+ All Categories
Home > Documents > Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring...

Solar Cell Fundamentals - nanohub.orgSolarCellFundamantals_S...Lundstrom ECE 305 S16 ECE-305: Spring...

Date post: 16-May-2019
Category:
Author: trandang
View: 217 times
Download: 0 times
Share this document with a friend
Embed Size (px)
of 18 /18
ECE-305: Spring 2016 Solar Cell Fundamentals Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 3/22/16 Pierret, Semiconductor Device Fundamentals (SDF) pp. 356-361
Transcript

Lundstrom ECE 305 S16

ECE-305: Spring 2016

Solar Cell Fundamentals

Professor Mark Lundstrom Electrical and Computer Engineering

Purdue University, West Lafayette, IN USA [email protected]

3/22/16

Pierret, Semiconductor Device Fundamentals (SDF) pp. 356-361

Solar cells

2

modern Si solar cell

Chapin, Pearson, Fuller, 1954

http://www.bell-labs.com/org/physicalsciences/timeline/span10.html#

solar cells today

3 SunPower http://us.sunpower.com

recombination and dark current

4

minority carriers injected across junction

Fn FPqVA

VA +

ID

Lundstrom ECE 305 S16 Every time a minority electron recombines on the p-side, one electron flows in the external current.

generation and current

5

minority carriers collected by junction

Fn FPqVA

IL < 0

hf > EG

Lundstrom ECE 305 S16

Every time a minority electron is generated and collected by the PN junction, one electron flows in the external current.

light and dark current

6

VD

I mA( )ID = I0 e

qVA /kBT 1( )

0.7V

Lundstrom ECE 305 S16

IL < 0photocurrent

dark current

hf > EG

solar cell operation

7

1) Light generates e-h pairs

EF

Lundstrom ECE 305 S16

solar cell operation

8

2) PN junction collects e-h pairs

EF

3) Current flows through load IL < 0

RL

VL +

forward bias across PN junction develops

ID > 0

Lundstrom ECE 305 S16

solar cell operation

9

4) Forward bias reduces current

FpFn qVD

Lundstrom ECE 305 S16

5) IV characteristic is a superposition

ITOT = I0 eqVD kBT 1( ) ISC

light-generated current

diode (dark) current

IV characteristic

10

PD = ITOTVD < 0

VD

ID

ITOT = I0 eqVD kBT 1( ) ISC

ISC

Pout = ISCVD = 0

VOC

Pout = ITOTVOC = 0

Pout = ImpVmp = ISCVOCFF

= PoutPin

= ISCVOCFFPin

ID = I0 eqVD kBT 1( )

11

solar cell efficiency

= PoutPin

= ISCVOCFFPin

1) Short circuit current 2) Open-circuit voltage 3) Fill factor

Lundstrom ECE 305 S16

12

1) Maximum short circuit current

Example: Silicon Eg = 1.1eV. Only photons with a wavelength < 1.13 m will be absorbed.

solar spectrum (AM1.5G)

Pin = 100 mW cm2

< hcEG

JSC max = 44 mA cm2

13

2) Open-circuit voltage

ITOT = I0 eqV /kBT 1( ) ISC

Lundstrom ECE 305 S16

ITOT = 0 = I0 eqVOC /kBT 1( ) ISC

I0 eqVOC /kBT 1( ) = ISC

VOC 0.7 V

VOC =kBTqln ISC

I0

n 0( ) = ni2 NA( ) eqVA kBT 1( )

14

Increasing VOC

0

n x( )

Wp

15

3) Efficiency

Lundstrom ECE 305 S16

= PoutPin

= ISCVOCFFPin

44 103A/cm2( ) 0.7 V 0.8

100 103 V/cm2

25%

VD

ID

ISC

VOC

ID = I0 eqVD kBT 1( )

High efficiency Si solar cell

Martin Green Group UNSW Zhao, et al., 1998 (24.5% at 1 sun) 16

370 400 m

= PoutPin

= ISCVOCFFPin

VOC =kBTqln ISC

I0

FF = 0.81

JSC = 41.5 mA/cm2 94%( )

VOC = 0.703

17

JSC VOC Trade-off

1) Smaller bandgaps give higher short circuit current

2) Larger bandgaps give higher open-circuit voltage

3) For the given solar spectrum, an optimum bandgap exists. EG

JSC VOC

Lundstrom ECE 305 S16

Shockley-Queisser Limit

34%

VOC =kBTqln ISC

I0

I0 ni2

18

solar cell summary

1) Light is absorbed and produces e-h pairs 2) PN junctions separate e-h pairs and collect the carriers. 3) Current flow in external circuit produces a FB voltage and

the FB diode current reduces the total current. 4) Power out is ISCVOC FF. 5) Unlike integrated circuit chips, where the value added

comes from the design/system, manufacturing costs are critical in PV.

Lundstrom ECE 305 S16


Recommended