+ All Categories
Home > Documents > SPACIROC Spatial Photomultiplier Array Counting and Integrating ReadOut Chip

SPACIROC Spatial Photomultiplier Array Counting and Integrating ReadOut Chip

Date post: 23-Feb-2016
Category:
Upload: moswen
View: 32 times
Download: 0 times
Share this document with a friend
Description:
SPACIROC Spatial Photomultiplier Array Counting and Integrating ReadOut Chip. S. Ahmad, P. Barrillon , S. Blin , S. Dagoret , F. Dulucq , C. de La Taille IN2P3-OMEGA LAL Orsay , France Y. Kawasaki - RIKEN,Japan I. Hirokazu – JAXA, Japan. Main application: JEM-EUSO. - PowerPoint PPT Presentation
30
CSNSM SPACIROC Spatial Photomultiplier Array Counting and Integrating ReadOut Chip S. Ahmad, P. Barrillon, S. Blin , S. Dagoret, F. Dulucq, C. de La Taille IN2P3-OMEGA LAL Orsay, France Y. Kawasaki - RIKEN,Japan I. Hirokazu – JAXA, Japan
Transcript
Page 1: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

CSNSM

SPACIROCSpatial Photomultiplier Array Counting and

Integrating ReadOut Chip

S. Ahmad, P. Barrillon, S. Blin, S. Dagoret, F. Dulucq, C. de La Taille

IN2P3-OMEGA LAL Orsay, FranceY. Kawasaki - RIKEN,JapanI. Hirokazu – JAXA, Japan

Page 2: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 2

Main application: JEM-EUSOJEM-EUSO :

Extremely High Energy Cosmic Ray (EECR) observer onboard of International Space Station

Observing Extensive Air Shower created by the EECRsTotal irradiation dose: 60 krad/5yearsLaunch in 2016

EUSO-BALLOON : Project CNES + IRAP (Toulouse), APC and LAL

supported by the whole JEM-EUSO collaboration 1 PDM with electronics and mechanics as close as

possible to the one of JEM-EUSO SPACIROC : Mapmt readout

Goals: Launch in 2014 Technological demonstrator (PDM + software) Study of the background Detection of an atmospheric shower

Sylvie BLIN

Page 3: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 3

Front End ASIC requirements

• 64 channels photon counting– Single photon counting 100% trigger efficiency: 1/3 pe (~50 fC when MaPMT

gain=106)– Double pulse resolution : ~10 ns

• => 3 different designs are embedded• Charges to Time (Q-to-T) converters (based on KI02 ASIC –

JAXA/RIKEN)– 8 channels: each for 8-pixel sum preamplifier signals– Pixels charge measurement: 2pC – 200pC

• Data acquisition & Readout to be done within 2.5 µs (GTU)– Readout Clock : 40MHz

• Radiation Hardness By Design : TMR (Triple Module Redundancy) • Power budget : <1 mW/channel

Sylvie BLIN

Page 4: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 4

Global architecture

Sylvie BLIN

Page 5: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 5

Photon Counting - Architecture

3 designs: Trig_PA: output directly from preamplifier → lowest dissipation

Trig_FSU : unipolar fast shaper → baseline

Trig_VFS : new optimised fast triggering shaper → fastest design

Multiplexed Trigger to Digital part

2 x 10-bit DAC for threshold

Turn off all blocks.

Sylvie BLIN

Page 6: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford

Q to T: Architecture

Time Over Threshold technique based on a block designed by JAXA/RIKEN (called KI) 8 channels: Each channel input is the sum of 8 consecutive

preamplifier outputs 10-bit DACs for threshold

6Sylvie BLIN

Page 7: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford

Digital Architecture

8 identical digital module for Photon Counting=> 8 clocking counters

1 digital module for Q to T converters=> 8 enable 40MHz counters

9 serial links for data readout + TransmitOn signal

7

Photon Counting Q to T conversion

Sylvie BLIN

Page 8: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 88

SPACIROC1

– Technology: AMS 0.35µm SiGe

– Submitted in March 2010

– Delivered: Mid-July

– Test: September

– Dimensions : 4.6mm x 4.1mm (19 mm²)

– Power supply: 0-3V

– Naked Die: 1700 chips

– Packaging : CQFP240 (proto)

CQFP160 (Euso-balloon production):

- 100 asics (yield: 85%)

4.1mm4.

6mm

Sylvie BLIN

Page 9: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford

SPACIROC1: Trigger efficiency measurements

9

Photon Counting:

Trig FSU (Baseline)• Gain = 1mV/fC

• Min input = 30 fC• Dispersion: 2.5 DAC unit

Trig_PA• Gain = 0.32mV/fC• Min input = 30 fC

• Dispersion: 1.8 DAC unit

Trig_VFS• Gain = 1.3mV/fC • Min input = 60 fC

• Dispersion: 17.7 DAC unit

Trig_PA : 64 Channel Scurves

Trig_FSU : 64 Channel Scurves

Trig_VFS : 64 Channel Scurves

Sylvie BLIN

Page 10: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford

SPACIROC1: Charge measurements

10

Charge to Time converter

• 8-pixel-sum: Input test: 1.6 – 160 pC

• Simulation: charge up to 250pC

• Measurements: saturation starts at 40pC

ASIC Digital System:• Startbit, Data, TransmissionOn, Parity

Bit• Data output Vhi-Vlo: 1.5V - 0V

KI 8-Pixel-Sum Measurements

KI 8-Pixel-Sum Simulations

Sylvie BLIN

100

65

250pC

160pC

Page 11: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 11Sylvie BLIN

SPACIROC1 + MAPMT measurements

Photoelectron spectrum

Test setup:

HVPS: K=1000V & Cockroft WaltonMAPMT: Hamamatsu R11265-M64MAPMT Gain: 1.106 (1p.e=0.16pC)

DC LED : λ=378nm

Photon Counting pile up: 25pe/GTU/pixelQ to T range:6.4 -198 pC

Photo Counting and Q to T counter data for input range of 1-180 p.e/GTU/pixel

Page 12: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford

SPACIROC1: Measurement summary

12

• Good behaviour for first prototype

• Good baseline for Photon Counting

• Slow Control cells & Digital modules

working as expected

• Will be used for EUSO-Balloon

(CQFP160)

SPACIROC1 bugs Power consumption:

Due to design bugs, unused component can’t be turned off.

Double pulse separation: 10ns is never reached (due to the power dissipation)

Q to T converter: 8-pixel-sum

Linearity zone is 75% smaller than simulations

Integrated signal swing is 0.7V instead of 1.5V

Consumption

mW/ch

Min input charge (fC)

Double pulse

separationTrig_pa 1.08 30 30

Trig_fsu 1.07 30 36

Trig_vfs 0.96 60 20

Sylvie BLIN

Page 13: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 13

SPACIROC2– Technology: AMS 0.35µm SiGe– Submitted in November 2011– Delivered in February 2012– Dimensions : 4.6mm x 4.6mm (21 mm2)– Power supply: 0-3V– Packaging: CQFP208 (proto)

Modifications: Trig_pa: add buffer Trig vfs: add turn off switch

improve the discriminator Q to T converter: integrated capacitor values changed

add a reset

Sylvie BLIN

Page 14: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 14

Average Threshold = 67.8 DAC (1.119V); RMS = 0.8 DAC (~1.3mV)

SPACIROC2: FSU Measurements: 64 channels

FSU50fC

FSUpedestals

Average Threshold = 92.3 DAC (1.06V); RMS = 2.3 DAC (~3.8mV)

Large gap between the pedestals and 1/3 pe → we can easily trig on 1/3 pe

Nice uniformity between channels (rms: 2.3DAC)

Sylvie BLIN

Page 15: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 15

Average Threshold = 963.7 DAC (2.497V); RMS = 0.8 DAC (~1.3mV)

SPACIROC2: PA Measurements: 64 channels

PA50fC

PApedestals

Average Threshold = 954.6 DAC ( 2.483V); RMS = 1 DAC (~1.65mV)

50fC trigger requirement matched for all channels

(nice separation from pedestals)

Nice uniformity between channels ( rms: 1DAC)

Sylvie BLIN

Page 16: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 16

Average Threshold =81.44DAC (1.042V); RMS = 0.67 DAC (~1.1mV)

SPACIROC2: VFS Measurements: 64 channels

VFS50fC

VFSpedestals

Average Threshold = 112.25 DAC (1.093V); RMS = 3.48 DAC (~5.7mV)

50fC trigger requirement matched for all channels

(nice separation from pedestals)

Nice uniformity between channels ( rms: 3.5DAC)

Sylvie BLIN

Page 17: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 17

SPACIROC2: FSU Measurement – Ch32

Gain = 1.23 mV/fCMin Input = 20fC (<<1/3pe)

5sNoise = 7fC

Sylvie BLIN

Page 18: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 18

SPACIROC2: PA Measurement – Ch32

Gain = 0.563 mV/fCMin Input = 38fC (<<1/3pe)

5sNoise = 7.5fC

Sylvie BLIN

Page 19: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 19

SPACIROC2: VFS Measurement – Ch32

Gain = 1.18mV/fCMin Input = 20fC (<<1/3pe)

5sNoise = 8fC

Sylvie BLIN

Page 20: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 20

Double pulse separation

DAC value: 100Injection=1pe * 2

Double pulse separation=26ns

DAC value: 950Injection=1pe * 2

Double pulse separation=28.5ns

DAC value: 120Injection=1pe * 2

Double pulse separation=20ns

FSU: 26 ns

PA : 28ns

VFS: 20ns

Sylvie BLIN

Page 21: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 21

Q to T(8-Pixel-Sum) - Linearity

Discri input

Discri output

Poor linearity

Not a problem for our application

Only used to detect high signal

=> turn off the mapmt HV

Sylvie BLIN

Page 22: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford

Measurement summary

22

SPACIROC1 ConsumptionmW/ch

Min input charge (fC)

64 channel dispersionDAC unit

Double pulse separation

(ns)Trig_pa 1.08 30 1.8 30

Trig_fsu 1.07 30 2.5 36

Trig_vfs 0.96 60 17.7 20

SPACIROC2 ConsumptionmW/ch

Min input charge (fC)

64 channel dispersionDAC unit

Double pulse separation

Trig_pa 0.74 38 1 28

Trig_fsu 0.87 20 2.3 27

Trig_vfs 0.88 20 3.5 20

Almost everything has been improved

Sylvie BLIN

Page 23: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford

Conclusion

23

The best trigger design will be chosen by the collaboration

Spaciroc1 : demonstrator

Spaciroc2 : JEM-EUSO

Eliminate all power consumption problems

Improve double pulse separation

All trigger designs can be used

Sylvie BLIN

Page 24: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 24Sylvie BLIN

Page 25: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 25

SPACIROC1: Mapmt measurements

Test setup:HVPS: K=1000V & Cockroft WaltonMAPMT: Hamamatsu R11265-M64MAPMT Gain: 1.106 (1p.e=0.16pC)

DC LED : λ=378nm

Photon Counting

KI

Photon Counting pileup:30p.eKI range:6.4 -198 pC

Sylvie BLIN

Page 26: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 26

Photon Counting – Simulations• Triggers for 80 fC input charge (1/2 pe for PMT gain =106)

Trig_FSUVth=1.2vΔt<10ns

Trig_PAVth=2.35v

Δt<5ns

Trig_VFSVth=1.2vΔt<5ns

Sylvie BLIN

Page 27: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford

Digital part waveform

• GTU : 99% duty cycle synchronised to Readout clock falling edge• Each DataOut serial link: 66-bit data (StartBit + Counters Data +

ParityBit)• TransmitOn signal active during data transmission on DataOut links

27Sylvie BLIN

Page 28: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 28

Photon Counting – Simulations• Triggers for 160 fC input charge (1 pe for PMT gain =106)

Trig_FSUVth=1.2vΔt<10ns

Trig_PAVth=2.35vΔt<15ns

Trig_VFSVth=1.2vΔt<5ns

Sylvie BLIN

Page 29: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 29

KI 8-Pixel-Sum – Simulations

2.4pC11pC52pC240pC

• Input : 2.4pC – 240pC

Sylvie BLIN

Page 30: SPACIROC Spatial  Photomultiplier Array Counting  and  Integrating ReadOut  Chip

TWEPP 2012, Oxford 30

Q to T (8-Pixel-Sum) - Architecture

Dt=25.15ns

Dt=48.3ns

Dt=59.8ns

Dt=72.59ns

Ddata_ki=1

Ddata_ki=2

Ddata_ki=3

Ddata_ki=4

Discri input

Discri output201ns, 287ns,397ns,

509ns,608ns

Sylvie BLIN


Recommended