+ All Categories
Home > Documents > Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie...

Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie...

Date post: 19-Dec-2015
Category:
View: 219 times
Download: 1 times
Share this document with a friend
44
Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska
Transcript
Page 1: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Solar wind interaction with the comet Halley and

Venus

K. MurawskiUniversity of M. Curie Skłodowska

Page 2: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Outline

• Overview of solar wind interaction with magnetic and non-magnetic bodies

• Numerical simulations of the solar wind interaction with Venus

• Numerical simulations of the solar wind interaction with the comet Halley

• Summary

Page 3: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

A global view of the Heliosphere

Page 4: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Solar system - Icy Matter ...

Jan Oort’s Cometary Cloud

Page 5: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Outskirts of the Solar system - Comets

Page 6: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Properties of the solar wind

1 AU

ne

≈ 5 cm-3

T ≈ 105 K |B

IMF| ≈ 5 nT

vsw

≈ 400 km/s v

A≈ 30 - 50 km/s

cS

≈ 60 km/s

highly conducting plasmahighly conducting plasma

electrons, protons + alpha-particleselectrons, protons + alpha-particles

radial expansionradial expansion

magnetic field “frozen” in the plasmamagnetic field “frozen” in the plasma

SW = super-sonic + super-alfvénicSW = super-sonic + super-alfvénic

InterplanetaryMagnetic

FieldPlanetary Obstacle

Radial PlasmaOutflow

SolarRotation

Page 7: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

TYPES OF INTERACTION TYPES OF INTERACTION WITH THE SOLAR WINDWITH THE SOLAR WIND

INTERNALINTERNALMAGNETIC MAGNETIC

FIELDFIELDATMOSPHEREATMOSPHERE

VENUSVENUS

MARSMARS

EARTHEARTH

EARTH'S EARTH'S MOONMOON

MERCURMERCURYY

COMETSCOMETS

SATURNSATURN

JUPITERJUPITER

URANUSURANUS

NEPTUNNEPTUN

GANIMEDE

Page 8: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Simplest case:Simplest case:Earth's MOONEarth's MOON

NONO magnetic field magnetic fieldNONO atmosphere atmosphere

Page 9: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

MOON – typeMOON – type no magnetic fieldno magnetic field

negligibly thin atmospherenegligibly thin atmosphere

insulating materialinsulating material

submerged in a flowing plasmasubmerged in a flowing plasma

absorptionabsorption of particles of particles

no bow shockno bow shock upstream upstream

plasma – absorption plasma – absorption wakewake

magnetic field magnetic field parallelparallel to the upstream flow → to the upstream flow → no effectno effect

magnetic field magnetic field perpendicularperpendicular to the flow to the flow → → minimal effectminimal effect

Illustration of the interplanetary plasma flow and magnetic-field perturbation by the nonconducting moon. The wake created by solar-wind absorption closes more quickly when the magnetic field is not aligned with the undisturbed flow.

Page 10: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

SW interactions with SW interactions with magnetizedmagnetized bodiesbodies

and an and an atmosphereatmosphere

Obstacle = magnetosphereObstacle = magnetosphere

Page 11: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

EARTH – type (Jupiter, Saturn)

Plasma structures of the Earth's magnetosphere

bow shock magnetosheath

magnetopause

cusp

lobes

neutral sheettrapping region

plasma sheet

ionosphere

plasmasphere

solar wind

strong magnetic fieldstrong magnetic field

substantial atmospheresubstantial atmosphere

Page 12: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

SW interactions with SW interactions with magnetizedmagnetized bodiesbodies

but without an atmospherebut without an atmosphere

Obstacle = magnetosphereObstacle = magnetosphere

Page 13: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

MERCURY - typeMERCURY - type strong magnetic fieldstrong magnetic field

no gravitationally bound atmosphereno gravitationally bound atmosphere

Plasma structures of the Mercury's magnetosphere

magnetosheath

lobes

magnetopausebo

w shoc

k

cusp

solar wind

SimilaritiesSimilarities and and differencesdifferences with Earthwith Earth

MagnetosphereMagnetosphere Absence of an atmosphere Absence of an atmosphere

and ionosphereand ionosphere Solar wind conditionsSolar wind conditions Mercury has a larger Mercury has a larger

fractional volume of its fractional volume of its magnetospheremagnetosphere no stable trapping regionsno stable trapping regions closed magnetic flux tubesclosed magnetic flux tubes

Solar wind – primary source Solar wind – primary source of magnetospheric plasmaof magnetospheric plasma

Plasma sheet – higher Plasma sheet – higher densitiesdensities 0.382 AU

Mercury

Page 14: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

COMETSCOMETS

NONO internal internal magnetic fieldmagnetic fieldbut atmospherebut atmosphere

Obstacle = exosphereObstacle = exosphere

Page 15: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

What is Solar Wind?COMETS

Page 16: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Comet Structure

• Nucleus: main solid core of the comet.

• Tail: gas and dust particles released by the comet.

• Coma: gases and dust released by the comet when energy from the sun heats the comet and causes the solid materials to turn into a gas.

Page 17: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Comet Tails• Comets develop tails

only when the get close enough to the Sun.

• Comet tails always point away from the Sun—This is how scientists first realized the existence of solar wind.

Page 18: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Comet – type Comet – type no internal magnetic fieldno internal magnetic field

substantial atmospheresubstantial atmosphere

Solar WindContact SurfaceNucleus

Cometo-pause

Bow Shock

Ionosphere

Page 19: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Numerical model - MHD

Page 20: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Numerical results

Page 21: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Numerical results

Page 22: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Numerical results

Page 23: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Numerical results

Page 24: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Numerical results

Page 25: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Numerical results

Page 26: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

SW interactions with SW interactions with unmagnetizedunmagnetized bodies bodies

with a substantial with a substantial atmosphereatmosphere

Obstacle = ionosphereObstacle = ionosphere

Page 27: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Venus

Page 28: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

VENUS – typeVENUS – type

weak magnetic field or non at allweak magnetic field or non at all

substantial atmospheresubstantial atmosphere

Illustration of the steps that lead to the formation of an ionospheric planetary obstacle in a flowing plasma like the solar wind. Ionization by solar radiation, for example, is followed by diversion of the external plasma flow only if that flow is magnetized.

Planetary Atmosphere

(neutral atoms and molecules)

Ionosphere (photoions)

Solar radiation

Solar Wind Wake

Bow Shock

Interplanetary Magnetic Field Magnetosheath

induced Magnetotail

Ionosphere

Magnetic Barrier

Page 29: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Structure of the Ionosphere

Brace and Kliore, 1991

Page 30: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Location of the obstacle Location of the obstacle boundaryboundary

ionospheric ionospheric pressure pressure

nnii k T k Tii

Bow Shock

Magnetic Field Lines

Magnetic Barrier

Ionosphere

Streamlines of Solar Wind Plasma Flow

Ionopause

external pressureexternal pressurennswswkTkTswsw + + ρvρv22 + + BB22 / 2μ / 2μ

00

thermal pressure

solar wind dynamic pressure

magnetic pressure of the interplanetary magnetic

field

Page 31: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Induced magnetotailInduced magnetotail

Bow Shock

Magnetotail

Z_vso

X_vsoY_vso

Page 32: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Pick – up and escape Pick – up and escape processesprocesses

Illustration of planetary pickup – ion trajectories of Venus. The cycloid sizes are approximately scaled for O+ (oxygen is the main constituent of the Venus upper atmosphere).

Photoion

Escape

Energetic neutral atoms

(ENAs)Escape

Page 33: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Ionospheric magnetic fieldIonospheric magnetic field

Examples of observed altitude profiles for the ionospheric electron densities (points) and magnetic fields (solid line) at Venus. The ionopause is located where the magnetosheath field decreases and the plasma density increases.

Orbit 186 Orbit 177 Orbit 176

Iono-pause

Iono-pause

Iono-pause

Ne(cm-3)

2001601208010060201006020 80400 0 40 80100

500

400

300

200

Alt

itu

de

(km

)

102 105104103 106 102 105104103 106102 105104103 106

Page 34: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.
Page 35: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Number Density (cm-3)

Alt

itud

e (K

m)

Page 36: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Solar wind

Numerical model - Draping magnetic field lines

Page 37: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Physical model – 2 component MHD

Page 38: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Parameters of the physical model

Page 39: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Pressure distribution

bow shockionosphere

magnetic barrier

IMF

Interaction region

Page 40: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Pressure profiles in the subsolar region

X

Page 41: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Plasma profiles

X

Page 42: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Magnetic field lines and nightside ionosphere

IMF

Solar wind

X

Z

Y

XZ plane

XY plane

Page 43: Solar wind interaction with the comet Halley and Venus K. Murawski University of M. Curie Skłodowska.

Concluding remarksConcluding remarks Flowing plasma interactions with various types of Flowing plasma interactions with various types of

magnetized magnetized planets orplanets or

unmagnetizedunmagnetized / weakly magnetized bodies / weakly magnetized bodies

Each plasma interaction has Each plasma interaction has distinctive featuresdistinctive features

EarthEarth: : magnetic field and atmospheremagnetic field and atmosphere

MercuryMercury: : magnetic field but NO atmospheremagnetic field but NO atmosphere

Moon like bodiesMoon like bodies: : neither a magnetic field nor an atmosphereneither a magnetic field nor an atmosphere

VenusVenus and and MarsMars: : no internal magnetic field but a substantial no internal magnetic field but a substantial atmosphereatmosphere

CometsComets: : atmospheres with insignificant bodiesatmospheres with insignificant bodies


Recommended