+ All Categories
Home > Documents > Solution Week 1

Solution Week 1

Date post: 06-Dec-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
24
SOLUTION Ex 10.1: 2, 3, 7, 9 Ex 10.2: 1, 3, 4, 20, 31 Ex 10.3: 1, 2, 4, 5, 11 Ex 10.4: 1
Transcript

SOLUTION Ex 10.1: 2, 3, 7, 9 Ex 10.2: 1, 3, 4, 20, 31 Ex 10.3: 1, 2, 4, 5, 11 Ex 10.4: 1

Ex 10.1: (2) a) ๐‘Ž๐‘›+1 = 1.5๐‘Ž๐‘›,๐‘Ž๐‘› = 1.5 ๐‘›๐‘Ž0,๐‘› โ‰ฅ 0. b) 4๐‘Ž๐‘› = 5๐‘Ž๐‘›โˆ’1,๐‘Ž๐‘› = 1.25 ๐‘›๐‘Ž0,๐‘› โ‰ฅ 0.

c) 3๐‘Ž๐‘›+1 = 4๐‘Ž๐‘›, 3๐‘Ž1 = 15 = 4๐‘Ž0,๐‘Ž0 = 154

,

so ๐‘Ž๐‘› = 43

๐‘›๐‘Ž0 = 4

3

๐‘› 154

= 5 43

๐‘›โˆ’1,๐‘› โ‰ฅ 0.

d) ๐‘Ž๐‘› = 32๐‘Ž๐‘›โˆ’1,๐‘Ž๐‘› = 3

2

๐‘›๐‘Ž0, 81 = ๐‘Ž4 = 3

2

4๐‘Ž0,

so ๐‘Ž0 = 16 and ๐‘Ž๐‘› = 16 32

๐‘›, ๐‘› โ‰ฅ 0.

Ex 10.1: (3) โ€ข ๐‘Ž๐‘›+1 โˆ’ ๐‘‘๐‘Ž๐‘› = 0,๐‘› โ‰ฅ 0, so ๐‘Ž๐‘› = ๐‘‘๐‘›๐‘Ž0. 153

49= ๐‘Ž3 = ๐‘‘3๐‘Ž0,

13772401

= ๐‘Ž5 = ๐‘‘5๐‘Ž0 โ‡’๐‘Ž5๐‘Ž3

= ๐‘‘2 = 949

and ๐‘‘ = ยฑ 37.

Ex 10.1: (7) a) 19 + 18 + 17 + โ‹ฏ+ 10 = 145 b) 9 + 8 + 7 + โ‹ฏ+ 1 = 45

Ex 10.1: (9) a) 21345 b) 52143, 52134, 25134 c) 25134, 21534, 21354, 21345

Ex 10.2: (1.a, 1.b) a) ๐‘Ž๐‘› = 5 ๐‘Ž๐‘›โˆ’1 + 6 ๐‘Ž๐‘›โˆ’2,๐‘› โ‰ฅ 2,๐‘Ž0 = 1,๐‘Ž1 = 3.

Let ๐‘Ž๐‘› = ๐‘๐‘Ÿ๐‘›, ๐‘, ๐‘Ÿ โ‰  0. Then the characteristic equation is ๐‘Ÿ2 โˆ’ 5๐‘Ÿ โˆ’ 6 = 0 = ๐‘Ÿ โˆ’ 6 ๐‘Ÿ + 1 , so ๐‘Ÿ = โˆ’1,6 are the characteristic roots. ๐‘Ž๐‘› = ๐ด โˆ’1 ๐‘› + ๐ต 6 ๐‘›. 1 = ๐‘Ž0 = ๐ด + ๐ต. 3 = ๐‘Ž1 = โˆ’๐ด + 6๐ต, so ๐ต = 4

7 and ๐ด = 3

7.

๐‘Ž๐‘› = 37

โˆ’1 ๐‘› + 47

6๐‘›,๐‘› โ‰ฅ 0.

b) ๐‘Ž๐‘› = 4 12

๐‘›โˆ’ 2 5 ๐‘›,๐‘› โ‰ฅ 0.

Ex 10.2: (1.c) โ€ข ๐‘Ž๐‘›+2 + ๐‘Ž๐‘› = 0,๐‘› โ‰ฅ 0,๐‘Ž0 = 0,๐‘Ž1 = 3.

With ๐‘Ž๐‘› = ๐‘๐‘Ÿ๐‘›, ๐‘, ๐‘Ÿ โ‰  0. The characteristic equation ๐‘Ÿ2 + 1 =0 yields the characteristic roots ยฑ๐‘–.

Hence ๐‘Ž๐‘› = ๐ด ๐‘– ๐‘› + ๐ต โˆ’๐‘– ๐‘› = ๐ด cos ๐œ‹2

+ ๐‘–๐‘–๐‘–๐‘› ๐œ‹2

๐‘›+

๐ต cos ๐œ‹2

+ ๐‘–๐‘–๐‘–๐‘› โˆ’๐œ‹2

๐‘›= ๐ถ๐‘๐ถ๐‘– ๐‘›๐œ‹

2+ ๐ท๐‘–๐‘–๐‘› ๐‘›๐œ‹

2.

0 = ๐‘Ž0 = ๐ถ, 3 = ๐‘Ž1 = ๐ท๐‘–๐ถ๐‘› ๐œ‹2

= ๐ท,

so ๐‘Ž๐‘› = 3 sin ๐‘›๐œ‹2

,๐‘› โ‰ฅ 0.

Ex 10.2: (1.d) โ€ข ๐‘Ž๐‘› โˆ’ 6๐‘Ž๐‘›โˆ’1 + 9๐‘Ž๐‘›โˆ’2 = 0,๐‘› โ‰ฅ 2,๐‘Ž0 = 5,๐‘Ž1 = 12.

Let ๐‘Ž๐‘› = ๐‘๐‘Ÿ๐‘›, ๐‘, ๐‘Ÿ โ‰  0. Then ๐‘Ÿ2 + 6๐‘Ÿ + 9 = 0 = ๐‘Ÿ โˆ’ 3 2, so the characteristic roots are 3,3 and ๐ด 3๐‘› + ๐ต๐‘› 3๐‘› . 5 = ๐‘Ž0 = ๐ด; 12๐‘Ž1 = 3๐ด + 3๐ต = 15 + 3๐ต,๐ต = โˆ’1. ๐‘Ž๐‘› = 5 3๐‘› โˆ’ ๐‘› 3๐‘› = 5 โˆ’ ๐‘› 3๐‘› ,๐‘› โ‰ฅ 0.

Ex 10.2: (1.e) โ€ข ๐‘Ž๐‘› + 2๐‘Ž๐‘›โˆ’1 + 2๐‘Ž๐‘›โˆ’2 = 0,๐‘› โ‰ฅ 2,๐‘Ž0 = 1,๐‘Ž1 = 3. ๐‘Ÿ2 + 2๐‘Ÿ + 2 = 0, ๐‘Ÿ = โˆ’1 ยฑ ๐‘–. โˆ’1 + ๐‘– = 2 cos 3๐œ‹

4+ ๐‘–๐‘–๐‘–๐‘› 3๐œ‹

4.

โˆ’1 โˆ’ ๐‘– = 2 cos 3๐œ‹4

โˆ’ ๐‘–๐‘–๐‘–๐‘› 3๐œ‹4

.

๐‘Ž๐‘› = 2๐‘›๐ด๐‘๐ถ๐‘– 3๐œ‹

4+ ๐ต๐‘–๐‘–๐‘› 3๐œ‹

4.

1 = ๐‘Ž0 = ๐ด. 3 = ๐‘Ž1 = 2 cos 3๐œ‹

4+ ๐ต๐‘–๐‘–๐‘› 3๐œ‹

4= 2 โˆ’1

2+ ๐ต 1

2, ๐‘–๐ถ 3 =

โˆ’ 1 + ๐ต,๐ต = 4. ๐‘Ž๐‘› = 2

๐‘›cos 3๐œ‹๐œ‹

4+ 4 sin 3๐œ‹๐œ‹

4,๐‘› โ‰ฅ 0.

Ex 10.2: (3) โ€ข ๐‘› = 0 : ๐‘Ž2 + ๐‘ ๐‘Ž1 + ๐‘ ๐‘Ž0 = 0 = 4 + ๐‘ 1 + ๐‘ 0 , so ๐‘ = โˆ’4. ๐‘› = 1 : ๐‘Ž3 โˆ’ 4 ๐‘Ž2 + ๐‘ ๐‘Ž1 = 0 = 37 โˆ’ 4 4 + ๐‘, so ๐‘ = โˆ’21. ๐‘Ž๐‘›+2 โˆ’ 4 ๐‘Ž๐‘›+1 โˆ’ 21 ๐‘Ž๐‘› = 0. ๐‘Ÿ2 โˆ’ 4๐‘Ÿ โˆ’ 21 = 0 = ๐‘Ÿ โˆ’ 7 ๐‘Ÿ + 3 , ๐‘Ÿ = 7,โˆ’3. ๐‘Ž๐‘› = ๐ด 7 ๐‘› + ๐ต โˆ’3 ๐‘›. 0 = ๐‘Ž0 = ๐ด + ๐ต โ‡’ ๐ต = โˆ’๐ด. 1 = ๐‘Ž1 = 7๐ด โˆ’ 3๐ต = 10๐ด, so ๐ด = 1

10,๐ต = โˆ’ 1

10 and ๐‘Ž๐‘› = 1

107๐‘› โˆ’ โˆ’3 ๐‘› ,๐‘› โ‰ฅ 0.

Ex 10.2: (4) โ€ข ๐‘Ž๐‘› = ๐‘Ž๐‘›โˆ’1 + ๐‘Ž๐‘›โˆ’2,๐‘› โ‰ฅ 2,๐‘Ž0 = ๐‘Ž1 = 1. ๐‘Ÿ2 โˆ’ ๐‘Ÿ โˆ’ 1 = 0, ๐‘Ÿ = 1ยฑ๐‘‹

2,๐‘‹ = 5.

๐‘Ž0 = ๐ด 1+๐‘‹2

๐‘›+ ๐ต 1โˆ’๐‘‹

2

๐‘›.

๐‘Ž0 = ๐‘Ž1 = 1 โ‡’ ๐ด = 1+๐‘‹2๐‘‹

,๐ต = ๐‘‹โˆ’12๐‘‹

.

๐‘Ž๐‘› = 1๐‘‹

1+๐‘‹2

๐‘›+1โˆ’ 1โˆ’๐‘‹

2

๐‘›+1

= 15

1+ 52

๐‘›+1โˆ’ 1โˆ’ 5

2

๐‘›+1.

Ex 10.2: (20.a)

โ€ข ๐›ผ2 = 1+ 52

2= 1+2 5+5

4= 6+2 5

4= 3+ 5

2

= 1+ 52

+ 22

= ๐›ผ + 1.

Ex 10.2: (20.b) โ€ข Proof: (By Mathematical Induction) For ๐‘› = 1, we have ๐›ผ๐‘› = ๐›ผ1 = ๐›ผ = ๐›ผ โ‹… 1 + 0 = ๐›ผF1 + ๐น0 = ๐›ผF๐‘› + ๐น๐‘›โˆ’1, so the result is true in this case. This establishes the basis step. Now we assume for an arbitrary (but fixed) positive integer ๐‘˜ that ๐›ผ๐‘˜ = ๐›ผF๐‘˜ + ๐น๐‘˜โˆ’1. This is our indutive step. Considering ๐‘› = ๐‘˜ + 1, at this time, we find that ๐›ผ๐‘˜+1 = ๐›ผ ๐›ผ๐‘˜ = ๐›ผ ๐›ผF๐‘˜ + ๐น๐‘˜+1 (Bythe inductive step) = ๐›ผ2๐น๐‘˜ + ๐›ผ๐น๐‘˜โˆ’1 = ๐›ผ + 1 ๐น๐‘˜ + ๐›ผF๐‘˜โˆ’1[by part (a)] = ๐›ผ ๐น๐‘˜ + ๐น๐‘˜โˆ’1 + ๐น๐‘˜ = ๐›ผF๐‘˜+1 + ๐น๐‘˜. Since the given result is ture for ๐‘› = 1 and the truth for ๐‘› = ๐‘˜ + 1 follows from that for ๐‘› = ๐‘˜, it follows bt the Principle of Mathematical Induction that ๐›ผ๐‘› = ๐›ผF๐‘› + ๐น๐‘›โˆ’1for all ๐‘› โˆˆ ๐‘+.

Ex 10.2: (31) โ€ข Let ๐‘๐‘› = ๐‘Ž๐‘›2 , ๐‘0 = 16,๐‘1 = 169.

This yields the linear relation ๐‘๐‘›+2 โˆ’ 5๐‘๐‘›+1 + 4๐‘๐‘› = 0 with characteristic roots ๐‘Ÿ = 4,1, so ๐‘๐‘› = ๐ด 1 ๐‘› + ๐ต 4 ๐‘›. ๐‘0 = 16,๐‘1 = 169 โ‡’ ๐ด = โˆ’35,๐ต = 51 and ๐‘๐‘› = 51 4 ๐‘› โˆ’ 35. Hence ๐‘Ž๐‘› =, 51 4 ๐‘› โˆ’ 35, ๐‘› โ‰ฅ 0.

Ex 10.3: (1.a, 1.b) a) ๐‘Ž๐‘›+1 โˆ’ ๐‘Ž๐‘› = 2๐‘› + 3,๐‘› โ‰ฅ 0,๐‘Ž0 = 1.

๐‘Ž1 = ๐‘Ž0 + 0 + 3. ๐‘Ž2 = ๐‘Ž1 + 2 + 3 = ๐‘Ž0 + 2 + 2 3 . ๐‘Ž3 = ๐‘Ž2 + 2 2 + 3 = ๐‘Ž0 + 2 + 2 2 + 3 3 . ๐‘Ž4 = ๐‘Ž3 + 2 3 + 3 = ๐‘Ž0 + 2 + 2 2 + 2 3 + 4 3 . โ€ฆ ๐‘Ž๐‘› = ๐‘Ž0 + 2 1 + 2 + 3 + โ‹ฏ+ ๐‘› โˆ’ 1 + ๐‘› 3 = 1 +2 ๐‘› ๐‘›โˆ’1

2+ 3๐‘› = 1 + ๐‘› ๐‘› โˆ’ 1 + 3๐‘› = ๐‘›2 + 2๐‘› + 1 =

๐‘› + 1 2,๐‘› โ‰ฅ 0. b) ๐‘Ž๐‘› = 3 + ๐‘› ๐‘› โˆ’ 1 2,๐‘› โ‰ฅ 0.

Ex 10.3: (1.c, 1.d) c) ๐‘Ž๐‘›+1 โˆ’ 2๐‘Ž๐‘› = 5,๐‘› โ‰ฅ 0,๐‘Ž0 = 1.

๐‘Ž1 = 2๐‘Ž0 + 5 = 2 + 5. ๐‘Ž2 = 2๐‘Ž1 + 5 = 22 + 2 โ‹… 5 + 5. ๐‘Ž3 = 2๐‘Ž2 + 5 = 23 + 22 + 2 + 1 5. โ€ฆ ๐‘Ž๐‘› = 2๐‘› + 5 1 + 2 + 22 + โ‹ฏ+ 2๐‘›โˆ’1 = 2๐‘› + 5 2๐‘› โˆ’ 1 =6 2๐‘› โˆ’ 2,๐‘› โ‰ฅ 0.

d) ๐‘Ž๐‘› = 22 + ๐‘› 2๐‘›โˆ’1 ,๐‘› โ‰ฅ 0.

Ex 10.3: (2) โ€ข ๐‘Ž๐‘› = โˆ‘ ๐‘–2๐‘›

๐‘–=0 . ๐‘Ž๐‘›+1 = ๐‘Ž๐‘› + ๐‘› + 1 2,๐‘› โ‰ฅ 0,๐‘Ž0 = 0. ๐‘Ž๐‘›+1 โˆ’ ๐‘Ž๐‘› = ๐‘› + 1 2 = ๐‘›2 + 2๐‘› + 1. ๐‘Ž๐‘›โ„Ž = ๐ด,๐‘Ž๐‘›

๐‘ = ๐ต๐‘› + ๐ถ๐‘›2 + ๐ท๐‘›3. ๐ต ๐‘› + 1 + ๐ถ ๐‘› + 1 2 + ๐ท ๐‘› + 1 3 = ๐ต๐‘› + ๐ถ๐‘›2 + ๐ท๐‘›3 +๐‘›2 + 2๐‘› + 1 โ‡’ ๐ต๐‘› + ๐ต + ๐ถ๐‘›2 + 2๐ถ๐‘› + ๐ถ + ๐ท๐‘›3 + 3๐ท๐‘›2 +3๐ท๐‘› + ๐ท = ๐ต๐‘› + ๐ถ๐‘›2 + ๐ท๐‘›3 + ๐‘›2 + 2๐‘› + 1. By comparing coefficients on like powers of ๐‘›, we find that ๐ถ + 3๐ท = ๐ถ + 1, so ๐ท = 1

3. Also ๐ต + 2๐ถ + 3๐ท = ๐ต + 2, so ๐ถ = 1

2. Finally,

๐ต + ๐ถ + ๐ท = 1 โ‡’ ๐ต = 16. So ๐‘Ž๐‘› = ๐ด + 1

6๐‘› + 1

2๐‘›2 + 1

3๐‘›3. With

๐‘Ž0 = 0, it follows that ๐ด = 0 and ๐‘Ž๐‘› = 16๐‘› 1 + 3๐‘› + 2๐‘›2 =

16๐‘› ๐‘› + 1 2๐‘› + 1 ,๐‘› โ‰ฅ 0.

Ex 10.3: (4) โ€ข Let ๐‘๐‘› be the value of the account ๐‘› months after January 1 of

the year the account is started. ๐‘0 = 1000. ๐‘1 = 1000 + .005 1000 + 200 = 1.005 ๐‘0 + 200. ๐‘๐‘›+1 = 1.005 ๐‘๐‘› + 200, 0 โ‰ค ๐‘› โ‰ค 46. ๐‘48 = 1.005 ๐‘47. ๐‘๐‘›+1 โˆ’ 1.005 ๐‘๐‘› = 200, 0 โ‰ค ๐‘› โ‰ค 46. ๐‘๐‘›โ„Ž = ๐ด 1.005 ๐‘›,๐‘๐‘›

๐‘ = ๐ถ. ๐ถ โˆ’ 1.005๐ถ = 200 โ‡’ ๐ถ = โˆ’400000. ๐‘0 = ๐ด 1.005 0 โˆ’ 40000 = 1000, ๐‘–๐ถ ๐ด = 41000. ๐‘๐‘› = 41000 1.005 ๐‘› โˆ’ 40000. ๐‘47 = 41000 1.005 47 โˆ’ 40000 = 11830.90. ๐‘48 = 1.005๐‘47 = 11890.05.

Ex 10.3: (5) a) ๐‘Ž๐‘›+2 + 3๐‘Ž๐‘›+1 + 2๐‘Ž๐‘› = 3๐‘›,๐‘› โ‰ฅ 0,๐‘Ž0 = 0,๐‘Ž1 = 1.

With ๐‘Ž๐‘› = ๐‘๐‘Ÿ๐‘›, ๐‘, ๐‘Ÿ โ‰  0, the characteristic equation ๐‘Ÿ2 + 3๐‘Ÿ + 2 =0 = ๐‘Ÿ + 2 ๐‘Ÿ + 1 yields the characteristic roots ๐‘Ÿ = โˆ’1,โˆ’2. Hence ๐‘Ž๐‘›

โ„Ž = ๐ด โˆ’1 ๐‘› + ๐ต โˆ’2 ๐‘›, while ๐‘Ž๐‘›๐‘ = ๐ถ 3 ๐‘›.

๐ถ 3 ๐‘›+2 + 3๐ถ 3 ๐‘›+1 + 2๐ถ 3 ๐‘› = 3๐‘› โ‡’ 9๐ถ + 9๐ถ + 2๐ถ = 1 โ‡’๐ถ = 1

20.

๐‘Ž๐‘› = ๐ด โˆ’1 ๐‘› + ๐ต โˆ’2 ๐‘› + 120

3๐‘›. 0 = ๐‘Ž0 = ๐ด + ๐ต + 1

20.

1 = ๐‘Ž1 = โˆ’๐ด โˆ’ 2๐ต + 320

. Hence 1 = ๐‘Ž0 + ๐‘Ž1 = โˆ’๐ต + 4

20 and ๐ต = โˆ’4

5. Then ๐ด = โˆ’๐ต โˆ’ 1

20=

34

.๐‘Ž๐‘› = 34โˆ’1 ๐‘› + โˆ’4

5โˆ’2 ๐‘› + 1

203 ๐‘›,๐‘› โ‰ฅ 0.

b) ๐‘Ž๐‘› = 29โˆ’2 ๐‘› โˆ’ 5

6๐‘› โˆ’2 ๐‘› + 7

9,๐‘› โ‰ฅ 0.

Ex 10.3: (11.a) โ€ข Let ๐‘Ž๐‘›2 = ๐‘๐‘›,๐‘› โ‰ฅ 0. ๐‘๐‘›+2 โˆ’ 5 ๐‘๐‘›+1 + 6 ๐‘๐‘› = 7๐‘›. ๐‘๐‘›โ„Ž = ๐ด 3๐‘› + ๐ต 2๐‘› , ๐‘๐‘›

๐‘ = ๐ถ๐‘› + ๐ท. ๐ถ ๐‘› + 2 + ๐ท โˆ’ 5 ๐ถ ๐‘› + 1 + ๐ท + 6 ๐ถ๐‘› + ๐ท = 7๐‘› โ‡’ ๐ถ = 7

2,๐ท = 21

4.

๐‘๐‘› = ๐ด 3๐‘› + ๐ต 2๐‘› + 7๐‘›2

+ 214

. ๐‘0 = ๐‘Ž02 = 1, ๐‘1 = ๐‘Ž12 = 1. 1 = ๐‘0 = ๐ด + ๐ต + 21

4.

1 = ๐‘1 = 3๐ด + 2๐ต + 72

+ 214

. 3๐ด + 2๐ต = โˆ’31

3.

2๐ด + 2๐ต = โˆ’344

. ๐ด = 3

4,๐ต = โˆ’5.

๐‘Ž๐‘› = 34

3๐‘› โˆ’ 5 โ‹… 2๐‘› + 7๐‘›2

+ 214

12 ,๐‘› โ‰ฅ 0.

Ex 10.3: (11.b) โ€ข ๐‘Ž๐‘›2 โˆ’ 2๐‘Ž๐‘›โˆ’1 = 0,๐‘› โ‰ฅ 1,๐‘Ž0 = 2. ๐‘Ž๐‘›2 = 2๐‘Ž๐‘›โˆ’1. log2 ๐‘Ž๐‘›2 = log2(2๐‘Ž๐‘›โˆ’1) = log2 2 + log2 ๐‘Ž๐‘›โˆ’1. 2 log2 ๐‘Ž๐‘› = 1 + log2 ๐‘Ž๐‘›โˆ’1. Let ๐‘๐‘› = log2 ๐‘Ž๐‘›. The solution of the recurrence relation 2๐‘๐‘› = 1 + ๐‘๐‘›โˆ’1is ๐‘ = ๐ด 1

2

๐‘›+ 1.๐‘0 = log2 ๐‘Ž0 = log22 = 1, so 1 = ๐‘0 = ๐ด + 1

and ๐ด = 0. Consequently, ๐‘๐‘› = 1,๐‘› โ‰ฅ 0, and ๐‘Ž๐‘› = 2,๐‘› โ‰ฅ 0.

Ex 10.4: (1.a, 1.b) a) ๐‘Ž๐‘›+1 โˆ’ ๐‘Ž๐‘› = 3๐‘›,๐‘› โ‰ฅ 0,๐‘Ž0 = 1.

Let ๐‘“ ๐‘ฅ = โˆ‘ ๐‘Ž๐‘›๐‘ฅ๐‘›โˆž๐‘›=0 .

โˆ‘ ๐‘Ž๐‘›+1๐‘ฅ๐‘›+1โˆž๐‘›=0 โˆ’ โˆ‘ ๐‘Ž๐‘›๐‘ฅ๐‘›+1โˆž

๐‘›=0 = โˆ‘ 3๐‘›๐‘ฅ๐‘›+1โˆž๐‘›=0 .

๐‘“ ๐‘ฅ โˆ’ ๐‘Ž0 โˆ’ ๐‘ฅ๐‘“ ๐‘ฅ = ๐‘ฅ โˆ‘ 3๐‘ฅ ๐‘›โˆž๐‘›=0 = ๐‘ฅ

1โˆ’3๐‘ฅ.

๐‘“ ๐‘ฅ โˆ’ 1 โˆ’ ๐‘ฅ๐‘“ ๐‘ฅ = ๐‘ฅ1โˆ’3๐‘ฅ

.

๐‘“ ๐‘ฅ = 11โˆ’๐‘ฅ

+ ๐‘ฅ1โˆ’๐‘ฅ 1โˆ’3๐‘ฅ

=1

1โˆ’๐‘ฅ+ โˆ’1

21

1โˆ’๐‘ฅ+ 1

21

1โˆ’3๐‘ฅ= 1

21

1โˆ’๐‘ฅ+ 1

2( 11โˆ’3๐‘ฅ

),

and ๐‘Ž๐‘› = 12

1 + 3๐‘› ,๐‘› โ‰ฅ 0.

b) ๐‘Ž๐‘› = 1 + ๐‘› ๐‘›โˆ’1 2๐‘›โˆ’16

,๐‘› โ‰ฅ 0.

Ex 10.4: (1.c) โ€ข ๐‘Ž๐‘›+2 โˆ’ 3 ๐‘Ž๐‘›+1 + 2 ๐‘Ž๐‘› = 0,๐‘› โ‰ฅ 0,๐‘Ž0 = 1,๐‘Ž1 = 6. โˆ‘ ๐‘Ž๐‘›+2๐‘ฅ๐‘›+2โˆž๐‘›=0 โˆ’ 3โˆ‘ ๐‘Ž๐‘›+1๐‘ฅ๐‘›+2โˆž

๐‘›=0 + 2โˆ‘ ๐‘Ž๐‘›๐‘ฅ๐‘›+2โˆž๐‘›=0 = 0.

โˆ‘ ๐‘Ž๐‘›+2๐‘ฅ๐‘›+2โˆž๐‘›=0 โˆ’ 3๐‘ฅโˆ‘ ๐‘Ž๐‘›+1๐‘ฅ๐‘›+1โˆž

๐‘›=0 + 2๐‘ฅ2 โˆ‘ ๐‘Ž๐‘›๐‘ฅ๐‘›โˆž๐‘›=0 = 0.

Let ๐‘“ ๐‘ฅ = โˆ‘ ๐‘Ž๐‘›๐‘ฅ๐‘›โˆž๐‘›=0 . Then

๐‘“ ๐‘ฅ โˆ’ 1 โˆ’ 6๐‘ฅ โˆ’ 3๐‘ฅ ๐‘“ ๐‘ฅ โˆ’ 1 + 2๐‘ฅ2๐‘“ ๐‘ฅ = 0, and ๐‘“ ๐‘ฅ 1 + 3๐‘ฅ + 2๐‘ฅ2 = 1 + 6๐‘ฅ โˆ’ 3๐‘ฅ = 1 + 3๐‘ฅ, Consequently, ๐‘“ ๐‘ฅ = 1+3๐‘ฅ

1โˆ’2๐‘ฅ 1โˆ’๐‘ฅ= 5

1โˆ’2๐‘ฅ+ โˆ’4

1โˆ’๐‘ฅ= 5โˆ‘ 2๐‘ฅ ๐‘›โˆž

๐‘›=0 โˆ’ 4โˆ‘ ๐‘ฅ๐‘›โˆž๐‘›=0 ,

and ๐‘Ž๐‘› = 5 2๐‘› โˆ’ 4,๐‘› โ‰ฅ 0.

Ex 10.4: (1.d) โ€ข ๐‘Ž๐‘›+2 โˆ’ 2 ๐‘Ž๐‘›+1 + ๐‘Ž๐‘› = 2๐‘›,๐‘› โ‰ฅ 0,๐‘Ž0 = 1,๐‘Ž1 = 2. โˆ‘ ๐‘Ž๐‘›+2๐‘ฅ๐‘›+2โˆž๐‘›=0 โˆ’ 2โˆ‘ ๐‘Ž๐‘›+1๐‘ฅ๐‘›+2โˆž

๐‘›=0 + โˆ‘ ๐‘Ž๐‘›๐‘ฅ๐‘›+2โˆž๐‘›=0 =

โˆ‘ 2๐‘›๐‘ฅ๐‘›+2โˆž๐‘›=0 .

Let ๐‘“ ๐‘ฅ = โˆ‘ ๐‘Ž๐‘›๐‘ฅ๐‘›โˆž๐‘›=0 . Then

๐‘“ ๐‘ฅ โˆ’ ๐‘Ž0 โˆ’ ๐‘Ž1๐‘ฅ โˆ’ 2๐‘ฅ ๐‘“ ๐‘ฅ โˆ’ ๐‘Ž0 + ๐‘ฅ2๐‘“ ๐‘ฅ = ๐‘ฅ2 โˆ‘ 2๐‘ฅ ๐‘›โˆž๐‘›=0 .

๐‘“ ๐‘ฅ โˆ’ 1 โˆ’ 2๐‘ฅ โˆ’ 2๐‘ฅ๐‘“ ๐‘ฅ + 2๐‘ฅ + ๐‘ฅ2๐‘“ ๐‘ฅ = ๐‘ฅ2

1โˆ’2๐‘ฅ.

๐‘ฅ2 โˆ’ 2๐‘ฅ + 1 ๐‘“ ๐‘ฅ = 1 + ๐‘ฅ2

1โˆ’2๐‘ฅโ‡’ ๐‘“ ๐‘ฅ =

11โˆ’๐‘ฅ 2 + ๐‘ฅ2

1โˆ’2๐‘ฅ 1โˆ’๐‘ฅ 2 = 1โˆ’2๐‘ฅ+๐‘ฅ2

1โˆ’๐‘ฅ 2 1โˆ’2๐‘ฅ= 1

1โˆ’2๐‘ฅ= 1 + 2๐‘ฅ +

2๐‘ฅ 2 + โ‹ฏ, so ๐‘Ž๐‘› = 2๐‘›,๐‘› โ‰ฅ 0.


Recommended