+ All Categories
Home > Documents > Southwest Watershed Research Center -...

Southwest Watershed Research Center -...

Date post: 17-Aug-2019
Category:
Upload: nguyendung
View: 215 times
Download: 0 times
Share this document with a friend
32
Sound Science for Watershed Decisions USDA-ARS Southwest Watershed Research Center SWRC Mission To develop knowledge and technology to conserve water and soil in semiarid lands
Transcript
Page 1: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Sound Science for Watershed Decisions

USDA-ARS

Southwest Watershed Research Center

SWRC Mission

• To develop knowledge and technology to conserve water and soil in semi‐arid lands

Page 2: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

ARS Research In General

1. Problem solving, as opposed to curiosity driven

2. Long‐term, as opposed to 3 year grant cycles

3. Regional and national, as opposed to local and state level

4. High risk and high impact

Page 3: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Selected Accomplishments from Walnut Gulch

• Precipitation Analyses

• Flood Frequency

• Transmission Losses

• Hydrologic Instrumentation

• Erosion and Sediment Transport

• Developing Natural Resource Simulation Models

• Data and Data Access

Page 4: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Scope of the research unit

ARS Watershed Locations

Page 5: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed
Page 6: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

In 2012, Ken Renard won 2 national lifetime awards, the Tipton Award by the American Society of Civil Engineers, and the Hugh Hammond Bennett Award from the Soil and WaterConservation Society.

Ken won the Tipton Award for foundational contributions such as:

• Hydrology Handbook. Manuals and Reports on Engineering Practice No. 28, ASCE Task Comm. on Hydrology Handbook of Manage. Group D, 784 p.

• Urban Subsurface Drainage Manual. ASCE Manual of Engineering Practice, Final Draft, Prepared by the Urban Drainage Standards Committee, Codes and Standards Activities Comm. (CSAC), Technical Activities Comm. (TAC), 195.

• Soil and Water Quality: An Agenda for Agriculture, J. Overton (ed.) Comm. on Long‐Range Soil and Water Conservation, Board on Agric., National Res. Council, National Academy Press, Washington, DC, 516 p.

• Rangeland Hydrology. Range Science Series No. 1, 2nd Ed., Soc. for Range Manage., 352 p.

• Runoff. Chapter 2 In: USDA‐SEA, Agric. Handbook 224, pp. 75‐214.

Page 7: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Ken won the Hugh Hammond Bennett Award for:

• Establishing and running the Walnut Gulch Experimental Watershed

• Leading the development, over a decade, of the Revised Universal Soil Loss Equation (RUSLE).A = RKLSCPA = average annual soil loss from rill and interrill erosionR = climate erodibilityK = soil erodibility measured under a standard conditionL = slope lengthS = slope steepnessC = cover managementP = support practices

Walnut GulchExperimental Watershed

Kilometers

Grassland

Brush

0 2 4 6 8 10

Tombstone

Page 8: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Improved Quantification of Semiarid Water Budget Components

Page 9: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Runoff ‐ Unit Source Area

• 10 watersheds

• .2 ‐ 4.4 ha

• Evaluate the effects of soil, vegetation, rainfall intensity

• Event hydrographs

Flume 103

Runoff ‐ Large Watersheds

• 10 watersheds

• 2 ‐ 150 km2

• Evaluate the effects of channel network, spatial distribution of rainfall

• Event Hydrographs

Flume 6

Page 10: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Percentage Difference Between 1999‐2010 Gage Mean and Watershed Mean

Page 11: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Cochise County temperature trend indicates an increase of .25 degrees C per decade in maximum temperatures and .29 degrees C per decade in the minimumTemperatures. Results are based on 10 stations (Bowie, Douglas Intl Airport,Coronado Nat Mon, Chiricahua Nat Mon, McNeal, Portal, San Simon, Willcox,Y‐Lightning Ranch, and Tombstone). From Utilizing Long‐Term ARS Data to Compare and Contrast Hydroclimatic Trends from Snow and Rainfall Dominated Watershedsby D.C. Goodrich et al. (2011).

Page 12: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

1

51

101

151

201

251

301

351

401

1950 1960 1970 1980 1990 2000 2010 2020

SWRC Measured Variables 1953‐2012

WGEW

SRER

USPP

SWRC

Page 13: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Contributions of Walnut Gulch Experimental Watershed and SWRC

UnderstandProcess

ModelProcess

ManipulateProcess

Precipitation

Runoff Rainfall Simulation

Erosion and Sedimentation

Carbon and Water Fluxes

Page 14: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed
Page 15: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Contributions of Walnut Gulch Experimental Watershed and SWRC

Under‐stand

Model Mani‐pulate

Local / State

Regional /National

World

Precipitation

Runoff

Erosion and Sedimentation

RUSLE

WEPP

RHEM

NRCS Conserv‐ationPrograms

Road designRemed‐iation

Conserv‐ationPrograms

~$3B annually in cons. programs

Forest ServiceRocky Flats

Not Adopted Yet

See Map

?

None

Page 16: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Dave Goodrich, Research Hydraulic Engineer

Active in San Pedro Studies, Kineros model and AGWA tool

Page 17: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

National Weather Service is testingKineros for small watershed flood forecasting in Tucson, AZ; Pittsburgh,PA; La Crosse, WI; Kansas City, MO; Binghamton, NY; and Portland, OR.   

Improved Watershed Modeling Capabilities

– Surface Water Hydrologic Modeling

– Incorporation of Remotely Sensed and GIS Data into Hydro Models

– Improved modeling of water quality and Best Management Practices (BMP’s)

– Integration of Research with Elected Officials and Decision Makers

Urban‐rural interface element – combinations of various runoff – run‐on combinations 

The AGWA (Automated Geospatial Watershed Assessment) Tool

The AGWA delineation of buffer strip BMP model elements in KINEROS2

Page 18: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Susan Moran, Hydrologist

Irrigated Crops, soil moisture, remote sensing 

Remote Sensing

• Vegetation

• Temperature

• Soil Surface Roughness

• Soil Moisture & Water Deficit Index

• CO2 Fluxes Dr. Moran

Page 19: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Surface Soil Moisture(m3/ m3 in top 5 cm)

Walnut Gulch boundary

Surface Soil Moisture

Value

High : 0.4

Low : 0.0

Rahman et al. 2005

< 0

0 – 1.99

2 – 3.99

4 – 5.99

6 – 7.99

8 – 9.99

10 –11.99

12 – 13.99

14 – 15.99

16 – 17.99

18 – 19.99

> 20

g m‐2 (12 hrs)‐1

9/30/92 9/17/93

8/30/98 9/26/99

Net Daytime CO2 Flux(g m‐2 (12 h)‐1)

Holifield et al. 2004

From WDI (vegetation & temperature), calculations of instantaneous fluxes, and daily flux measurements 

Page 20: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Russ Scott, Hydrologist

Evapotranspiration, Carbon and Energy Fluxes 

Page 21: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Micrometeorological and eco‐physiological techniques are used better understand and quantify ecosystem energy, water and carbon dioxide exchanges in order to:

‐quantify riparian water use and improve basin surface andground water budgets

‐understand the interactionsbetween CO2 and water cycles in semiarid regions

‐determine the ecohydrologicconsequences of woody plantencroachment

Fluxes

SWRC operates an array of eddy covariance towers placed throughout southern Arizona to address a number of issues related the functioning of ecosystems in semiarid areas. 

Creosote Shrubland

Grassland

Riparian Woodland

Savanna

Grassland

Riparian Grassland and Shrubland

Page 22: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Erik Hamerlynck, Biologist

Ecology, physiology, plant water and carbon issues 

Date

4/9 4/16 4/23 4/30 5/7 5/14 5/21

Dai

ly s

oil c

arbo

n ef

flux

(g m

-2)

0

2

4

6

8

10

12

14

16

18

Under shrubOpen interspace

Page 23: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Mary Nichols, Res. Hydraulic Engineer

Soil conservation, sediment budgets, photography

Rangeland Soil Conservation Research

loose rock dams

water control berms

To quantify the impacts ofconservation practices on:

sediment retentionsoil moisturevegetation

With respect to:

designlandscape positionrainfall/runoff

Page 24: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Jeff Stone, Hydrologist

Rainfall Simulation, hydrologic modeling

Runoff and Erosion Processes 

Variable intensity (25‐180 mm/hr)

Small (0.75 m2) and Large (2x6 m) plots

Semi‐arid grassland, shrub, and oak woodland sites

State and Transition models

Grazing and Fire

Runoff and Erosion 

Providing new fundamental knowledge on rangeland hydrologic response and erosion processes

Page 25: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Partial Area ResponseSpatial Heterogeneity

Infiltration and Runoff

Steady state infiltration increases with rainfall intensity

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

contributing area

qs (

g/s

)

0

20

40

60

80

100

120

0 50 100 150 200

rainfall rate (mm/hr)

infi

ltra

tio

n r

ate

(mm

/hr)

Undisturbed

Disturbed

Undisturbed

Fire

Heavy grazing

Erosion

Partial area response – raindrop detachment, deposition

Entire area response– potential flow detachment and continuous transport

Page 26: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Mark Nearing, Agricultural Engineer

Erosion and sediment issues, effect of climate change on erosion

Page 27: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Methods: Cesium 137 and Rare Earth Element Tracers

Lucky Hills, WGShrub Area

S

Page 28: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Phil Heilman, Research Leader

Decision Support, Remote Sensing 

Page 29: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Cover Comparison: Ground vs SatelliteArizona and New Mexico 2010

Cover:• 5% measured•10% Landsat(ID: 123‐0.022)

Cover:• 5% measured•12% Landsat(ID: 59‐0.030)

Cover:• 17% measured•22% Landsat(ID: 54‐0.094)

Cover:•10% measured•14% Landsat(ID: 115‐0.042)

Cover Imagesi‐cubed 15m eSAT Imagery

2010 30m Landsat

2010 500m MODIS

60%

0%

Page 30: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

‘‘ Upper San Pedro Partnership (USPP)

USPP Goal: “Assuring an adequate long‐term groundwater supply is available to meet the reasonable needs of both the area’s residents and property owners (current and future) and the San Pedro National Riparian Conservation Area”

Page 31: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed
Page 32: Southwest Watershed Research Center - SAHRAweb.sahra.arizona.edu/education2/wrtt/lecs/Heilman_WGoverview2012_2.pdf · Sound Science for Watershed Decisions USDA-ARS Southwest Watershed

Dense Gauge Network Confirms Improvement in

TRMM Radar Rainfall Intensity Estimates

Eyal Amitai, Code 612, NASA GSFC and Chapman University

For the first time, instantaneous rainfall rate fields(snapshots) from TRMM Radar (PR) are comparedwith those of a dense gauge network (of 1‐minaccumulations). Instantaneous comparisons avoidsatellite temporal sampling errors. The network,located at the USDA/ARS Walnut GulchExperimental Watershed in south‐east Arizona,consists 88 gauges within 149‐km2 (~10 gauges perPR footprint of 5‐km diameter), the densest gaugenetwork in the PR coverage area for watersheds >10‐km2. All TRMM overpasses in which the PRrecorded rain within the watershed are analyzed(25 overpasses during 1999‐2010).

• Very good agreement between the PR and theinterpolated gauge rain rate fields with high‐correlation and low‐bias values (<10%), especiallyfor the near‐nadir cases (CC>0.9).

• Correlations this high are typically not observedwhen comparing remote sensing observations(e.g., satellite vs. ground radar, gauge vs. groundradar).

• Agreement improves using the new releasedTRMM products (V7) compared to V6.

• Correlation peak occurs several minutes afterthe overpass, as it takes several minutes for theraindrops to reach the gauge from the time theyare observed by the PR.

Figure 1: The rain rate field over the Walnut Gulch watershed as observed by the TRMM PR on 4‐Oct‐2001 @ 0129 UTC based on version 7 (upper  left) and version 6 (upper right) rainfall  retrieval algorithms.   The watershed interpolated gauge rainfall rate field at 10‐min after the overpass (left panel). Each PR footprint is illustrated schematically by a 5‐km diameter circle.  Each of the 88 gauges is marked by a red dot. Figure 2: Correlation coefficients (red curves) between the TRMM PR footprint and the co‐located  interpolated gauge (G) area‐average rain rate. The PR/G ratio of average rain rate is also shown (blue curves) for every minute during an hour

V6V7

V6 & V7

V7 V6

Earth Sciences Division ‐ Atmospheres


Recommended