+ All Categories
Home > Documents > SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Date post: 09-Jan-2016
Category:
Upload: jerod
View: 27 times
Download: 3 times
Share this document with a friend
Description:
Nha Trang 2000 Nha Trang, Vietnam, Aug. 14-18, 2000. SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES. * In-Won Lee: Professor, KAIST Man-Cheol Kim: Senior Researcher, KRRI Kyu-Hong Shim: Postdoctoral Researcher, KAIST. OUTLINE. - PowerPoint PPT Presentation
42
* In-Won Lee: Professor, KAIST * In-Won Lee: Professor, KAIST Man-Cheol Kim: Senior Researcher, Man-Cheol Kim: Senior Researcher, KRRI KRRI Kyu-Hong Shim: Postdoctoral Resear Kyu-Hong Shim: Postdoctoral Resear cher, KAIST cher, KAIST SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES Nha Trang 2000 Nha Trang 2000 Nha Trang, Vietnam, Aug. 14-18, 2000 Nha Trang, Vietnam, Aug. 14-18, 2000
Transcript
Page 1: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

* In-Won Lee: Professor, KAIST* In-Won Lee: Professor, KAIST Man-Cheol Kim: Senior Researcher, KRRIMan-Cheol Kim: Senior Researcher, KRRI Kyu-Hong Shim: Postdoctoral Researcher, KAIST Kyu-Hong Shim: Postdoctoral Researcher, KAIST

SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Nha Trang 2000Nha Trang 2000

Nha Trang, Vietnam, Aug. 14-18, 2000Nha Trang, Vietnam, Aug. 14-18, 2000

Page 2: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

2

OUTLINE

PROBLEM DEFINITION

PROPOSED METHOD

NUMERICAL EXAMPLES

CONCLUSIONS

Page 3: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

3

)()()()( tftuKtuCtuM

M

C

K)(tu

)(tf

(1)

where : Mass matrix, Positive definite

: Damping matrix

: Stiffness matrix, Positive semi-definite

: Displacement vector

: Load vector

PROBLEM DEFINITION• Dynamic Equation of Motion• Dynamic Equation of Motion

Page 4: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

4

• Methods of Dynamic Analysis• Step by step integration method

• Mode superposition method

• Methods of Dynamic Analysis• Step by step integration method

• Mode superposition method

• Mode Superposition Method• Free vibration analysis should be first performed

• Mode Superposition Method• Free vibration analysis should be first performed

Page 5: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

5

• Example : Rayleigh Damping

CMKKMC 11

KMC

(2)

• Condition of Classical Damping• Condition of Classical Damping

Page 6: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

6

: Real eigenvalue

: Natural frequency

: Real eigenvector(mode shape)

niMK iii ,,2,1 (3)

2ii

ii

• Eigenproblem of classical damping systems• Eigenproblem of classical damping systems

- Low in cost

- Straightforward

where

Page 7: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

7

niKCM iiiii ,,2,102 (4)

where : Complex eigenvalue

: Complex eigenvector(mode shape)i

i

• Quadratic eigenproblem of non-classically damped systems• Quadratic eigenproblem of non-classically damped systems

Page 8: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

8

niBA iii 2,,2,1 (5)

: Complex Eigenvector (6)

ii

ii

where

An efficient eigensolution technique of An efficient eigensolution technique of non-classically damped systems is required.non-classically damped systems is required.

: Complex Eigenvalue

- Very expensive

M

KA

0

0

0M

MCB

i

Page 9: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

9

• Transformation method: Kaufman (1974)

• Perturbation method: Meirovitch et al (1979)

• Vector iteration method: Gupta (1974; 1981)

• Subspace iteration method: Leung (1995)

• Lanczos method: Chen (1993)

• Efficient Methods

• Current Methods for Solving the Non-Classically Damped Eigenproblems• Current Methods for Solving the Non-Classically Damped Eigenproblems

Page 10: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

10

p 21

iii BA Solve

ijjTi B Subject to

For i iand pi ,,2,1

: multiple or close roots

BA

pT IB

where

p ,,, 21

pdiag ,,, 21

If p=1, then distinct root

PROPOSED METHOD

• Find p Smallest Eigenpairs• Find p Smallest Eigenpairs

Page 11: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

11

BA

p ,,, 21

pdiag ,,, 21 where

X

(7)

(8)

(9)

XZ

pT IBXX

• Let be the vectors in the subspace of and be orthonormal with respect to , then

pxxxX ,,, 21

(10)

(11)

BX

• Relations between and Vectors in the Subspace of • Relations between and Vectors in the Subspace of

Page 12: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

12

ZDZ

where AXXdddD Tp ,,, 21 : Symmetric

• Let (13)

• Introducing Eq.(10) into Eq.(7)

BXZAXZ (12)

BXDZAXZ

BXDAX

or piBXdAx ii ,,2,1

• Then

or

(14)

(15)

(16)

Page 13: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

13

ZDZ

D

D

XZ

DX

(13)

(10)

• Multiple or Close Eigenvalues

• Multiple eigenvalues case : is a diagonal matrix.

Eigenvalues :

Eigenvectors :

• Close eigenvalues case : is not a diagonal matrix.

- Solve the small standard eigenvalue problem.

- Get the following eigenpairs.

Eigenvalues :

Eigenvectors :

• Multiple or Close Eigenvalues

• Multiple eigenvalues case : is a diagonal matrix.

Eigenvalues :

Eigenvectors :

• Close eigenvalues case : is not a diagonal matrix.

- Solve the small standard eigenvalue problem.

- Get the following eigenpairs.

Eigenvalues :

Eigenvectors :

Page 14: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

14

pidXBxA ki

kki ,,2,10)1()1()1(

pkTk IXMX )1()1( )(

(17)

(18)

)()()1( ki

ki

ki ddd

)()()1( ki

ki

ki xxx

)1()1(2

)1(1

)1( ,...,, kp

kkk xxxX

,)(kid )(k

ix

where

: unknown incremental values

(19)

(20)

(21)

• Newton-Raphson Technique• Newton-Raphson Technique

Page 15: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

15

)()()()( ki

kki

ki dXBAxr where : residual vector

)()()()()()( ki

ki

kki

kii

ki rdBXxBdxA

0)( )()( ki

Tk xBX

(22)

(23)

• Introducing Eqs.(19) and (20) into Eqs.(17) and (18) and neglecting nonlinear terms

• Matrix form of Eqs.(22) and (23)

pi

r

d

x

X

BXBdA ki

ki

ki

Tk

kkii

,,2,1

00B)(

)(

)(

)(

)(

)()(

(24)

Coefficient matrix : • Symmetric• Nonsingular

Page 16: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

16

pi

r

d

x

X

BXBdA ki

ki

ki

Tk

kkii

,,2,1

00B)(

)(

)(

)(

)(

)()(

Coefficient matrix : • Symmetric• Nonsingular

(24)

Introducing modified Newton-Raphson technique

00B)(

)(

)(

)(

)(

)()0( ki

ki

ki

Tk

kii r

d

x

X

BXBdA

)()()1( ki

ki

ki ddd

)()()1( ki

ki

ki xxx

(25)

(20)

(19)

• Modified Newton-Raphson Technique• Modified Newton-Raphson Technique

Page 17: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

17

• Step 2: Solve for and )(kid

00B)(

)(

)(

)(

)(

)()0( ki

ki

ki

Tk

kii r

d

x

X

BXBdA

• Step 3: Compute)()()1( k

ik

ik

i ddd

)()()1( ki

ki

ki xxx

• Step 1: Start with approximate eigenpairs ,)0(X )0(D

,)()0( kiix pid k

iii ,,2,1)()0(

)(kix

• Algorithm of Proposed Method• Algorithm of Proposed Method

Page 18: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

18

• Step 4: Check the error norm.

Error norm =

If the error norm is more than the tolerance, then go to Step 2 and if not, go to Step 5.

• Step 5: Check if is a diagonal matrix, go to Step 6, if not, go to Step 7.

2

)(2

)()()(

ki

ki

kki

xA

dXBxA

D

Page 19: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

19

• Step 7: Close case• Step 6: Multiple case

XD

• Go to step 8. • Go to step 8.

ZDZ

XZ

• Step 8: Check the error norm.

piA

BA

i

iii,,1

2

2

Error norm =

• Stop !

Page 20: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

20

• Initial Values of the Proposed Method

• Intermediate results of the iteration methods- Vector iteration method- Subspace iteration method

• Results of the approximate methods

- Static Condensation method

- Lanczos method

• Initial Values of the Proposed Method

• Intermediate results of the iteration methods- Vector iteration method- Subspace iteration method

• Results of the approximate methods

- Static Condensation method

- Lanczos method

Page 21: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

21

NUMERICAL EXAMPLES

• Structures• Cantilever beam(distinct)

• Grid structure(multiple)

• Three-dimensional framed structure(close)

• Structures• Cantilever beam(distinct)

• Grid structure(multiple)

• Three-dimensional framed structure(close)

• Analysis Methods• Proposed method

• Subspace iteration method (Leung 1988)

• Lanczos method (Chen 1993)

• Analysis Methods• Proposed method

• Subspace iteration method (Leung 1988)

• Lanczos method (Chen 1993)

Page 22: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

22

• Comparisons• Solution time(CPU)

• Convergence

• Comparisons• Solution time(CPU)

• Convergence

• Convex with 100 MIPS, 200 MFLOPS• Convex with 100 MIPS, 200 MFLOPS

Page 23: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

23

Cantilever Beam with Lumped Dampers (Distinct Case)

1 2 3 4 99 100 101

C

5

Material PropertiesTangential Damper :c = 0.3

Rayleigh Damping : = = 0.001

Young’s Modulus :1000

Mass Density :1

Cross-section Inertia :1

Cross-section Area :1

System DataNumber of Equations :200

Number of Matrix Elements :696

Maximum Half Bandwidths :4

Mean Half Bandwidths :4

Page 24: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

24

Proposed MethodMode

Number

Error Norm ofStarting Eigenpair(Lanczos method)

Number ofIterations

Eigenvalue Error Norm

12345678910

0.234069E-030.234069E-030.192793E-030.192793E-030.148072E-040.148072E-040.619329E-020.619329E-020.377004E+000.377004E+00

1111111111

-2.57457 + j 3.17201-2.57457 - j 3.17201-1.53800 + j 18.3566-1.53800 - j 18.3566-1.69581 + j 39.6477-1.69581 - j 39.6477-2.43492 + j 61.0104-2.43492 - j 61.0104-3.78360 + j 82.3222-3.78360 - j 82.3222

0.232258E-070.232258E-070.428428E-090.428428E-090.727353E-100.727353E-100.204824E-100.204824E-100.997372E-070.997372E-07

• Results of Cantilever Beam Structure (Distinct)• Results of Cantilever Beam Structure (Distinct)

Page 25: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

25

Method CPU time in seconds Ratio

Proposed method(Lanczos method + Iteration scheme)

Subspace Iteration Method

76.10(10.42 + 65.64)

100.94

1.00

1.33

• CPU Time for 10 Lowest Eigenpairs, Cantilever Beam• CPU Time for 10 Lowest Eigenpairs, Cantilever Beam

Page 26: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

26

2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 11 0

N u m b er o f G en era ted L a n czos V ecto rs

1 .0 E -8

1 .0E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0E + 0E

rror

Nor

m

E rror L im it

Convergence by Lanczos method(Chen 1993)Cantilever beam (distinct)

Starting values of proposed method

: 1st, 2nd eigenpairs : 3rd, 4th eigenpairs : 5th, 6th eigenpairs : 7th, 8th eigenpairs : 9th, 10th eigenpairs

Page 27: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

27

Convergence of the 1st eigenpairCantilever beam (distinct)

: Proposed Method : Subspace Iteration Method (q=2p)

0 1 2 3 4 5 6

Itera tio n N u m b er

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Page 28: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

28

Convergence of the 5th eigenpairCantilever beam (distinct)

: Proposed Method : Subspace Iteration Method (q=2p)

0 1 2 3 4 5 6 7 8 9 1 0 1 1

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Page 29: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

29

Grid Structure with Lumped Dampers (Multiple Case)

Material Properties

Tangential Damper :c = 0.3

Rayleigh Damping : = = 0.001

Young’s Modulus :1,000

Mass Density :1

Cross-section Inertia :1

Cross-section Area :1

System Data

Number of Equations :590

Number of Matrix Elements :8,115

Maximum Half Bandwidths :15

Mean Half Bandwidths :[email protected]=10

[email protected]=

10

Page 30: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

30

Proposed MethodMode

Number

Error Norm ofStarting Eigenpair(Lanczos method)

Number ofIterations

Eigenvalue Error Norm

123456789101112

0.467621E-070.325701E-050.467621E-070.325701E-050.170965E-060.823644E-060.170965E-060.823644E-060.250670E-040.786392E-000.250670E-040.786392E-00

010100001111

-0.09590 + j 8.66792-0.09590 + j 8.66792-0.09590 - j 8.66792-0.09590 - j 8.66792-0.60556 + j 15.5371-0.60556 +j 15.5371-0.60556 - j 15.5371-0.60556 - j 15.5371-0.57725 + j 20.7299-0.57725 + j 20.7299-0.57725 - j 20.7299-0.57725 - j 20.7299

0.467621E-070.805278E-100.467621E-070.805278E-100.170965E-060.823644E-060.170965E-060.823644E-060.344167E-100.432693E-090.344167E-100.432693E-09

• Results of Grid Structure (Multiple)• Results of Grid Structure (Multiple)

Page 31: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

31

Method CPU time in seconds Ratio

Proposed method(Lanczos method + Iteration scheme)

Subspace Iteration Method

872.67(214.28 + 658.39)

3,096.62

1.00

3.55

• CPU Time for 10 Lowest Eigenpairs, Grid Structure• CPU Time for 10 Lowest Eigenpairs, Grid Structure

Page 32: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

32

24 3 6 4 8 6 0 7 2 84 96 10 8

N u m b er o f G en era ted L a n czos V ec to rs

1 .0 E -10

1 .0E -9

1 .0E -8

1 .0 E -7

1 .0E -6

1 .0 E -5

1 .0 E -4

1 .0E -3

1 .0 E -2

1 .0E -1

1 .0E + 0E

rror

Nor

m

E rro r L im it

Convergence by Lanczos method(Chen 1993)Grid structure (multiple)

: 1st, 3rd eigenpairs : 2nd, 4th eigenpairs : 5th, 7th eigenpairs : 6th, 8th eigenpairs : 9th, 11th eigenpairs : 10th, 12th eigenpairs

Starting values of proposed method

Page 33: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

33

Convergence of the 2nd eigenpairGrid structure (multiple)

: Proposed Method : Subspace Iteration Method (q=2p)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Page 34: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

34

Convergence of the 9th eigenpairGrid structure (multiple)

: Proposed Method : Subspace Iteration Method (q=2p)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

Itera tio n N u m b er

1 .0 E -1 1

1 .0 E -1 0

1 .0 E -9

1 .0 E -8

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0 E + 0E

rror

Nor

m

E rro r L im it

Page 35: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

35

Three-Dimensional Framed Structure with Lumped Dampers(Close Case)

[email protected]=6.02

6@3=

18

2@3=6

[email protected]=18.06

12@3=

36

Page 36: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

36

Material Properties

Lumped Damper :c = 12,000.0

Rayleigh Damping : =-0.1755 = 0.02005

Young’s Modulus :2.1E+11

Mass Density :7,850

Cross-section Inertia :8.3E-06

Cross-section Area :0.01

System Data

Number of Equations :1,128

Number of Matrix Elements :135,276

Maximum Half Bandwidths :300

Mean Half Bandwidths :120

Page 37: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

37

Proposed MethodMode

Number

Error Norm ofStarting Eigenpair(Lanczos method)

Number ofIterations

Eigenvalue Error Norm

123456789101112

0.579542E-060.579542E-060.567549E-060.567549E-060.929150E-050.929150E-050.767207E-030.767207E-030.910611E-000.910611E-000.920451E-000.920451E-00

00001133

11111111

-0.13763 + j 3.08907-0.13763 - j 3.08907-0.13803 + j 3.09109-0.13803 - j 3.09109-3.52574 + j 2.20649-3.52574 - j 2.20649-0.24236 + j 4.16556-0.24236 – j 4.16556-1.64294 + j 7.02958-1.64294 - j 7.02958-1.65070 + j 7.03590-1.65070 - j 7.03590

0.579542E-060.579542E-060.567549E-060.567549E-060.421992E-090.421992E-090.614880E-060.614880E-060.624657E-060.624657E-060.660196E-060.660196E-06

• Results of Three-Dimensional Frame Structure (Close)• Results of Three-Dimensional Frame Structure (Close)

Page 38: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

38

Method CPU time in seconds Ratio

Proposed method(Lanczos method + Iteration scheme)

Subspace Iteration Method

8,335.20(918.15 + 7417.05)

9,644.75

1.00

1.16

• CPU Time for 12 Lowest Eigenpairs, 3-D. Frame Structure• CPU Time for 12 Lowest Eigenpairs, 3-D. Frame Structure

Page 39: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

39

Convergence by Lanczos method(Chen 1993)3-D. framed structure (close)

: 1st, 2nd eigenpairs : 3rd, 4th eigenpairs : 5th, 6th eigenpairs : 7th, 8th eigenpairs

: 9th, 10th eigenpairs : 11th, 12th eigenpairs

Starting values of proposed method

2 4 3 6 4 8 6 0 7 2 8 4 96 10 8

N u m b er o f G en era ted L a n czos V ecto rs

1 .0 E -8

1 .0E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0 E -2

1 .0 E -1

1 .0E + 0E

rror

Nor

m

E rror L im it

Page 40: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

40

Convergence of the 9th eigenpair3-D. framed structure (close)

: Proposed Method : Subspace Iteration Method (q=2p)

0 2 4 6 8 1 0 12 1 4 1 6 1 8 20 2 2 24 2 6 2 8 3 0 3 2

Ite ra tio n N u m b er

1 .0 E -7

1 .0 E -6

1 .0 E -5

1 .0 E -4

1 .0 E -3

1 .0E -2

1 .0E -1

1 .0 E + 0E

rror

Nor

m

E rror L im it

Page 41: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

41

An efficient Eigensolution technique !

CONCLUSIONS

• The proposed method

• is simple

• guarantees numerical stability

• converges fast.

• The proposed method

• is simple

• guarantees numerical stability

• converges fast.

Page 42: SOLUTION OF EIGENVALUE PROBLEM FOR NON-CLASSICALLY DAMPED SYSTEM WITH MULTIPLE EIGENVALUES

Structural Dynamics & Vibration Control Lab., KAIST, Korea

42

Thank you for your attention.


Recommended