+ All Categories
Home > Documents > Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth...

Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth...

Date post: 14-Jan-2016
Category:
Upload: christian-emil-bond
View: 212 times
Download: 0 times
Share this document with a friend
13
Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam
Transcript
Page 1: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

Source sizes and energy partition from RHESSI

imaging and spectroscopy

Alexander Warmuth

Astrophysikalisches Institut Potsdam

Page 2: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

Thermal vs. nonthermal energy content

• What is the energy partition (thermal vs. nonthermal) in solar flares?

• How do these quantities change with flare importance?

• Consequences of energy partition:is it consistent with the standard picture (heating by nonthermal electron beams driving evaporation)?

Page 3: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

• Parameters from HXR spectral fits: - emission measure- temperature

• Parameters from HXR imaging: - thermal source area thermal volume (direct)

- footpoint area- footpoint separation thermal energy:

Thermal component:

thermal volume (indirect)

VEMTkE bth 3

• Parameters from HXR spectral fits: - total injected electron flux above low-energy cutoff nonthermal energy

Nonthermal component:

Page 4: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

• 18 flares (from C5.5 to X17.2)

• Time series of HXR spectral fits:- VTH + THICK- corrected for decimation, albedo & pile-up physical parameters

• Time series of HXR images: - images at thermal energies: thermal areas

- images at nonthermal energies: footpoint areas & sep. geometric parameters

Method

Page 5: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

HXR spectroscopy: Spectral time series

Page 6: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

Area measurements

Imaging algorithms used:• CLEAN uniform weighting• CLEAN natural weighting• MEM_NJIT• VIS_FWD

Area measurements:• CLEAN: gaussian fit to sources, FWHM, quadratic subtraction of CLEAN beam• MEM_NJIT: area inside 50% contour• VIS_FWD: area directly obtained from fit

Volumes:• direct: Vdir = 4 /3 Ath3/2

• indirect: Vind = AFP * l

Page 7: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

Time series of an M-class flare:FWHM, area & volume

CLEAN uniform VIS_FWDCLEAN natural MEM_NJIT

Page 8: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

Thermal volumes – direct & indirect method (cotemporal)

Page 9: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

Thermal and nonthermal total energies

Page 10: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

• Radiative losses:after Cox & Tucker (1969)

• Conductive losses:approximation by Veronig et al. (2005)

Losses from the thermal plasma

TEMPrad ~

lTAP FPcond /~ 2/7

Page 11: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

Radiative & conductive losses vs. nontherm. energy

Page 12: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

Losses

• Conductive losses on the order of 1E32 erg in large flares

• But: simple model may be not applicable

• However:from SORCE observations:total radiative energy in 2003 Oct 28 flare: 4E32 erg(Kopp et al. (2004), Woods et al. (2004), Emslie et al. (2005))

• are high conductive losses real after all?

Page 13: Source sizes and energy partition from RHESSI imaging and spectroscopy Alexander Warmuth Astrophysikalisches Institut Potsdam.

Conclusions

• using several imaging algorithms gives error estimation on source areas & volumes

• good correlation between thermal & nonthermal energies

• strong radiative and conductive losses

• consistent with total radiated energy

• conduction could heat dense lower atmosphere which radiates in UV & WL

• Consequence: either low cutoff energy of nonthermal electrons or additional heating mechanisms


Recommended