 Solar Car - The Report

    14/39

    Solar cars

    6. SOLAR ARRAY

    Solar cells or photovoltaics collect the energy from the sun and convertsit into usable electrical energy. They are made from silicon by joining an n-type

    and a p-type silicon semiconductor, creating an electron rich and an electron

    poor layer. When sunlight strikes the cell, photons cause atoms of the

    semiconductor to free electrons, leaving behind positive charges. The flow of

    electrons thus created constitutes an electromotive force that drives the current

    to charge a battery or power a motor.

    The cell's positive contact is on the bottom while the negative contact, or

    bus bar, is located on the top of the cell. Each cell produces approximately .5

    volts and 3 amps of current. Connecting the cells in series, i.e., positive to

    negative, increases voltage. Parallel connections, i.e., negative to negative and

    positive to positive, increase current. Therefore, connecting the cells in various

    series and parallel configurations produces modules of different voltages and

    currents.

    14

  • 7/28/2019 Solar Car - The Report

    15/39

    Solar cars

    Figure 4: Schematic Diagram of a Solar

    Figure 5: Solar Cell Diagram

    Cells can be grouped into space grade and terrestrial grade categories:

    Space grade cells are up to 29% efficient, and are used mainly in

    satellite production due to their high cost. These high efficiency

    cells cost in excess of $500 per square inch.

    Terrestrial grade cells having a efficiency of 14%, are much

    cheaper causing them to be the cells of choice for solar Cars. Each

    15

  • 7/28/2019 Solar Car - The Report

    16/39

    Solar cars

    cell measures 10cm x 10cm, costs approximately $6.00, and

    produces 1.5 watts of power.

    A large number of solar cells are wired together to form a solar array.

    The entire solar cells together form the solar array. Solar cells should also be

    divided into several zones. For example, if you have 750 solar cells, you might

    want to wire 3 sets of 250 cells, each zone producing about 125 volts. If one

    zone fails, two other zones are still producing power. SUNRUNNER'S array

    consisted of 14,057 razor blade sized, 16% efficient space grade cells.

    The cells are extremely fragile. So many engineers put them through a

    process called encapsulation. Doing so strengthens solar cell durability, but

    decreases the efficiency. Encapsulation is the process of coating the cells with a

    tougher material like resins or sandwiching it between two sheets of fibre glass,

    which prevents the cells from being damaged. For cells 14% efficient,

    encapsulation would reduce the overall efficiency to12.5%.

    6.1 PRACTICALPROBLEMS WITH USING SOLAR

    CELLS

    6.1. 1 I-V CURVES AND SERIES MISMATCH:

    All silicon solar cells put out a voltage of about 0.5V. This is because

    they're a kind of diode, and this is analogous to the forward break over voltage

    of the diode. Now, if you have several cells in series and they're all the same

    they'll all give the same current, and the voltage from all the cells will add up

    neatly. But they're not all the same. The silicon is doped very subtly differently

    from cell to cell, or the purity of the silicon varies, or different cells are at

    different temperatures. Ss some cells will give more current than others. In a

    16

  • 7/28/2019 Solar Car - The Report

    17/39

    Solar cars

    series string, they can't because all the cells are constrained to give exactly the

    same current. This will cause many of our cells to run sub-optimally. So after

    the cells are tabbed, they are measured, and grouped like with like.

    6.1. 2 CURVED ARRAYS:

    The next hazard is curves on the array. Many arrays are not perfectly flat,

    which means that not all cells are receiving the same amount of sunlight. They

    have to be arranged in such a way that all the cells in the strings receive

    approximately the same illumination. A common way to achieve this would be

    to run each string parallel to the long axis of the Car, so that all the cells in a

    string are pointing in approximately the same direction. Several strings are often

    wired together to form a section or panel that has a voltage close to the nominal

    battery voltage.

    6.1. 3 SHADOWS AND BROKEN CELLS:

    Sometimes there will be shadows on the array. This could be caused by

    the driver bubble, or by trees or other obstructions near the road, or by passing

    traffic. When a cell in a string is shaded, its output goes down. Since the other

    cells continue to force current through it, this cell actually dissipates power

    instead of generating, and it gets dissipated as heat. Now that this cell is

    warmer, it's less efficient than the others, and so even when the light comes

    back, it'll want to generate less current, which means it'll wind up dissipating

    some power as heat. This is called Thermal runaway. This is prevented in the

    following way:

    Every cell (or, more often, every small group of cells) has a diode across

    it. When a cell in that group is shaded, current flows through the diode. If you

    have 60 cells in your string, and they're in groups of 6, then when a single cell is

    shaded, your output voltage will drop by 10%, as the bypass diode for that

    17

  • 7/28/2019 Solar Car - The Report

    18/39

    Solar cars

    group comes into play, and your current output will drop not at all. This is better

    than having your voltage drop 0.6V for the dark cell, and having your current

    output drop by some large amount, as current is forced through the dark cell.

    The other time that the bypass diodes come in handy is when a cell gets

    damaged. This may be due to a stone being flicked up from the road, a camera

    falling out of someone's pocket or a small child running up the array. The

    damaged cell may go open-circuit, meaning that without the bypass diode,

    output from the string would drop to zero. With the bypass, output drops only

    proportionately to the percentage of cells bypassed.

    6.2 LIMITATIONS:

    To put the limitations of a solar Car in perspective, a simple calculation

    will suffice. Only 1000 W/m2 of energy reaches the earths surface in an hour

    of peak sun. This term can be thought of as the amount of sunlight that

    reaches a sunny area on cloudless, summer day around noon. An average solar

    array configuration span 8m, meaning the total amount of energy hitting the

    solar Car during peak sun is 8KWh/m2. Of this energy, average solar cells are

    only able to convert 12.5% to electricity. As a result, the total amount of

    converted energy available to a Car consists of 1 KW/h, approximately the same

    amount of energy used to run a hairdryer.

    With Cars running on 700-1500 Watts, efficiency is hypercritical.

    Therefore, advances in all aspects of engineering, from mechanical to electrical

    to materials and computer science are the key. The three primary areas of

    18

  • 7/28/2019 Solar Car - The Report

    19/39

    Solar cars

    energy loss consist of aerodynamic drag, braking, and rolling resistance. To

    minimize aerodynamic drag, engineers make solar cells as sleek as possible.

    Rolling resistance is proportional to weight. Hence solar Cars should be

    engineered to be very light.

    7. BODY & CHASSIS

    The most distinctive part of solar Cars is their bodies. The sleek and

    exotic shapes are eye catching. The main goals when designing the body are to

    minimize the aerodynamic drag, maximize the exposure to solar insolation,

    minimize weight, and maximize safety.

    19

  • 7/28/2019 Solar Car - The Report

    20/39

    Solar cars

    Figure 6: Body and Chassis of a Solar Car

    7.1 BODY SHAPES

    Although Cars differ in design, their shapes can be grouped into four

    categories. A unified aero body and panel allows for a small frontal area, low

    weight, and a wide range of visibility around the canopy. Fixed or tilting, flat

    panels with a separate driver cab are simple, lightweight, and inexpensive to

    construct; however, aerodynamic efficiency is compromised due to exposed

    suspension components and vulnerability to cross winds. Catamaran shapes

    offer reduced frontal area and low aerodynamic drag. For north/south race

    routes, the curved array becomes very powerful in the early morning and late

    afternoon as the sun travels across the horizon. Finally, are uniquely designed

    vehicles whose aerodynamic efficiency and power collection capabilities differ

    from design to design. MAIZE & BLUE and SUNRUNNER were catamaran

    shaped.

    20

  • 7/28/2019 Solar Car - The Report

    21/39

    Solar cars

    Figure 8: Body shapes of common solar Cars

    7.2 CHASSIS

    Generally, there are three types of chassis used in solar Cars:

    1. space frame

    2. semi-monocoque or Carbon beam

    3. monocoque

    A space frame uses a welded tube structure to support the loads and thebody. The body is a lightweight, non-load bearing, composite shell that is

    attached to the chassis separately. The semi-monocoque or Carbon beam

    chassis uses composite beams and bulkheads to support the loads and is

    integrated into a non-load bearing composite belly pan. The top sections of the

    Car are often separate body pieces that are attached to the belly pan. A

    monocoque chassis uses the body structure to support the loads. Many solar

    Cars use a combination of the chassis categories mentioned above. The image

    21

  • 7/28/2019 Solar Car - The Report

    22/39

    Solar cars

    above is an example of a semi-monocoque chassis with an integrated space

    frame used to protect the driver.

    8. MATERIALS USED

    A composite material is the combination of a filler material sandwiched

    between layers of a structural material. Carbon fibre, Kevlar and fibreglass are

    common composite structural materials. Honeycomb and foam are common

    composite filler materials. These materials are bonded together using epoxy

    resins and in the cases of Kevlar and Carbon fibre, can obtain impressive

    strengths (equal to steel) but remain very lightweight. SUNRUNNER used

    Kevlar as the fabric with a Nomex honeycomb spacer while MAIZE& BLUE

    used Carbon fibre fabric.

    9. FALLING SHORT

    There are several characteristics that a commercially viable Car must

    have. Commercial Cars typical can hold at least 4 passengers. It must be

    extremely reliable, comfortable, and be able to function on its own. It must also

    be able to maintain the required speed. In addition, commercial Cars typically

    have amenities such as air conditioning, radio, and power locks and windows.

    Solar vehicles when driven on highways, experienced many flat tires and often

    were incapable of maintaining highway speeds of fifty-five miles per hour. With

    22

  • 7/28/2019 Solar Car - The Report

    23/39

    Solar cars

    the energy available to solar Cars, the type of amenities described above is

    impossible. The Car is also a very cramped one. Hence it failed to break into the

    commercial Car market as of now

    10. THE FUTURE

    10.1 IN THE SHORT TERM

    One plausible market for solar vehicles is a terrestrial application of the

    rovers that NASA uses in space for data collection in a hot, sun rich area where

    manual labor is difficult. The vehicles would recharge autonomously, and the

    drivers discomfort would not be an issue because there would not be a driver.

    In addition, these vehicles could be kept lightweight and simple without a need

    for too many amenities.

    10.1.1 CARRY-OVER OF EXPERTISE:

    The solar Car rush brought substantial advances to the design of electric

    vehicles, starting with the use of solar power. It led to better motors, better use

    of batteries, and better motor controller design which have been adopted by

    some electrical vehicle manufacturers.

    10.1.2 COMPOSITE HULL CAR:

    23

  • 7/28/2019 Solar Car - The Report

    24/39

    Solar cars

    Another key area that has been charging ahead is the composite hull Car.

    Composites were not only lighter, but they also made Cars safer than their steel

    counterparts.

    10.1.3 HARNESSING SOLAR POWER

    Solar Cars also helped spread the word about the use of harnessing solar

    power. By spreading the word about solar energy in this exciting way, the Cars

    contributed to the rise in the use of solar cells for other, more practical uses.

    Lastly, it created a sport that has an educational as well as a social benefit.

    10.2 IN THE LONG RUN

    Whatever be its limitations, the future is definitely full of promise for the

    solar Cars. It took us about a hundred years after electricity was invented, to

    develop a commercially viable electric vehicle. Similarly solar Cars too need a

    suitable incubation period, to successfully foray into the commercial vehicle

    segment.

    With the crude prices hitting upwards of $50 a barrel and still looking

    bullish, it is certain that the current preference for petroleum based automobiles

    will change in the not too distant future. The solar Car with no fuel expenses

    will certainly be preferred for short distance commutation in the future. Though

    it may offer only a significantly reduced performance compared to the

    conventional vehicle it will then be looked upon as a cost effective option.

    Also, there are many areas of the solar Car, which can be improved upon,

    starting with the solar array. At present the solar array is only 12.5% efficient.

    24

  • 7/28/2019 Solar Car - The Report

    25/39

    Solar cars

    What would be the case if it were made atleast 50% efficient? Im sure that

    much of the current problems in solar Cars can be overcome.

    DC Motor

    Faradays used oersteds discovered, that electricity could be used

    to produce motion, to build the world first electric motor in 1821.Ten years later, using the same logic in reverse, faraday wasinterested in getting the motion produced by oersteds experiment tobe continuous, rather then just a rotatory shift in position. In hisexperiments, faraday thought in terms of magnetic lines of force.He visualized how flux lines existing around a current carrying wireand a bar magnet. He was then able to produce a device in whichthe different lines of force could interact a produce continuesrotation. The basic faradays motor uses a free-swinging wire that

    circles around the end of a bar magnet. The bottom end of the wireis in a pool of mercury. Which allows the wire to rotate whilekeeping a complete electric circuit.

    25

  • 7/28/2019 Solar Car - The Report

    26/39

    Solar cars

    BASIC MOTOR ACTION

    Although Faraday's motor was ingenious. It could not be used to doany practical work. This is because its drive shaft was enclosedand it could only produce an internal orbital motion. It could nottransfer its mechanical energy to the outside for deriving anexternal load. However it did show how the magnetic fields of a

    conductor and a magnet could be made to interact to producecontinuous motion. Faradays motor orbited its wire rotor must passthrough the magnets lines of force.

    26

  • 7/28/2019 Solar Car - The Report

    27/39

    Solar cars

    When a current is passes through the wire ,circular lines of force are produced aroundthe wire. Those flux lines go in a direction described by the left-hand rule. The lines offorce of the magnet go from the N pole to the S pole You can see that on one side ofthe wire, the magnetic lines of force are going in the opposite direction as a result thewire, s flux lines oppose the magnets flux line since flux lines takes the path of leastresistance, more lines concentrate on the other side of the wire conductor, the lines are

    bent and are very closely spaced. The lines tend to straighten and be wider spaced.Because of this the denser, curved field pushes the wire in the opposite direction.

    The direction in which the wire is moved is determined by the righthand rule. If the current in the wire went in the opposite direction.The direction of its flux lines would reverse, and the wire would bepushed the other way.

    27

  • 7/28/2019 Solar Car - The Report

    28/39

    Solar cars

    Rules for motor actionThe left hand rule shows the direction of the flux lines around a wire that is carryingcurrent. When the thumb points in the direction of the magnetic lines of force. Theright hand rule for motors shows the direction that a current carrying wire will bemoved in a magnetic field. When the forefinger is pointed in the direction of themagnetic field lines, and the centre finger is pointed in the direction of the current inthe wire the thumb will point in the direction that the wire will be moved.

    28

  • 7/28/2019 Solar Car - The Report

    29/39

    Solar cars

    TORQUE AND ROTATORY MOTION

    In the basic action you just studied the wire only moves in a straight

    line and stops moving once out of the field even though the currentis still on. A practical motor must develop a basic twisting forcecalled torque loop. We can see how torque is produced. If the loopis connected to a battery. Current flows in one direction one side ofthe loop, and in the opposite direction on the other. Therefore theconcentric direction on the two sides.

    If we mount the loop in a fixed magnetic field and supply the current

    the flux lines of the field and both sides of the loop will interact,

    29

  • 7/28/2019 Solar Car - The Report

    30/39

    Solar cars

    causing the loop to act like a lever with a force pushing on its twosides in opposite directions. The combined forces result in turningforce, or torque because the loop is arranged to piot on its axis. In amotor the loop that moves in the field is called an armature or rotor.

    The overall turning force on the armature depends upon severalfactors including field strength armature current strength and thephysical construction of the armature especially the distance fromthe loop sides to the axis lines. Because of the lever action theforce on the sides are further from the axis; thus large armature willproduce greater torques.

    30

  • 7/28/2019 Solar Car - The Report

    31/39

    Solar cars

    In the practical motor the torque determines the energy available for doing usefulwork. The greater the torque the greater the energy. If a motor does not developenough torque to pull its load it stalls.

    Producing Continuous Rotation

    The armature turns when torque is produced and torque isproduced as long as the fields of the magnet and armature interact.When the loop reaches a position perpendicular to the field, theinteraction of the magnetic field stops. This position is known as theneutral plane. In the neutral plane, no torque is produced and therotation of the armature should stop; however inertia tends to keepa moving object in the motion even after the prime moving force isremoved and thus the armature tends to rotate past the neutral

    plane. But when the armature continues o the sides of the loop

    31

  • 7/28/2019 Solar Car - The Report

    32/39

    Solar cars

    start to swing back in to the flux lines, and apply a force to push thesides of the loop back and a torque is developed in the oppositedirection. Instead of a continuous rotation an oscillating motion isproduced until the armature stops in the neutral plane.

    32

  • 7/28/2019 Solar Car - The Report

    33/39

    Solar cars

    To get continuous rotation we must keep the armature turning in the same direction asit passes through the neutral plane .We could do this by reversing either the directionof the current flow through the armature at the instant the armature goes through theneutral pole. Current reversals of this type are normally the job of circuit switchingdevices. Since the switch would have to be synchronized with the armature, it is morelogical to build it into the armature then in to the field. The practical switching device,which can change the direction of current flow through an armature to maintaincontinuous rotation, is called a commutator.

    THE COMMUTATOR

    33

  • 7/28/2019 Solar Car - The Report

    34/39

    Solar cars

    For the single-loop armature, the commutator is simple. It is aconducting ring that is split into two segment with each segmentconnected to an end of the armature loop. Power for the armaturefrom an external power source such as a battery is brought to the

    commutator segments by means of brushes. The arrangement isalmost identical to that for the basic dc generator.

    The logic behind the operation of the commutator is easy to see inthe figures. You can see in figure A that current flows into the sideof the armature closest to the South Pole of the field and out of theside closest to the North Pole. The interaction of the two fieldsproduces a torque in the direction indicated, and the armature

    rotates in that direction.

    No torque is produced but the armature continues to rotate past theneutral plane due to inertia. Notice that at the neutral position thecommutator disconnects from the brushes sides of the loop reversepositions. But the switching action of the commutator keeps thedirection of current flow through the armature the same as it was inthe figure. A. Current still flows into the armature side that is nowclosest to the South Pole.

    Since the magnets field direction remains the same throughout theinteraction of fields after commutation keeps the torque going in theoriginal direction; thus the same direction of rotation is maintained.

    As you can see in figure D, Inertia again carries the armature past neutral to theposition shown in the fig. A while communication keeps the current flowing in the

    direction that continues to maintain rotation. In this way, the commutator keepsswitching the current through the loop, so that the field it produces always interactswith the pole field to develop a continuous torque in the same direction.

    34

  • 7/28/2019 Solar Car - The Report

    35/39

    Solar cars

    35

  • 7/28/2019 Solar Car - The Report

    36/39

    Solar cars

    36

  • 7/28/2019 Solar Car - The Report

    37/39

    Solar cars

    THE ELEMANTARY D-C MOTOR

    At this point, you have been introduced to the four principal partsthat make up the elementary D.C motor. These parts are the same

    as those you met in your study of the basic D.C generator .amagnetic field, a movable conductor, a commutator and brushes. Inpractice, the magnetic field can be supplied by a permanentmagnet or by an electromagnet. For most discussions coveringvarious motor operating principles, we will assume that apermanent magnet is used at other times when it is important foryou to understand that the field of the motor is develop electrically,we will show that an electromagnet is used. In either case, themagnetic field itself consists of magnetic flux lines that form a

    closed magnetic circuit. The flux lines leave the north pole of themagnet, extend across the air gap between the poles of themagnet, enter the South Pole and then travel through the magnetitself back to the north pole. The movable conductor, usually a loop,called armature, therefore is in the magnetic field.

    When D.C motor is supplied to the armature through the brushesand commutator, magnetic flux is also build up around thearmature. It is this armature flux that interacts with the magnetic

    field in which the armature is suspended to develop the torque thatmakes the motor operate.

    37

  • 7/28/2019 Solar Car - The Report

    38/39

    Solar cars

    CONCLUSION

    The solar Cars are used exclusively for racing in tournaments, at present.

    Though they have been around for about twenty five years now, the technology

    is still in the developmental stages. Hence they can not be used as a practical

    means of transport. The challenge lies in making it a viable means of transport.

    Further research is needed in this regard to improve solar panels, reduce weight,

    to improve reliability and to reduce the cost. Research is being Carried out on

    many semi-conductors and their alloys to develop more efficient solar cells. It

    can be safely assumed that with the advent of mass production there would be

    greatly reduced. Thus this technology will definitely live up to its potential

    some time in the future.

    38

  • 7/28/2019 Solar Car - The Report

    39/39

    Solar cars

    REFERENCES

    1. http://www.americansolarCarchallenge.org

    2. http://www.solarCar.mcmaster.ca

    3. http://www.formulasun.org

    4. http://scg.levels.unisa.edu.au/src/pmwiki.php

    5. http://www.raccoon.com/~cpraven/thesis/

    6. http://www.umr.edu/~dougc/solar/sun.html

    7. http://web.umr.edu/~wif/experimental/Beijing.Kevlar.html

    8. http://sunsite.anu.edu.au/questacon/aimscc_main.html

    9. http://www.wikipedia.com


Recommended