+ All Categories
Home > Documents > Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their...

Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their...

Date post: 20-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
25
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2011, Article ID 584951, 24 pages doi:10.1155/2011/584951 Research Article Some New Volterra-Fredholm-Type Discrete Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng 1 and Qinghua Feng 1, 2 1 School of Science, Shandong University of Technology, Shandong, Zibo 255049, China 2 School of Mathematical Sciences, Qufu Normal University, Shandong, Qufu 273165, China Correspondence should be addressed to Bin Zheng, [email protected] Received 21 March 2011; Accepted 29 June 2011 Academic Editor: Martin D. Schechter Copyright q 2011 B. Zheng and Q. Feng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Some new Volterra-Fredholm-type discrete inequalities in two independent variables are estab- lished, which provide a handy tool in the study of qualitative and quantitative properties of solutions of certain dierence equations. The established results extend some known results in the literature. 1. Introduction In the research of solutions of certain dierential and dierence equations, if the solutions are unknown, then it is necessary to study their qualitative and quantitative properties such as boundedness, uniqueness, and continuous dependence on initial data. The Gronwall- Bellman inequality 1, 2 and its various generalizations which provide explicit bounds play a fundamental role in the research of this domain. Many such generalized inequalities e.g., see 330 and the references therein have been established in the literature including the known Ou-Liang’s inequality 3. In 8, Ma generalized the discrete version of Ou-Liang’s inequality in two variables to Volterra-Fredholm form for the first time, which has proved to be very useful in the study of qualitative as well as quantitative properties of solutions of certain Volterra-Fredholm-type dierence equations. But since then, few results on Volterra- Fredholm-type discrete inequalities have been established. Recent results in this direction include the work of Ma 9 to our knowledge. We notice, in the analysis of some certain Volterra-Fredholm-type dierence equations with more complicated forms, that the bounds provided by the earlier inequalities are inadequate and it is necessary to seek some new Volterra-Fredholm-type discrete inequalities in order to obtain a diversity of desired results.
Transcript
Page 1: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2011, Article ID 584951, 24 pagesdoi:10.1155/2011/584951

Research ArticleSome New Volterra-Fredholm-Type DiscreteInequalities and Their Applications in the Theoryof Difference Equations

Bin Zheng1 and Qinghua Feng1, 2

1 School of Science, Shandong University of Technology, Shandong, Zibo 255049, China2 School of Mathematical Sciences, Qufu Normal University, Shandong, Qufu 273165, China

Correspondence should be addressed to Bin Zheng, [email protected]

Received 21 March 2011; Accepted 29 June 2011

Academic Editor: Martin D. Schechter

Copyright q 2011 B. Zheng and Q. Feng. This is an open access article distributed under theCreative Commons Attribution License, which permits unrestricted use, distribution, andreproduction in any medium, provided the original work is properly cited.

Some new Volterra-Fredholm-type discrete inequalities in two independent variables are estab-lished, which provide a handy tool in the study of qualitative and quantitative properties ofsolutions of certain difference equations. The established results extend some known results inthe literature.

1. Introduction

In the research of solutions of certain differential and difference equations, if the solutionsare unknown, then it is necessary to study their qualitative and quantitative properties suchas boundedness, uniqueness, and continuous dependence on initial data. The Gronwall-Bellman inequality [1, 2] and its various generalizations which provide explicit bounds playa fundamental role in the research of this domain. Many such generalized inequalities (e.g.,see [3–30] and the references therein) have been established in the literature including theknown Ou-Liang’s inequality [3]. In [8], Ma generalized the discrete version of Ou-Liang’sinequality in two variables to Volterra-Fredholm form for the first time, which has provedto be very useful in the study of qualitative as well as quantitative properties of solutions ofcertain Volterra-Fredholm-type difference equations. But since then, few results on Volterra-Fredholm-type discrete inequalities have been established. Recent results in this directioninclude the work of Ma [9] to our knowledge. We notice, in the analysis of some certainVolterra-Fredholm-type difference equations with more complicated forms, that the boundsprovided by the earlier inequalities are inadequate and it is necessary to seek some newVolterra-Fredholm-type discrete inequalities in order to obtain a diversity of desired results.

Page 2: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

2 Abstract and Applied Analysis

Our aim in this paper is to establish some new generalized Volterra-Fredholm-typediscrete inequalities, which extend Ma’s work in [9], and provide new bounds for unknownfunctions lying in these inequalities. We will illustrate the usefulness of the establishedresults by applying them to study the boundedness, uniqueness, and continuous dependenceon initial data of solutions of certain more complicated Volterra-Fredholm-type differenceequations.

Throughout this paper, R denotes the set of real numbers R+ = [0,∞), and Z denotesthe set of integers, while N0 denotes the set of nonnegative integers. Let Ω := ([m0,M] ×[n0,N])

⋂Z2, where m0, n0 ∈ Z and M,N ∈ Z

⋃{∞} are two constants. l1, l2 ∈ Z are twoconstants, andKi > 0, i = 1, 2, 3, 4, are all constants. IfU is a lattice, then we denote the set ofall R-valued functions on U by ℘(U) and denote the set of all R+-valued functions on U by℘+(U). Finally, for a function f ∈ ℘+(U), we have

∑m1s=m0

f = 0 provided m0 > m1.

2. Main Results

Lemma 2.1 (see [15]). Assume that a ≥ 0, p ≥ q ≥ 0, and p /= 0 then for any K > 0

aq/p ≤ q

pK(q−p)/pa +

p − q

pKq/p. (2.1)

Lemma 2.2. Suppose that u(m,n) ∈ ℘+(Ω), b(s, t,m, n) ∈ ℘+(Ω2), α ≥ 0 is a constant. If b isnondecreasing in the third variable, then, for (m,n) ∈ Ω,

u(m,n) ≤ α +m−1∑

s=m0

n−1∑

t=n0

b(s, t,m, n)u(s, t) (2.2)

implies that

u(m,n) ≤ α exp

{m−1∑

s=m0

n−1∑

t=n0

b(s, t,m, n)

}

. (2.3)

Lemma 2.3. Suppose that u(m,n), a(m,n), b(m,n) ∈ ℘+(Ω). If a(m,n) is nondecreasing in thefirst variable, then, for (m,n) ∈ Ω,

u(m,n) ≤ a(m,n) +m−1∑

s=m0

b(s, n)u(s, n) (2.4)

implies that

u(m,n) ≤ a(m,n)m−1∏

s=m0

[1 + b(s, n)]. (2.5)

Page 3: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 3

Remark 2.4. Lemma 2.3 is a direct variation of [19, Lemma 2.5(β1)], and we note a(m,n) ≥ 0here.

Theorem 2.5. Suppose that u(m,n), a(m,n) ∈ ℘+(Ω), bi(s, t,m, n), ci(s, t,m, n) ∈ ℘+(Ω2), i =1, 2, . . . , l1, di(s, t,m, n), ei(s, t,m, n) ∈ ℘+(Ω2), i = 1, 2, . . . , l2 with bi, ci, di, ei nondecreasing inthe last two variables. p, qi, ri are nonnegative constants with p ≥ qi, p ≥ ri, i = 1, 2, . . . , l1, p /= 0,while hi, ji are nonnegative constants with p ≥ hi, p ≥ ji, i = 1, 2, . . . , l2. If, for (m,n) ∈ Ω, u(m,n)satisfies

up(m,n) ≤ a(m,n) +l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)uqi(s, t) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)uri(ξ, η

)⎤

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎣di(s, t,m, n)uhi(s, t) +s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)uji(ξ, η

)⎤

⎦,

(2.6)

then

u(m,n) ≤{

a(m,n) +J(M,N)

1 − μ(M,N)C(m,n)

}1/p

, (2.7)

provided that μ(M,N) < 1, where

J(m,n) =l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)

[qipK

(qi−p)/p1 a(s, t) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[ripK

(ri−p)/p2 a

(ξ, η

)+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)

[hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

]

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[jipK

(ji−p)/p4 a

(ξ, η

)+p − jip

Kji/p

4

]⎫⎬

⎭,

(2.8)

μ(m,n) =l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)

hi

pK

(hi−p)/p3 C(s, t)+

s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

) jipK

(ji−p)/p4 C

(ξ, η

)

⎫⎬

⎭,

(2.9)

C(m,n) = exp

{m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)

}

, (2.10)

B(s, t,m, n) =l1∑

i=1

⎣bi(s, t,m, n)qipK

(qi−p)/p1 +

s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)ripK

(ri−p)/p2

⎦. (2.11)

Page 4: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

4 Abstract and Applied Analysis

Proof. Denote

v(m,n) =l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)uqi(s, t) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)uri(ξ, η

)⎤

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎣di(s, t,m, n)uhi(s, t) +s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)uji(ξ, η

)⎤

⎦.

(2.12)

Then, we have

u(m,n) ≤ [a(m,n) + v(m,n)]1/p, (2.13)

and, furthermore, from Lemma 2.1 we have

uqi(m,n) ≤ [a(m,n) + v(m,n)]qi/p ≤ qipK

(qi−p)/p1 [a(m,n) + v(m,n)]

+p − qip

Kqi/p

1 , i = 1, 2, . . . , l1,

uri(m,n) ≤ [a(m,n) + v(m,n)]ri/p ≤ ripK

(ri−p)/p2 [a(m,n) + v(m,n)]

+p − rip

Kri/p

2 , i = 1, 2, . . . , l1,

uhi(m,n) ≤ [a(m,n) + v(m,n)]hi/p ≤ hi

pK

(hi−p)/p3 [a(m,n) + v(m,n)]

+p − hi

pK

hi/p

3 , i = 1, 2, . . . , l2,

uji(m,n) ≤ [a(m,n) + v(m,n)]ji/p ≤ jipK

(ji−p)/p4 [a(m,n) + v(m,n)]

+p − jip

Kji/p

4 , i = 1, 2, . . . , l2.

(2.14)

Page 5: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 5

So

v(m,n) ≤l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)

[qipK

(qi−p)/p1 (a(s, t)+v(s, t))+

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[ripK

(ri−p)/p2

(a(ξ, η

)+ v

(ξ, η

))+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)

[hi

pK

(hi−p)/p3 (a(s, t) + v(s, t)) +

p − hi

pK

hi/p

3

]

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[jipK

(ji−p)/p4

(a(ξ, η

)+ v

(ξ, η

))+p − jip

Kji/p

4

]⎫⎬

= H(m,n) +l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)qipK

(qi−p)/p1 v(s, t)

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)ripK

(ri−p)/p2 v

(ξ, η

)⎤

⎦,

(2.15)

whereH(m,n) =J(m,n)+∑l2

i=1

∑M−1s=m0

∑N−1t=n0

{di(s, t,m, n)(hi/p)K(hi−p)/p3 v(s, t)+

∑sξ=m0

∑tη=n0

ei

(ξ, η,m, n)(ji/p)K(ji−p)/p4 v(ξ, η)} and J(m,n) is defined in (2.8). Then, using that H(m,n) is

nondecreasing in every variable, we obtain

v(m,n) ≤ H(M,N) +l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)qipK

(qi−p)/p1 v(s, t)

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)ripK

(ri−p)/p2 v

(ξ, η

)⎤

≤ H(M,N) +l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)qipK

(qi−p)/p1

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)ripK

(ri−p)/p2

⎦v(s, t)

= H(M,N) +m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)v(s, t),

(2.16)

where B(s, t,m, n) is defined in (2.11).

Page 6: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

6 Abstract and Applied Analysis

Since bi(s, t,m, n), ci(s, t,m, n) are nondecreasing in the last two variables, thenB(s, t,m, n) is also nondecreasing in the last two variables, and by a suitable application ofLemma 2.2 we obtain

v(m,n) ≤ H(M,N) exp

{m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)

}

= H(M,N)C(m,n), (2.17)

where C(m,n) is defined in (2.10). Furthermore, considering the definition of H(m,n) and(2.17)we have

H(M,N) = J(M,N) +l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,M,N)

hi

pK

(hi−p)/p3 v(s, t)

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,M,N

) jipK

(ji−p)/p4 v

(ξ, η

)

⎫⎬

≤ J(M,N) +l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,M,N)

hi

pK

(hi−p)/p3 H(M,N)C(s, t)

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m1, n1

) jipK

(ji−p)/p4 H(M,N)C

(ξ, η

)

⎫⎬

= J(M,N) +H(M,N)l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,M,N)

hi

pK

(hi−p)/p3 C(s, t)

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,M,N

) jipK

(ji−p)/p4 C

(ξ, η

)

⎫⎬

= J(M,N) +H(M,N)μ(M,N),(2.18)

where μ(m,n) is defined in (2.9). Then,

H(M,N) ≤ J(M,N)1 − μ(M,N)

. (2.19)

Combining (2.17) and (2.19)we deduce

v(m,n) ≤ J(M,N)1 − μ(M,N)

C(m,n). (2.20)

Then, combining (2.13) and (2.20), we obtain the desired result.

Page 7: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 7

Corollary 2.6. Suppose that g1i(m,n), g2i(m,n), b1i(m,n), c1i(m,n) ∈ ℘+(Ω), i = 1, 2, . . . , l1with g1i, g2i nondecreasing in every variable. d1i(m,n), e1i(m,n) ∈ ℘+(Ω), i = 1, 2, . . . , l2.u(m,n), a(m,n), p, qi, ri, hi, ji are defined as in Theorem 2.5. If, for (m,n) ∈ Ω, u(m,n) satisfies

up(m,n) ≤ a(m,n) +l1∑

i=1

g1i(m,n)m−1∑

s=m0

n−1∑

t=n0

⎣b1i(s, t)uqi(s, t) +s∑

ξ=m0

t∑

η=n0

c1i(ξ, η

)uri(ξ, η

)⎤

+l2∑

i=1

g2i(m,n)M−1∑

s=m0

N−1∑

t=n0

⎣d1i(s, t)uhi(s, t) +s∑

ξ=m0

t∑

η=n0

e1i(ξ, η

)uji(ξ, η

)⎤

⎦,

(2.21)

then

u(m,n) ≤{

a(m,n) +J(M,N)

1 − μ(M,N)C(M,N)

}1/p

, (2.22)

provided that μ(M,N) < 1, where

J(m,n) =l1∑

i=1

g1i(m,n)m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩b1i(s, t)

[qipK

(qi−p)/p1 a(s, t) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

c1i(ξ, η

)[ripK

(ri−p)/p2 a

(ξ, η

)+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

g2i(m,n)M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩d1i(s, t)

[hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

]

+s∑

ξ=m0

t∑

η=n0

e1i(ξ, η

)[jipK

(ji−p)/p4 a

(ξ, η

)+p − jip

Kji/p

4

]⎫⎬

⎭,

μ(m,n) =l2∑

i=1

⎧⎨

⎩g2i(m,n)

M−1∑

s=m0

N−1∑

t=n0

⎣d1i(s, t)hi

pK

(hi−p)/p3 C(s, t)

+s∑

ξ=m0

t∑

η=n0

e1i(ξ, η

) jipK

(ji−p)/p4 C

(ξ, η

)⎤

⎫⎬

⎭,

C(m,n) = exp

{m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)

}

,

B(s, t,m, n) =l1∑

i=1

g1i(m,n)

⎣b1i(s, t)qipK

(qi−p)/p1 +

s∑

ξ=m0

t∑

η=n0

c1i(ξ, η

)ripK

(ri−p)/p2

⎦.

(2.23)

Page 8: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

8 Abstract and Applied Analysis

The proof of Corollary 2.6 can be completed by setting bi(s, t,m, n) = g1i(m,n)b1i(s,t),ci(s,t,m,n) = g1i(m,n)c1i(s,t), di(s,t,m,n) = g2i(m,n)d1i(s,t), ei(s,t,m,n) = g2i(m,n)e1i(s,t) inTheorem 2.5.

Corollary 2.7. Suppose that u(m,n), a(m,n), bi(s, t,m, n), ci(s, t,m, n), di(s, t,m, n), ei(s, t,m, n)are defined as in Theorem 2.5. If, for (m,n) ∈ Ω, u(m,n) satisfies

u(m,n) ≤ a(m,n) +l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)u(s, t) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)u(ξ, η

)⎤

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎣di(s, t,m, n)u(s, t) +s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)u(ξ, η

)⎤

⎦,

(2.24)

then

u(m,n) ≤ a(m,n) +J(M,N)

1 − μ(M,N)C(m,n), (2.25)

provided that μ(M,N) < 1, where

J(m,n) =l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)a(s, t) +

s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)a(ξ, η

)

⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)a(s, t) +

s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)a(ξ, η

)

⎫⎬

⎭,

μ(m,n) =l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)C(s, t) +

s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)C(ξ, η

)

⎫⎬

⎭,

C(m,n) = exp

{m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)

}

,

B(s, t,m, n) =l1∑

i=1

⎣bi(s, t,m, n) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)⎤

⎦.

(2.26)

Theorem 2.8. Suppose that w(m,n) ∈ ℘+(Ω), u, a, bi, ci, di, ei, p, qi, ri, hi, ji are defined as inTheorem 2.5. Furthermore, assume that a(m,n) is nondecreasing in the first variable. If, for (m,n) ∈Ω, u(m,n) satisfies

Page 9: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 9

up(m,n) ≤ a(m,n) +m−1∑

s=m0

w(s, n)up(m,n)

+l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)uqi(s, t) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)uri(ξ, η

)⎤

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎣di(s, t,m, n)uhi(s, t) +s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)uji(ξ, η

)⎤

⎦,

(2.27)

then

u(m,n) ≤{[

a(m,n) +J(M,N)

1 − μ(M,N)C(m,n)

]

w(m,n)

}1/p

, (2.28)

provided that μ(M,N) < 1, where

J(m,n) =l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)

[qipK

(qi−p)/p1 a(s, t) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[ripK

(ri−p)/p2 a

(ξ, η

)+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎪⎪⎨

⎪⎪⎩

di(s, t,m, n)[hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

]

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[jipK

(ji−p)/p4 a

(ξ, η

)+p − jip

Kji/p

4

]⎫⎬

⎭,

(2.29)

bi(s, t,m, n) = bi(s, t,m, n)(w(s, t))qi/p,

ci(s, t,m, n) = ci(s, t,m, n)(w(s, t))ri/p, i = 1, 2, . . . , l1,(2.30)

di(s, t,m, n) = di(s, t,m, n)(w(s, t))hi/p,

ei(s, t,m, n) = ei(s, t,m, n)(w(s, t))ji/p, i = 1, 2, . . . , l2,(2.31)

Page 10: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

10 Abstract and Applied Analysis

w(m,n) =m−1∏

s=m0

[1 +w(s, n)],

μ(m,n) =l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)

hi

pK

(hi−p)/p3 C(s, t)

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

) jipK

(ji−p)/p4 C

(ξ, η

)

⎫⎬

(2.32)

C(m,n) = exp

{m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)

}

, (2.33)

B(s, t,m, n) =l1∑

i=1

⎣bi(s, t,m, n)qipK

(qi−p)/p1 +

s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)ripK

(ri−p)/p2

⎦. (2.34)

Proof. Denote

z(m,n) = a(m,n) +l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)uqi(s, t) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)uri(ξ, η

)⎤

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎣di(s, t,m, n)uhi(s, t) +s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)uji(ξ, η

)⎤

⎦.

(2.35)

Then, we have

up(m,n) ≤ z(m,n) +m−1∑

s=m0

w(s, n)up(m,n). (2.36)

Obviously z(m,n) is nondecreasing in the first variable. So by Lemma 2.3 we obtain

up(m,n) ≤ z(m,n)m−1∏

s=m0

[1 +w(s, n)] = z(m,n)w(m,n), (2.37)

where w(m,n) =∏m−1

s=m0[1 +w(s, n)]. Define

v(m,n) =l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)uqi(s, t) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)uri(ξ, η

)⎤

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎣di(s, t,m, n)uhi(s, t) +s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)uji(ξ, η

)⎤

⎦.

(2.38)

Page 11: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 11

Then,

u(m,n) ≤ [(a(m,n) + v(m,n))w(m,n)]1/p, (2.39)

and, furthermore, by (2.39) and Lemma 2.1 we have

v(m,n) ≤l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)[(a(s, t) + v(s, t))w(s, t)]qi/p

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[(a(ξ, η

)+v

(ξ, η

))w(ξ, η

)]ri/p

⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)[(a(s, t) + v(s, t))w(s, t)]hi/p

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[(a(ξ, η

)+v

(ξ, η

))w(ξ, η

)]ji/p

⎫⎬

≤l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)(w(s, t))qi/p

[qipK

(qi−p)/p1 (a(s, t) + v(s, t)) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)(w(ξ, η

))ri/p

×[ripK

(ri−p)/p2

(a(ξ, η

)+ v

(ξ, η

))+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)(w(s, t))hi/p

[hi

pK

(qi−p)/p3 (a(s, t) + v(s, t)) +

p − hi

pK

hi/p

3

]

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)(w(ξ, η

))ji/p

×[jipK

ji−p/p4

(a(ξ, η

)+v

(ξ, η

))+p − jip

Kji/p

4

]⎫⎬

=l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)

[qipK

(qi−p)/p1 (a(s, t) + v(s, t)) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[ripK

(ri−p)/p2

(a(ξ, η

)+ v

(ξ, η

))+p − rip

Kri/p

2

]⎫⎬

Page 12: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

12 Abstract and Applied Analysis

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)

[hi

pK

(qi−p)/p3 (a(s, t) + v(s, t)) +

p − hi

pK

hi/p

3

]

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[jipK

(ji−p)/p4

(a(ξ, η

)+ v

(ξ, η

))+p − jip

Kji/p

4

]⎫⎬

= H(m,n) +l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)qipK

(qi−p)/p1 v(s, t)

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)ripK

(ri−p)/p2 v

(ξ, η

)⎤

⎦,

(2.40)

whereH(m,n) = J(m,n)+∑l2

i=1∑M−1

s=m0

∑N−1t=n0

{di(s, t,m, n)(hi/p)K(hi−p)/p3 v(s, t)+

∑sξ=m0

∑tη=n0

ei

(ξ, η,m, n)ji/pK(ji−p)/p4 v(ξ, η)}, and J(m,n), bi, ci, di, ei are defined in (2.29)–(2.31) respec-

tively.Similar to the process of (2.15)–(2.20) we deduce

v(m,n) ≤ J(M,N)1 − μ(M,N)

C(m,n), (2.41)

where μ(m,n), C(m,n) are defined in (2.32) and (2.33).Combining (2.39) and (2.41), we get the desired result.

Remark 2.9. If we set bi(s,t,m,n) = g1i(m,n)b1i(s,t), ci(s,t,m,n) = g1i(m,n)c1i(s,t),di(s,t,m,n)=g2i(m,n)d1i(s,t), ei(s,t,m,n) = g2i(m,n)e1i(s,t) or set p = qi = ri = hi = ji = 1 in Theorem 2.8,then immediately we get two corollaries which are similar to Corollaries 2.6 and 2.7, and weomit the details for them.

Theorem 2.10. Suppose that u, a, bi, ci, di, ei, p, qi, ri, hi, ji are defined as in Theorem 2.5.Li, Ti : Ω×R+ → R+, i = 1, 2, . . . , l2, satisfies 0 ≤ Li(m,n, u)−Li(m,n, v) ≤ Ti(m,n, v)(u−v) foru ≥ v ≥ 0. If, for (m,n) ∈ Ω, u(m,n) satisfies

up(m,n) ≤ a(m,n) +l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)uqi(s, t) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)uri(ξ, η

)⎤

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎣di(s, t,m, n)Li

(s, t, uhi(s, t)

)+

s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)uji(ξ, η

)⎤

⎦,

(2.42)

Page 13: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 13

then

u(m,n) ≤{

a(m,n) +J(M,N)

1 − μ(M,N)C(m,n)

}1/p

, (2.43)

provided that μ(M,N) < 1, where

J(m,n) =l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)

[qipK

(qi−p)/p1 a(s, t) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[ripK

(ri−p)/p2 a

(ξ, η

)+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)Li

[

s, t,hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

]

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[jipK

(ji−p)/p4 a

(ξ, η

)+p − jip

Kji/p

4

]⎫⎬

⎭,

(2.44)

μ(m,n) =l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)

hi

pK

(hi−p)/p3 C(s, t)

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

) jipK

(ji−p)/p4 C

(ξ, η

)

⎫⎬

⎭,

(2.45)

di(s, t,m, n) = di(s, t,m, n)Ti[

s, t,hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

]

, i = 1, 2, . . . , l2, (2.46)

C(m,n) = exp

{m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)

}

, (2.47)

B(s, t,m, n) =l1∑

i=1

⎣bi(s, t,m, n)qipK

(qi−p)/p1 +

s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)ripK

(ri−p)/p2

⎦. (2.48)

Page 14: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

14 Abstract and Applied Analysis

Proof. Denote

v(m,n) =l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)uqi(s, t) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)uri(ξ, η

)⎤

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎣di(s, t,m, n)Li

(s, t, uhi(s, t)

)+

s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)uji(ξ, η

)⎤

⎦.

(2.49)

Then

u(m,n) ≤ [a(m,n) + v(m,n)]1/p, (2.50)

and, furthermore, from Lemma 2.1 we have

v(m,n) ≤l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)

[qipK

(qi−p)/p1 (a(s, t) + v(s, t)) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[ripK

(ri−p)/p2

(a(ξ, η

)+ v

(ξ, η

))+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)Li

[

s, t,hi

pK

(hi−p)/p3 (a(s, t) + v(s, t)) +

p − hi

pK

hi/p

3

]

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[jipK

(ji−p)/p4

(a(ξ, η

)+ v

(ξ, η

))+p − jip

Kji/p

4

]⎫⎬

≤l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)

[qipK

(qi−p)/p1 (a(s, t) + v(s, t)) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[ripK

(ri−p)/p2

(a(ξ, η

)+ v

(ξ, η

))+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)

{

Li

[

s, t,hi

pK

(hi−p)/p3 (a(s, t) + v(s, t)) +

p − hi

pK

hi/p

3

]

Page 15: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 15

− Li

[

s, t,hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

]

+Li

[

s, t,hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

]}

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[jipK

(ji−p)/p4

(a(ξ, η

)+ v

(ξ, η

))+p − jip

Kji/p

4

]⎫⎬

≤l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)

[qipK

(qi−p)/p1 (a(s, t) + v(s, t)) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[ripK

(ri−p)/p2

(a(ξ, η

)+ v

(ξ, η

))+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)

{

Ti

[

s, t,hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

]hi

pK

(hi−p)/p3

×v(s, t) + Li

[

s, t,hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

]}

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[jipK

(ji−p)/p4

(a(ξ, η

)+ v

(ξ, η

))+p − jip

Kji/p

4

]⎫⎬

= H(m,n) +l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)qipK

(qi−p)/p1 v(s, t)

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)ripK

(ri−p)/p2 v

(ξ, η

)⎤

⎦,

(2.51)

where H(m,n) = J(m,n)+∑l2

i=1

∑M−1s=m0

∑N−1t=n0

{di(s, t,m, n)(hi/p)K(hi−p)/p3 v(s, t)+

∑sξ=m0

∑tη=n0

ei

(ξ, η,m, n)(ji/p)K(ji−p)/p4 v(ξ, η)} and J(m,n), di(s, t,m, n) are defined in (2.44) and (2.46)

respectively.Similar to the process of (2.15)–(2.20) we deduce

v(m,n) ≤ J(M,N)1 − μ(M,N)

C(M,N), (2.52)

where μ(m,n), C(m,n) are defined in (2.45) and (2.47) respectively.Combining (2.50) and (2.52), we get the desired result.

Page 16: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

16 Abstract and Applied Analysis

Theorem 2.11. Suppose that w(m,n) ∈ ℘+(Ω), u, a, bi, ci, di, ei, p, qi, ri, hi, ji are definedas in Theorem 2.5. Furthermore, assume a(m,n) is nondecreasing in the first variable. Li, Ti, i =1, 2, . . . , l2, are defined as in Theorem 2.10. If, for (m,n) ∈ Ω, u(m,n) satisfies

up(m,n) ≤ a(m,n) +m−1∑

s=m0

w(s, n)up(m,n)

+l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎣bi(s, t,m, n)uqi(s, t) +s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)uri(ξ, η

)⎤

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎣di(s, t,m, n)Li

(s, t, uhi(s, t)

)+

s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)uji(ξ, η

)⎤

⎦,

(2.53)

then

u(m,n) ≤{[

a(m,n) +J(M,N)

1 − μ(M,N)C(m,n)

]

w(m,n)

}1/p

, (2.54)

provided that μ(M,N) < 1, where

J(m,n) =l1∑

i=1

m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩bi(s, t,m, n)

[qipK

(qi−p)/p1 a(s, t) +

p − qip

Kqi/p

1

]

+s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)[ripK

(ri−p)/p2 a

(ξ, η

)+p − rip

Kri/p

2

]⎫⎬

+l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)Li

[

s, t, (w(s, t))hi/p(hi

pK

(hi−p)/p3 a(s, t)+

p−hi

pK

hi/p

3

)]

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

)[jipK

(ji−p)/p4 a

(ξ, η

)+p − jip

Kji/p

4

]⎫⎬

⎭,

bi(s, t,m, n) = bi(s, t,m, n)(w(s, t))qi/p,

ci(s, t,m, n) = ci(s, t,m, n)(w(s, t))ri/p, i = 1, 2, . . . , l1,

di(s, t,m, n) = di(s, t,m, n)(w(s, t))hi/pTi

[

s, t, (w(s, t))hi/p(hi

pK

(hi−p)/p3 a(s, t) +

p − hi

pK

hi/p

3

)]

,

ei(s, t,m, n) = ei(s, t,m, n)(w(s, t))ji/p, i = 1, 2, . . . , l2,

Page 17: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 17

w(m,n) =m−1∏

s=m0

[1 +w(s, n)],

μ(m,n) =l2∑

i=1

M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩di(s, t,m, n)

hi

pK

(hi−p)/p3 C(s, t)

+s∑

ξ=m0

t∑

η=n0

ei(ξ, η,m, n

) jipK

(ji−p)/p4 C

(ξ, η

)

⎫⎬

⎭,

C(m,n) = exp

{m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)

}

,

B(s, t,m, n) =l1∑

i=1

⎣bi(s, t,m, n)qipK

(qi−p)/p1 +

s∑

ξ=m0

t∑

η=n0

ci(ξ, η,m, n

)ripK

(ri−p)/p2

⎦.

(2.55)

The proof for Theorem 2.11 is similar to the combination of Theorems 2.8 and 2.10, andwe omit the details here.

Remark 2.12. If we take g1i(m,n) ≡ 1, c1i(m,n) ≡ 0, i = 1, 2, . . . , l1, and g2i(m,n) ≡1, e1i(m,n) ≡ 0, i = 1, 2, . . . , l2 in Corollary 2.6, then Corollary 2.6 reduces to [9, Theorem2.5]. If furthermore l1 = l2 = 1, then Corollary 2.6 reduces to [9, Theorem 2.1]. If wetake bi(s, t,m, n) = b1i(s, t), ci(s, t,m, n) ≡ 0, i = 1, 2, . . . , l1 and di(s, t,m, n) = d1i(s, t),ei(s, t,m, n) ≡ 0, hi = 1, i = 1, 2, . . . , l2 in Theorem 2.10, then Theorem 2.10 reduces to [9,Theorem 2.7]. If furthermore l1 = l2 = 1, then Theorem 2.10 reduces to [9, Theorem 2.6].

3. Applications

In this section, we will present some applications for the established results above and showthat they are useful in the study of boundedness, uniqueness, and continuous dependence ofsolutions of certain difference equations.

Example 3.1. Consider the following Volterra-Fredholm sum-difference equation:

up(m,n) = a(m,n) +m−1∑

s=m0

n−1∑

t=n0

⎣F1(s, t,m, n, u(s, t)) +s∑

ξ=m0

t∑

η=n0

F2(ξ, η,m, n, u

(ξ, η

))⎤

+M−1∑

s=m0

M−1∑

t=n0

⎣G1(s, t,m, n, u(s, t)) +s∑

ξ=m0

t∑

η=n0

G2(ξ, η,m, n, u

(ξ, η

))⎤

⎦,

(3.1)

Page 18: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

18 Abstract and Applied Analysis

where u(m,n), a(m,n) ∈ ℘(Ω), p ≥ 1 is an odd number, Fi, Gi : Ω2 × R → R, i = 1, 2, M, Nare two integers defined the same as in Theorem 2.5.

Theorem 3.2. Suppose that u(m,n) is a solution of (3.1), and |F1(s, t,m, n, u)| ≤ f1(s, t,m, n)|u|q,|F2(s, t,m, n, u)| ≤ f2(s, t,m, n)|u|r , |G1(s, t,m, n, u)| ≤ g1(s, t,m, n)|u|h, |G2(s, t,m, n, u)| ≤g2(s, t,m, n)|u|j , where q, r, h, j are nonnegative constants satisfying p ≥ q, p ≥ r, p ≥ h, p ≥ j,fi, gi ∈ ℘+(Ω2), i = 1, 2 and fi, gi are nondecreasing in the last two variables; then one has

|u(m,n)| ≤{

|a(m,n)| + J(M,N)1 − μ(M,N)

C(m,n)}1/p

, (3.2)

provided that μ(M,N) < 1, where

J(m,n) =m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩f1(s, t,m, n)

[q

pK

(q−p)/p1 |a(s, t)| + p − q

pK

q/p

1

]

+s∑

ξ=m0

t∑

η=n0

f2(ξ, η,m, n

)[r

pK

(r−p)/p2

∣∣a(ξ, η

)∣∣ +

p − r

pK

r/p

2

]⎫⎬

+M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩g1(s, t,m, n)

[h

pK

(h−p)/p3 |a(s, t)| + p − h

pK

h/p

3

]

+s∑

ξ=m0

t∑

η=n0

g2(ξ, η,m, n

)[j

pK

(j−p)/p4

∣∣a(ξ, η

)∣∣ +

p − j

pK

j/p

4

]⎫⎬

⎭,

μ(m,n) =M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩g1(s, t,m, n)

h

pK

(h−p)/p3 C(s, t)

+s∑

ξ=m0

t∑

η=n0

g2(ξ, η,m, n

) j

pK

(j−p)/p4 C

(ξ, η

)

⎫⎬

⎭,

C(m,n) = exp

{m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)

}

,

B(s, t,m, n) = f1(s, t,m, n)q

pK

(q−p)/p1 +

s∑

ξ=m0

t∑

η=n0

f2(ξ, η,m, n

) r

pK

(r−p)/p2 .

(3.3)

Page 19: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 19

Proof. From (3.1)we have

|u(m,n)|p ≤ |a(m,n)| +m−1∑

s=m0

n−1∑

t=n0

⎣∣∣F1(s, t,m, n, u(s, t))

∣∣ +

s∑

ξ=m0

t∑

η=n0

∣∣F2

(ξ, η,m, n, u

(ξ, η

))∣∣

+M−1∑

s=m0

M−1∑

t=n0

⎣∣∣G1(s, t,m, n, u(s, t))

∣∣ +

s∑

ξ=m0

t∑

η=n0

∣∣G2

(ξ, η,m, n, u

(ξ, η

))∣∣

≤ |a(m,n)| +m−1∑

s=m0

n−1∑

t=n0

⎣f1(s, t,m, n

)∣∣u(s, t)

∣∣q +

s∑

ξ=m0

t∑

η=n0

f2(ξ, η,m, n

)∣∣u(ξ, η

)∣∣r

+M−1∑

s=m0

M−1∑

t=n0

⎣g1(s, t,m, n

)∣∣u(s, t)

∣∣h +

s∑

ξ=m0

t∑

η=n0

g2(ξ, η,m, n

)∣∣u(ξ, η

)∣∣j

⎦.

(3.4)

Then a suitable application of Theorem 2.5 (with l1 = l2 = 1) to (3.4) yields the desired result.

The following theorem deals with the uniqueness of the solutions of (3.1).

Theorem 3.3. Suppose that |Fi(s, t,m, n, u) − Fi(s, t,m, n, v)| ≤ fi(s, t,m, n)|up − vp|, |Gi(s, t,m, n, u) − Gi(s, t,m, n, v)| ≤ gi(s, t,m, n)|up − vp|, i = 1, 2 hold for ∀u, v ∈ R, wherefi, gi ∈ ℘+(Ω2), i = 1, 2 with fi, gi nondecreasing in the last two variables, and μ(M,N) =∑M−1

s=m0

∑N−1t=n0

{g1(s, t,M,N)C(s, t) +∑s

ξ=m0

∑tη=n0

g2(ξ, η,M,N)C(ξ, η)} < 1, where C(m,n) =exp{∑m−1

s=m0

∑n−1t=n0

B(s, t,m, n)}, and B(s, t,m, n) = f1(s, t,m, n) +∑s

ξ=m0

∑tη=n0

f2(ξ, η,m, n), then(3.1) has at most one solution.

Proof. Suppose that u1(m,n), u2(m,n) are two solutions of (3.1). Then,

∣∣∣u

p

1(m,n) − up

2(m,n)∣∣∣ ≤

m−1∑

s=m0

n−1∑

t=n0

⎣∣∣F1(s, t,m, n, u1(s, t)) − F1(s, t,m, n, u2(s, t))

∣∣

+s∑

ξ=m0

t∑

η=n0

∣∣F2

(ξ, η,m, n, u1

(ξ, η

))−F2(ξ, η,m, n, u2

(ξ, η

))∣∣

+M−1∑

s=m0

M−1∑

t=n0

⎣∣∣G1(s, t,m, n, u1(s, t)) −G1(s, t,m, n, u2(s, t))

∣∣

+s∑

ξ=m0

t∑

η=n0

∣∣G2

(ξ, η,m, n, u1

(ξ, η

))−G2(ξ, η,m, n, u2

(ξ, η

))∣∣

Page 20: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

20 Abstract and Applied Analysis

≤m−1∑

s=m0

n−1∑

t=n0

⎣f1(s, t,m, n)∣∣∣u

p

1(s, t) − up

2(s, t)∣∣∣

+s∑

ξ=m0

t∑

η=n0

f2(ξ, η,m, n

)∣∣∣u

p

1

(ξ, η

) − up

2

(ξ, η

)∣∣∣

+M−1∑

s=m0

M−1∑

t=n0

⎣g1(s, t,m, n)∣∣∣u

p

1(s, t) − up

2(s, t)∣∣∣

+s∑

ξ=m0

t∑

η=n0

g2(ξ, η,m, n

)∣∣∣u

p

1

(ξ, η

) − up

2

(ξ, η

)∣∣∣

⎦.

(3.5)

Treat |up

1(m,n) − up

2(m,n)| as one variable, and a suitable application of Corollary 2.7yields |up

1(m,n) − up

2(m,n)| ≤ 0, which implies that up

1(m,n) ≡ up

2(m,n). Since p is an oddnumber, then we have u1(m,n) ≡ u2(m,n), and the proof is complete.

Finally we study the continuous dependence of the solutions of (3.1) on the functionsa, F1, F2, G1, G2.

Theorem 3.4. Suppose that u(m,n) is a solution of (3.1), |Fi(s, t,m, n, u) − Fi(s, t,m, n, v)| ≤fi(s, t,m, n)|up − vp|, |Gi(s, t,m, n, u) − Gi(s, t,m, n, v)| ≤ gi(s, t,m, n)|up − vp|, i = 1, 2 holdfor ∀u, v ∈ R, where fi, gi ∈ ℘+(Ω2), i = 1, 2 with fi, gi nondecreasing in the last two variables, and,furthermore,

|a(m,n) − a(m,n)| +m−1∑

s=m0

n−1∑

t=n0

⎧⎨

∣∣∣F1(s, t, u(s, t)) − F1(s, t, u(s, t))

∣∣∣

+s∑

ξ=m0

t∑

η=n0

∣∣∣F2

(ξ, η, u

(ξ, η

)) − F2(ξ, η, u

(ξ, η

))∣∣∣

⎫⎬

+M−1∑

s=m0

N−1∑

t=n0

⎧⎨

∣∣∣G1(s, t, u(s, t)) −G1(s, t, u(s, t))

∣∣∣

+s∑

ξ=m0

t∑

η=n0

∣∣∣G2

(ξ, η, u

(ξ, η

)) −G2(ξ, η, u

(ξ, η

))∣∣∣

⎫⎬

⎭≤ ε,

(3.6)

where ε > 0 is a constant, and u(m,n) ∈ ℘(Ω) is the solution of the following difference equation:

Page 21: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 21

up(m,n) = a(m,n) +m−1∑

s=m0

n−1∑

t=n0

⎣F1(s, t,m, n, u(s, t)) +s∑

ξ=m0

t∑

η=n0

F2(ξ, η,m, n, u

(ξ, η

))⎤

+M−1∑

s=m0

M−1∑

t=n0

⎣G1(s, t,m, n, u(s, t)) +s∑

ξ=m0

t∑

η=n0

G2(ξ, η,m, n, u

(ξ, η

))⎤

⎦,

(3.7)

where Fi, Gi : Ω2 × R → R, i = 1, 2; then one has

∣∣up(m,n) − up(m,n)

∣∣ ≤ ε

[

1 +J(M,N)

1 − μ(M,N)C(m,n)

]

, (3.8)

provided that μ(M,N) < 1, where

J(m,n) =m−1∑

s=m0

n−1∑

t=n0

⎧⎨

⎩f1(s, t,m, n)+

s∑

ξ=m0

t∑

η=n0

f2(ξ, η,m, n

)

⎫⎬

+M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩g1(s, t,m, n) +

s∑

ξ=m0

t∑

η=n0

g2(ξ, η,m, n

)

⎫⎬

⎭,

μ(m,n) =M−1∑

s=m0

N−1∑

t=n0

⎧⎨

⎩g1(s, t,m, n)C(s, t) +

s∑

ξ=m0

t∑

η=n0

g2(ξ, η,m, n

)C(ξ, η

)

⎫⎬

⎭,

C(m,n) = exp

{m−1∑

s=m0

n−1∑

t=n0

B(s, t,m, n)

}

,

B(s, t,m, n) = f1(s, t,m, n) +s∑

ξ=m0

t∑

η=n0

f2(ξ, η,m, n

).

(3.9)

Proof. From (3.1) and (3.7)we deduce

∣∣up(m,n)−up(m,n)

∣∣ ≤|a(m,n)−a(m,n)|

+m−1∑

s=m0

n−1∑

t=n0

⎧⎨

∣∣∣F1(s, t,m, n, u(s, t))−F1(s, t,m, n, u(s, t))

∣∣∣

+s∑

ξ=m0

t∑

η=n0

∣∣∣F2

(ξ, η,m, n, u

(ξ, η

))−F2(ξ, η,m, n, u

(ξ, η

))∣∣∣

⎫⎬

Page 22: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

22 Abstract and Applied Analysis

+M−1∑

s=m0

N−1∑

t=n0

⎧⎨

∣∣∣G1(s, t,m, n, u(s, t)) −G1(s, t,m, n, u(s, t))

∣∣∣

+s∑

ξ=m0

t∑

η=n0

∣∣∣G2

(ξ, η,m, n, u

(ξ, η

)) −G2(ξ, η,m, n, u

(ξ, η

))∣∣∣

⎫⎬

≤ |a(m,n) − a(m,n)|

+m−1∑

s=m0

n−1∑

t=n0

⎧⎨

∣∣∣F1(s, t,m, n, u(s, t))−F1(s, t,m, n, u(s, t))

∣∣∣

+∣∣∣F1(s, t,m, n, u(s, t)) − F1(s, t,m, n, u(s, t))

∣∣∣

+s∑

ξ=m0

t∑

η=n0

∣∣F2

(ξ, η,m, n, u

(ξ, η

))−F2(ξ, η,m, n, u

(ξ, η

))∣∣

+∣∣∣F2

(ξ, η,m, n, u

(ξ, η

))−F2(ξ, η,m, n, u

(ξ, η

))∣∣∣

⎫⎬

+M−1∑

s=m0

N−1∑

t=n0

⎧⎨

∣∣∣G1(s, t,m, n, u(s, t)) −G1(s, t,m, n, u(s, t))

∣∣∣

+∣∣∣G1(s, t,m, n, u(s, t)) −G1(s, t,m, n, u(s, t))

∣∣∣

+s∑

ξ=m0

t∑

η=n0

∣∣G2

(ξ, η,m, n, u

(ξ, η

))−G2(ξ, η,m, n, u

(ξ, η

))∣∣

+∣∣∣G2

(ξ, η,m, n, u

(ξ, η

)) −G2(ξ, η,m, n, u

(ξ, η

))∣∣∣

⎫⎬

≤ ε +m−1∑

s=m0

n−1∑

t=n0

{∣∣F1(s, t,m, n, u(s, t)) − F1(s, t,m, n, u(s, t))

∣∣

+∣∣F2

(ξ, η,m, n, u

(ξ, η

)) − F2(ξ, η,m, n, u

(ξ, η

))∣∣}

+M−1∑

s=m0

N−1∑

t=n0

⎧⎨

∣∣G1(s, t,m, n, u(s, t)) −G1(s, t,m, n, u(s, t))

∣∣

+s∑

ξ=m0

t∑

η=n0

∣∣G2

(ξ, η,m, n, u

(ξ, η

))−G2(ξ, η,m, n, u

(ξ, η

))∣∣

⎫⎬

≤ ε +m−1∑

s=m0

n−1∑

t=n0

⎣f1(s, t,m, n)∣∣up(s, t) − up(s, t)

∣∣

Page 23: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Abstract and Applied Analysis 23

+s∑

ξ=m0

t∑

η=n0

f2(ξ, η,m, n

)∣∣up(ξ, η

)−up(ξ, η)∣∣

+M−1∑

s=m0

M−1∑

t=n0

⎣g1(s, t,m, n)∣∣up(s, t) − up(s, t)

∣∣

+s∑

ξ=m0

t∑

η=n0

g2(ξ, η,m, n

)∣∣up(ξ, η

) − up(ξ, η)∣∣

⎦.

(3.10)

Then a suitable application of Corollary 2.7 yields the desired result.

Remark 3.5. We note that the results in [1–30] are not available here to establish the analysisabove.

Acknowledgment

The authors thank the referees very much for their careful comments and valuablesuggestions on this paper.

References

[1] T. H. Gronwall, “Note on the derivatives with respect to a parameter of the solutions of a system ofdifferential equations,” Annals of Mathematics, vol. 20, no. 4, pp. 292–296, 1919.

[2] R. Bellman, “The stability of solutions of linear differential equations,”Duke Mathematical Journal, vol.10, pp. 643–647, 1943.

[3] L. Ou-Liang, “The boundedness of solutions of linear differential equations y′′+A(t)y′ = 0,” Advances

in Mathematics, vol. 3, pp. 409–415, 1957.[4] B. G. Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, New York, NY, USA,

1998.[5] W. S. Cheung, “Some new nonlinear inequalities and applications to boundary value problems,”

Nonlinear Analysis, vol. 64, no. 9, pp. 2112–2128, 2006.[6] X. Q. Zhao, Q. X. Zhao, and F. W. Meng, “On some new nonlinear discrete inequalities and their

applications,” Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, article 52, pp. 1–9,2006.

[7] E. H. Yang, “On some nonlinear integral and discrete inequalities related to Ou-Iang’s inequality,”Acta Mathematica Sinica, vol. 14, no. 3, pp. 353–360, 1998.

[8] Q. H. Ma, “Some new nonlinear Volterra-Fredholm-type discrete inequalities and their applications,”Journal of Computational and Applied Mathematics, vol. 216, no. 2, pp. 451–466, 2008.

[9] Q. H. Ma, “Estimates on some power nonlinear Volterra-Fredholm type discrete inequalities and theirapplications,” Journal of Computational and Applied Mathematics, vol. 233, no. 9, pp. 2170–2180, 2010.

[10] Q. H. Ma and J. Pecaric, “Estimates on solutions of some new nonlinear retarded Volterra-Fredholmtype integral inequalities,” Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 2, pp. 393–407, 2008.

[11] B. G. Pachpatte, “Inequalities applicable in the theory of finite difference equations,” Journal ofMathematical Analysis and Applications, vol. 222, no. 2, pp. 438–459, 1998.

[12] B. G. Pachpatte, “On some new inequalities related to a certain inequality arising in the theory ofdifferential equations,” Journal of Mathematical Analysis and Applications, vol. 251, no. 2, pp. 736–751,2000.

Page 24: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

24 Abstract and Applied Analysis

[13] W. S. Cheung, Q. H. Ma, and J. Pecaric, “Some discrete nonlinear inequalities and applications todifference equations,” Acta Mathematica Scientia, vol. 28, no. 2, pp. 417–430, 2008.

[14] S. F. Deng, “Nonlinear discrete inequalities with two variables and their applications,” AppliedMathematics and Computation, vol. 217, no. 5, pp. 2217–2225, 2010.

[15] F. C. Jiang and F. W. Meng, “Explicit bounds on some new nonlinear integral inequalities with delay,”Journal of Computational and Applied Mathematics, vol. 205, no. 1, pp. 479–486, 2007.

[16] Q. H. Ma and W. S. Cheung, “Some new nonlinear difference inequalities and their applications,”Journal of Computational and Applied Mathematics, vol. 202, no. 2, pp. 339–351, 2007.

[17] Q. H. Ma, “N-independent-variable discrete inequalities of Gronwall-Ou-Iang type,” Annals ofDifferential Equations, vol. 16, pp. 813–820, 2000.

[18] P. Y. H. Pang and R. P. Agarwal, “On an integral inequality and its discrete analogue,” Journal ofMathematical Analysis and Applications, vol. 194, no. 2, pp. 569–577, 1995.

[19] B. G. Pachpatte, “On some fundamental integral inequalities and their discrete analogues,” Journal ofInequalities in Pure and Applied Mathematics, vol. 2, no. 2, article 15, 2001.

[20] F.W.Meng andW.N. Li, “On some new nonlinear discrete inequalities and their applications,” Journalof Computational and Applied Mathematics, vol. 158, no. 2, pp. 407–417, 2003.

[21] W. S. Cheung, “Some discrete nonlinear inequalities and applications to boundary value problems fordifference equations,” Journal of Difference Equations and Applications, vol. 10, no. 2, pp. 213–223, 2004.

[22] F. W. Meng and D. H. Ji, “On some new nonlinear discrete inequalities and their applications,” Journalof Computational and Applied Mathematics, vol. 208, no. 2, pp. 425–433, 2007.

[23] W. S. Cheung and Q. H. Ma, “On certain new Gronwall-Ou-Iang type integral inequalities in twovariables and their applications,” Journal of Inequalities and Applications, vol. 2005, no. 4, pp. 347–361,2005.

[24] W. S. Cheung and J. L. Ren, “Discrete non-linear inequalities and applications to boundary valueproblems,” Journal of Mathematical Analysis and Applications, vol. 319, no. 2, pp. 708–724, 2006.

[25] A. Gallo and A. M. Piccirillo, “About some new generalizations of Bellman-Bihari results for integro-functional inequalities with discontinuous functions and applications,” Nonlinear Analysis: Theory,Methods & Applications, vol. 71, no. 12, pp. e2276–e2287, 2009.

[26] R. A. C. Ferreira and D. F. M. Torres, “Generalized retarded integral inequalities,” Applied MathematicsLetters, vol. 22, no. 6, pp. 876–881, 2009.

[27] F. W. Meng and W. N. Li, “On some new integral inequalities and their applications,” AppliedMathematics and Computation, vol. 148, no. 2, pp. 381–392, 2004.

[28] R. Xu and Y. G. Sun, “On retarded integral inequalities in two independent variables and theirapplications,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1260–1266, 2006.

[29] Z. L. Yuan, X.W. Yuan, and F.W.Meng, “Some new delay integral inequalities and their applications,”Applied Mathematics and Computation, vol. 208, no. 1, pp. 231–237, 2009.

[30] R. P. Agarwal, S. F. Deng, and W. N. Zhang, “Generalization of a retarded Gronwall-like inequalityand its applications,” Applied Mathematics and Computation, vol. 165, no. 3, pp. 599–612, 2005.

Page 25: Some New Volterra-Fredholm-Type Discrete Inequalities and ...€¦ · Inequalities and Their Applications in the Theory of Difference Equations Bin Zheng1 and Qinghua Feng1,2 1 School

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of


Recommended