+ All Categories
Home > Documents > Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force...

Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force...

Date post: 19-Dec-2015
Category:
View: 224 times
Download: 0 times
Share this document with a friend
27
Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy
Transcript
Page 1: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Spacecraft Attitude Determination Using GPS

Signals

C1C Andrea JohnsonUnited States Air Force Academy

Page 2: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Outline Concept review/ Prior work Goals Receiver arrangement Integer resolution Assumptions/ Coordinate Frames Minimizing the loss function Results Conclusions Recommendations

Page 3: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Concept Review Two receivers

detect the same GPS satellite signal

Phase differences can be used to determine the angle of the line defined by the 2 receivers

)(cos nb

Page 4: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Determine matrix, A, that transforms

baseline vector from body frame to LO

Issues Find n Accurate loss

function minimization

Concept Review Cont.

ns

vsAbn T ˆ

Page 5: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Prior Work

Minimizing the loss function Linear least squares ALLEGRO (Attitude-Lean-Loping-

Estimator using GPS Recursive Operations)

m

i

n

jj

Tiijijij sAbnAJ

1 1

22 ˆ

Page 6: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Linear least squares with motion-based integer resolution:

Non-linear, predictive filter assuming n has already been resolved:

Prior Work Cont.

N

l

m

i

o

jjll

Tiij

lijN sAbnnAAAJ

1 1 1

2

21 ˆ,...,

kkkkT

kk tWdtdtytyRtytyJ2

1ˆ~ˆ~

2

111

111

Page 7: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Project Goals

Integer resolution algorithm Non-IC dependent minimization

technique incorporating integer phase difference measurements

Design computer code to perform attitude determination

Page 8: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Receiver Arrangement

2 master antennas,

2 slaves, 4 intermediate Non-military

frequency: 1575.42 MHz, λ = 0.1903 m

12.50.5λ

Master antenna

Intermediate antenna

Slave antenna

12.50.5λ

Page 9: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Integer Resolution Intermediate receivers

Variation of integer search Unique solution to 2 phase difference

measurements if baselines not multiples of each other

Third provides check Accurate even for large baselines

Φ1

Φ3Φ2

Page 10: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Assumptions/ Coordinate Frames Algorithm uses single

set of 3 receivers Same 2 GPS satellites

always in view No masking or

multipathing “Inertial” reference

frame: local orbital Body frame = LO

when roll, pitch, and yaw = 0

xlo

ylo

zlo

Page 11: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Assumptions/ Coordinate Frames Cont.

Page 12: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Minimizing the Loss Function Linear

Diverges for poor initial guesses Motion-based integer resolution

ALLEGRO Does not account for n in algorithm Separate motion-based integer resolution

Gauss-Newton Not sensitive to initial conditions Always converges Designed for minimization of squared

functions

Page 13: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Minimizing the Loss Function Cont.

Generating Test Data 3 orbit propagators

1 for spacecraft, 2 for GPS satellites 2-body EOM, no perturbations Ode5/Dormand-Prince numerical

integration Fixed time-step: 1 sec 1 hour simulation

Page 14: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Minimizing the Loss Function, Cont.

1 attitude propagator Euler moment, no disturbance torques

Initialization program generates actual fractional phase differences and quaternions

Noise added with 026.0

Page 15: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Minimizing the Loss Function, Cont.

5.2

7678.1

7678.1

1rec

5.2

0858.1

0858.1

2rec

5.2

7678.1

7678.1

3rec

5.0

7678.1

7678.1

4rec

5.2

7678.1

7678.1

5rec

5.2

0858.1

0858.1

6rec

5.2

7678.1

7678.1

7rec

5.0

7678.1

7678.1

8rec

Gauss-Newton/ Gauss-Newton-Levenberg-Marquardt

Receiver locations written in body frame coordinates, units of wavelengths

Page 16: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Minimizing the Loss Function, Cont.

)3,3(

)2,3(

)1,3(

)3,2(

)2,2(

)1,2(

)3,1(

)2,1(

)1,1(

ij

ij

ij

ij

ij

ij

ij

ij

ij

ij

A

A

A

A

A

A

A

A

A

p

M

mm pfpE

1

2

obsm

cmmm HpHWpf

Unknown value is the A-matrix, must be converted to a vector for GN/GNLM

Page 17: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Minimizing the Loss Function, Cont.

Minimization equation requires solving for state using Gaussian elimination or decomposition

This is GN method

n

nnn

n

n

p

f

p

f

p

fp

f

p

f

p

fp

f

p

f

p

f

A

21

2

2

2

1

2

1

2

1

1

1

kTkkk

Tk fApAA

kkk ppp 1

Page 18: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Sometimes a singularity occurs:

To counter this, an additional term is needed:

If the singularity still occurs, multiply λ by 10 and recalculate

Minimizing the Loss Function, Cont.

kk pEpE 1

kTkkk

Tk fApIAA

Page 19: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Minimizing the Loss Function, Cont.

)3(

)2(

)1(

i

i

i

i

b

b

b

b

)3(

)2(

)1(

ˆ

j

j

j

j

s

s

s

s

ij

ijij

ij

jiijiijiij

ij

jiijiijiij

ij

jiijiijiijij

nsbAbAbA

sbAbAbA

sbAbAbAf

)2(ˆ)2()2,2()3()2,3()1()2,1(

)3(ˆ)2()3,2()3()3,3()1()3,1(

)1(ˆ)2()1,2()3()1,3()1()1,1(

Defining variables:

Page 20: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Minimizing the Loss Function, Cont.

2,3

23

2,3

23

2,3

23

2,3

23

2,3

23

2,3

23

2,3

23

2,3

23

2,3

23

1,3

13

1,3

13

1,3

13

1,3

13

1,3

13

1,3

13

1,3

13

1,3

13

1,3

13

2,2

22

2,2

22

2,2

22

2,2

22

2,2

22

2,2

22

2,2

22

2,2

22

2,2

22

1,2

12

1,2

12

1,2

12

1,2

12

1,2

12

1,2

12

1,2

12

1,2

12

1,2

12

2,1

21

2,1

21

2,1

21

2,1

21

2,1

21

2,1

21

2,1

21

2,1

21

2,1

21

1,1

11

1,1

11

1,1

11

1,1

11

1,1

11

1,1

11

1,1

11

1,1

11

1,1

11

)3(ˆ)3()2(ˆ)3()1(ˆ)3()3(ˆ)2()2(ˆ)2()1(ˆ)2()3(ˆ)1()2(ˆ)1()1(ˆ)1(

)3(ˆ)3()2(ˆ)3()1(ˆ)3()3(ˆ)2()2(ˆ)2()1(ˆ)2()3(ˆ)1()2(ˆ)1()1(ˆ)1(

)3(ˆ)3()2(ˆ)3()1(ˆ)3()3(ˆ)2()2(ˆ)2()1(ˆ)2()3(ˆ)1()2(ˆ)1()1(ˆ)1(

)3(ˆ)3()2(ˆ)3()1(ˆ)3()3(ˆ)2()2(ˆ)2()1(ˆ)2()3(ˆ)1()2(ˆ)1()1(ˆ)1(

)3(ˆ)3()2(ˆ)3()1(ˆ)3()3(ˆ)2()2(ˆ)2()1(ˆ)2()3(ˆ)1()2(ˆ)1()1(ˆ)1(

)3(ˆ)3()2(ˆ)3()1(ˆ)3()3(ˆ)2()2(ˆ)2()1(ˆ)2()3(ˆ)1()2(ˆ)1()1(ˆ)1(

sbsbsbsbsbsbsbsbsb

sbsbsbsbsbsbsbsbsb

sbsbsbsbsbsbsbsbsb

sbsbsbsbsbsbsbsbsb

sbsbsbsbsbsbsbsbsb

sbsbsbsbsbsbsbsbsb

A

Jacobian matrix:

Page 21: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Determining attitude from the transformation matrix:

Minimizing the Loss Function, Cont.

5.04 )3,3()2,2()1,1(1

2

1ijijij AAAq

)2,3()3,2(4

1

41 ijij AA

qq

)3,1()1,3(4

1

42 ijij AA

qq )1,2()2,1(

4

1

43 ijij AA

qq

Page 22: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Minimizing the Loss Function Cont.

S/C actual quaternion

GPS 1, GPS 2, & S/C IJK vectorsOrbit

Propagators (3)

Attitude Propagator

InitializationProgram

IntegerResolutionProgram

GN/GNLM

Program

Transformationmatrix/ quaternions

3 integerphase differences

3 noisyPhase

measurements

Page 23: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Results

Initial Guess # Iterations Method % Error

Identity matrix 100 GNLM 94.34

Identity matrix 100 GN 217.88

Actual 100 GNLM 468.47

Actual 100 GN 26.15

Actual 10 GN 243.82

Page 24: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Conclusions Significant errors caused by several

factors GN/GNLM intended for vectors of

parameters, not vectorized matrix Use of constant to prevent singularities Linear receiver arrangement Only 2 sightlines used (minimum of 4

available) GN/GNLM sensitive to measurement

errors

Page 25: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Conclusions, Cont.

ALLEGRO remains most accurate GN/GNLM with modifications may

or may not perform better

Page 26: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Recommendations Use matrix for singularity avoidance Determine better method for comparing

results of matrix calculations (compare entire matrix, elements thereof, or a combination of both)

Integrate integer resolution algorithm into GN/GNLM algorithm

If cannot use GN/GNLM, incorporate integer resolution algorithm into ALLEGRO algorithm

Page 27: Spacecraft Attitude Determination Using GPS Signals C1C Andrea Johnson United States Air Force Academy.

Questions?


Recommended