+ All Categories
Home > Documents > SPE-20150 Hor Well Plan-MS

SPE-20150 Hor Well Plan-MS

Date post: 07-Jul-2018
Category:
Upload: swaala4real
View: 216 times
Download: 0 times
Share this document with a friend

of 15

Transcript
  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    1/15

     

    SPE 20{50

    Horizontal Well

    Frank J . Schuh, Dri l l i ngechnol ogy,k.

    NEWMEXI COTECH

    CENTENNI ALSYMPOSi UM

    Planning—Build Curve Design

    -ktht Iw% SOMY of PetroleumEngineer%Inc.

    This peper weeprepsred tw pre8&Matin

     

    the CenlermiafSymposiumPefro w r7kohrWgy /nroffre SecondCwrtury

     

    New

    Mexlco

    Teoh,socorro, tJM,@fm 1S-19,lW,

    This peper weeeefectedfc~pfeeermion by the NewMdoo TechOentennmlSympoeiumOomm ee. Contonfeof the peper,M pmeented,havenot -a review d by the SOckf

    of Petrolwm En@neereand are eubjectto cor?ecfionby the  uthor(s).The meteriel, ae pre8enW, doegnot

    eoeeuriIy refhot wry peltion of the soow of%wteum Engin@rs

    ifs Moore, or membere.Iftimed for pubtiiim, this peper ieeubpct to publioetion reviewby Ediioriel ComrMfeee of the society of PetroleumEn@uere. Pumbebn to ccw

    ie reefrkted to 8n~ of rwt mu. then 300 wofds,Illuefrotlorrsmeynotbe copied.The abetrwt shouldoontetnconepicuoueacknowtedgmemof whom end by whomthe gepe

    b ~nled. WritePuMcat ione Mwu~r, WE, P,O.Sox SSSSSS,Ricfrerdeorr,TX 750S3.3S3S.Telex, 730SS9SPEDAL.

    A 2m.x2

    The goal of most hori zontal dri11ing proj ects i s

    to pl ace a l ong hori zontal hol e i n a narrowverti-

    cal target.

    To accompl i sht hi s obj ecti ve i n the

    most economcal manner, requi res a buiI d desi gn

    that w l 1 hi t the target w thout numerous bottom

    hol e assembl y changes and a ri g that can handl e

    the torque and drag l oads produced by the dri 11-

    str i ng i n the hori zontal hol e.

    Thi s paper de-

    scri bes several methods for designi ng the bui l d

    curve that off er i mproved methods for hi tti ng a

    smal1 hori zontal target whi l e usi ng a si ngl e bot-

    tomhol e assembl y f or the angl e bui l di ng porti ons

    of the hol e. The paper al so presents a novel

    method for esti mati ng the torque and drag forces

    for typi cal dri l l stri ng i n a hori zontal hol e.

    J rt tr oducti on

    The two character sti es that most cl earl y di f f eren-

    ti ate hori zontal dri l l i ng f romconventi onal di rec-

    ti onal dri l l i ng are the use of angl e- bui l dmotors

    and speci al i zedbui l d curve desi gns.

    A good bui l d

    curve desi gn i s nearl y as i mportant as sel ecti ng

    the best di recti onal dri l l i ngcontractor.

    The opt imum l ength f or a hor i zont al hol e i s

    reached when the i ncremental cost of addi ti onal

    l ength i s greater than the val ue of the producti on

    fromthe addi ti onal l ength. Si nce the producti ve

    perf ormanceconti nues to i ncreasew th i ncreasi ng

    l ength, the opti mumi s probabl y cl ose to the maxi -

    muml ength that can be successful l ydri l l ed. The

    mechani cal l i mts for hori zontal hol es are pri mari -

    l y rel ated to torque and drag l i m ts f or the r i g

    and dri l l str i ng equi pment.

    To reach the maxi mutt i

    possi bl e l ength, one needs to mni mze the torque

    and drag forces.

    Si nce buckl i ng and gravi ty

    Referencesand i l l ustrat i onsat end of paper.

    forces domnate the torque and drag eff ects i n the

    hori zontal hol e, the opti mumdesi gn requi res the

    sel ect ion of the l i ghtest possi bl e dr i l l st r in

    components that w l l not be buckl ed duri ng dri l -

    l i ngoperati ons.

    Bui l d C

    urve

    QQQl

    The %mpl est possi bl e bui l d curve desi gn i s a

    si ngl euni formcurve that begi ns at the near vert i -

    cal ki ckof f poi nt and r eaches 90” at t he end

    of the curve i n a si ngl e conti nuous arc.

    I f the

    vari abi l i tyof the performanceof the angl e- bui l

    motor provi des an error i n the verti cal depth at

    the end of the cur~e that i s l ess than the al l o”

    abl e tol erance of the hor i zontal target , .hl

    bui l dcurvedesi gn i s i n fact the opti mumdesi gn.

    Unfortunatel y, the vari abi l i ty and uncertai nty of

    perf ormance of most angl e- bui l d motors greatl

    exceeds the al l owabl e tol erance of the hori zonta

    targets.

    I t, therefore, becomes necessary to

    desi gn adj ustment i nterval s i n the bui l d curve to

    compensatefor these uncertai nti es.

    Bui l d curve design begi ns w th a defi ni ti onof th

    hori zontal target .

    There are basi cal l y two type

    of hori zontal targets:

    o

    A def i nedvert i cal depth target

    o

    A defi ned structural posi ti oni n a

    reservoi r

    For hori zon-i alwel l s i n gas and/ or ater coni n

    appl i cati ons, i ? nay be most effecti ve to dri l l

    t rul y hor i zont al hol e i n a TVD target t hat i

    l ocated a f : . ~ddi stance fromt he gas/oi l and/ o

    Wter /o l

    ~Oi,iaCts. For thi s type hori zontal wel

    the target angl ew l l be 90°.

    47

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    2/15

    =20150

    2

    HORI ZONTALWELL PLANNI NG B1’LOCURVE DESI GN

    NMTECH

    The most common type hori zontal target i s not

    w l l use the maxi mumavai l abl e bui l d rate.

    I f

    necessari l yhori zontal but i s a l ateral path that

    hor i zontal sert ion i s to be dr i l l ed w th su

    t racks a speci f i c st ruct ur al posi t i on i n t he

    rotati on, one shoul d l i mt the hol e curvatu

    reservoi r.

    For coni ng appl i cati ons, thi s may be

    the curvature l imt of the dr i l l st ri ng co

    ei t her t , e top o? bot tomof the reservoi r . I t

    nentsm

    Another i mportant consi derati on i

    al so mght be a speci f i c posi t i on that has been

    provi de a cur vat ur e t hat w l l not i nhi bi t

    sel ected to assure ful l consrruni cat i on th the

    sel ecti on of ordi nary conventi onal produ

    reservoi r from hydraul i c fractures i ni ti ated at

    tool s duri ng the compl eti on and future produ

    that depth. ‘ Hori zontal ”tar~ets i n these cases operati ons.

    w l l not be hor izontal but w l l at tempt to t rack

    the sel ected st ructural posi t ion or be dr i l l ed

    The f ol l owng sect i ons w l l cover t hr ee b

    al ong a path that i s ex~zcted to track the

    curve types whi chwe have i denti f i edas:

    structural posi ti on.

    The al l owabl e hei ght of thi s

    path representsthe target tol erance.

    1. The simpl e tangent bui l d curve;

    2. The compl ex tangent bui l d curve;

    The purpose of the bui l d curve desi gn i s to 3. The i deal bui l d curve.

    provi de the operator w th an eff i ci ent method of

    hi t t ing the hor izontal target w thi n the pre- The di mensi onsof these bui l d curves can be ca

    scri bed tol erance w thout uti l i zi ng numerous BHA

    l ated f romthe geometr i c rel ati onshi psof str

    changes. The bui l d curve desi gn must provi de a

    l i ; l esand ci rcul ar arcs.

    FCC the si mpl e ta

    bal ancebetweent he fol l ow ngconsi derati cms:

    bui l d curve where we i ntend to keep the too

    of the beri housi ng motor poi nted up and max

    o

    Avoi d probl emformati ons.

    the angl e bui l di ng rate of the tool , the pat

    be descri bed as a ci r cul ar arc i n a ver

    o Mnimze t he di spl acemer i tof t he end of

    pl ane.

    See Fi gure 1. The key equati ons

    the curve.

    cal cul ati ngthe hei ght, di spl acement and l eng

    a verti cal ci rcul ar arc are:

    o Mnim ze the dri l l ed l ength of the bui l d

    curve.

    5730

    0

    Provi de an adj ustment i nterval for han-

    R=—

    . . (

    dl i ng other than the i deal bui l d rate.

    B“””””””””””

    o

    Al l ow the uti l i zati on of structural mark-

    ers encountered i n the bui l d i nterval to

    V= R* (si n I z- si n I l ) . . . . . (2)

    adj ust the fi nal target depth.

    o

    Meet the target tol erancel i mts.

    H= R” (COSI 1- COS 12) . . . . $(3)

    o

    Provi de a curve that w l l al l ow a f ul l

    l ength hori zontal hol e to be dri l l ed.

    100 0 (12 - 11)

    L= (

    Pr ovi de a compl et abl e hol e t hat w l l

    .

    0

    . . , , . . . .

    B

    permt the use of al l necessary producti on

    tool s and equi pment.

    For the compl ex and i deal bui l d curves that

    The opti mumbui l d rate for a speci fi c hori zontal

    l i ze bui l d and turn segments, the path ca

    hol e must both provi de the di rect i onal cor l t rol approxi mated by the geometry of ci rcul ar

    needed to hi t the target as wel l as a bui l d curve

    proj ected to the verti cal pl ane.

    See Fi gu

    hei ght that avoi ds i ncl udi ng troubl esome forma- The key equati ons for the geometry of the

    t i ons i n the bui l d i nterval . If, f or exampl e, an

    turn segmentsare:

    especi al l yt roubl esomeformati on i s l ocated850 f t

    above the hori zontal target, one woul d probabl y

    sel ect a ki ckoff poi nt bel ow that formati on and

    5730

    use the remai ni ng hei ght to di ctate the requi red

    Rvm—

    . (

    bui l d rate curvatures.

    Be”””””””””””””

    If

    one onl y consi ders the requi rementsof dri l l i ng

    t he bui l d curve, t he best desi gn w l l use t he

    V=RV

    “ ( si n 12 - si n I i ) . . . . . (6)

    hi ghest curvature rate that can be obtai ned.

    Si nce the bui l d curvature al so aff ects al l subse-

    quent operati ons, one needs to bal ance the advan-

    H=RV . ( COS11

    -COSI Z) . . . . . (7)

    tage of hi gh curvature w th the i mpact of that

    curvatureon the future operati ons. Tabl e I l i sts

    several of the curvature l i mts that shoul d be

    100 ( I z - 11)

    consi dered.

    L=

    . . . . . . . . .

    (

    Bv

    I f one pl ans to steer the ent i re hor izontal sec-

    ti on and no producti onequi pment or tool s w l l be

    run through the curve, the opti mum bui l d curve

    . -

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    3/15

     

    .

    SQE20150

    NNTECtl

    890008

    FRANKJ . SCHUH

    6T

    DL=([z- I 1)*—

    i nterval i s adj usted so that the second bui l

    . * ( 9) . curve reaches the target i f i t bui l ds at the sam

    BV ”*”*””

    rateas the f i r st curve, Thi s l i mts the error i

    hi tti ng the target to the di ff erence between th

    ‘ actual second bui l d and the adj usted pl anned se

    cos DL -

    cp~ 11 . Cos 12

    ond bui l d.

    I f the f i rst bui l d curvature on ou

    Cos 4AZ ~

    o .

    (lo)

    ?xampl e were actual l y 8. 6°/100 ft the pl ann

    si n 11 si n 12

    second bui l d hei ght woul d be 1S5. 9 ft .

    I f th

    second bui l d actual l y bui l ds at 8.3”/100 f t

    the actual second bui l d hei ght woul d be 161. 5 ft

    Bv

    whi ch i s 5. 6 ft l ower than pl anned. If a si ng

    cos~=—

    . , *. . . . . . . . .

    (11) curvew thout a tangent had been used, an error o

    8T

    .3’ / 100 f t woul d have mssed the target by 2

    feet.

    Lastl y, the appropri ateequati ons for the strai ght

    Sel e~$i ng the appropri ate tangent l epqth i s ve

    adj ustment i nterval sare:

    i mportant because few of the tan~ent dri l l i

    assembl i es actual l y dri l l at constant angl e

    Fortunatel y, i t i s not necessary to dr i l l a ta

    V- L. COSI ,   , , , . , , . . ,

    (12)

    gent i nterval at a constant angl e provi dedone

    a good j udgement of the f i nal angl e at the bi

    The mni mum recommended l ength of the tange

    H- L

     si n I . , . . . . . . . . .

    (13)

    i nterval i s 120 f t . Thi s i s basedon the typi c

    NUD survey spaci ngand the desi rabi l i tyofmni mz

    i ng the tangent l ength.

    Ui th a typi cal steerab

    J he Swe Tanaent Bui l d Cur e MD package used for dri l l i ng the tanger, ti nte

    The ol dest and most w del y used bui l d curvedesi gn

    val , the HUD i ncli nati onsensor w l l be posit i or

    about 60 f t above the bi t . Assumng one tak

    i s the si mpl e tangent bui l d curve. Fi gure 3 i s a

    surveys at 30 ft spaci ng, the survey . f the f i r

    sket ch of a typi cal simple tangent bui l d curve. 30 f t of the tangent i nterval i s not avai l ab

    The simpl e tangent bui l d curve di vi des the bui l d

    unt i l 90 f t of t he t angent sect i on has be

    arc i nto two segments that are separated by a

    drt l l ed.

    At thi s poi nt onl y one t hi r d of t

    strai ght ‘ tangent” adj ustment i nterval .

    I t

    iS

    tangent i nterval has been surveyed and that po

    general l y assumed that both bui l d curve segments

    t i on w l l al so i ncl ude any t ransi t i on af f ec

    w l l be dri l l ed w th the same angl e-bui l dmotor

    caused by pl aci ng the angl e-hol di ng steerab

    assembl y and that the rate of bui l d i n the second

    bui l d w l l al so equal the rate of bui l d exper i -

    motor assembl y i n the bott omof the hi ghl y curv

    angl e- bui l dport i on ‘ ~f the hol e.

    After dri l l i

    , encedwhi l e dri l l i ngt he f i rst bui l d segment.

    120 f t of sect i on, %e deepest ND survey w

    The concept for the si mpl e tangent bui l d curve

    provi dedata on the fi rst hal f of the 120 ft i nte

    val , Si nce we must predi ct the angl e at the b

    comes fr om the observati ons’that an angl e- bui l d

    i n order to correctl y J udge the depth at whi ch

    motor w l l gi ve hi ghl y consi stent curvatureperf or-

    start the second bui l d i nterval , we must extrap

    mance on a gi ven wel l in a speci f i c area, even l ate the performancemeasured above the NW sens

    though i ts performance may vary si gni fi cantl y

    to the bi t.

    between wel l s w th di f ferent target formati ons or

    i n other areas, Ui th thi s desi gn, the operator

    The fi nal sel ecti on i n. a si mpl e tangent bui l d

    uti l i zes the observed bui l d curvature i n the fi rst

    bui l d to cal cul ate the most l i kel y hei ght of the

    curve desi gn i s the angl e for the tangent fnte

    val .

    One of the most consnanchoi ces i s 45

    secondbui l d and f romthat the requi red l engthof Wth the tangent at 45”, the end of the cur

    the tangent i nterval and depth of the secondki ck- fal l s at the same posi t i on regardl ess of t

    of f poi nt . Thi s reduces the error i n hi tt ing the

    curvatureof the angl e bui l d port i ons of the hol e

    end of curve target to the rel ati vel ysmal l di ff er-

    ence between the actual and predi cted hei ghts of I ncreasi ng the tangent angl e l owers both t

    the second bui l d curve.

    To be successful w th

    hei ght and the magni tude of the potenti al error

    thi s techni que, i t i s essent ial that the ki ckof f the secondbui ld.

    The hei ght of the second bui

    poi nt and the pl annedbui l d curve be desi gned ~5\ reases rapi dl y as YC. i ncreasethe angl e abo

    usi ng the l owest possi bl e bui l d rate for the se-

    For exampl e, t he hei ght of a secon

    l ectedangl e- bui l dmotor assembl y. bui i d at 8“/ 100 f t decreases f rom209 f t for

    45* tangent to 96 f t w th a 60” tangent

    Tabl e 2 shows the step by step cal cul ati ons re- Pl aci ng the tangents at angl es greater th

    qui red to cal cul ate the dimensi ons of the bui l d 45* i ncreases the l ength of the hol e and t

    curve desi gn shm i n Fi gure 3. The key deci si ons

    di spl acement of the end of the curve.

    I t al

    requi redof the desi gner are the curvature rates,

    the angl e of the tangent i nterval and the l ength

    makes the l ength and di spl acementsensi t i ve to t

    actual curvatures i n the fi rst and second bui

    of the tangent i nterval .

    The desi gn bui l d rate

    These consi derati ons make tangent angl es abo

    must be no greater than the mni mumexpectedbui l d 60° unacceptabl e.

    One other consi derati on

    r at e f or t he angl e- bui l dmotor sel ect ed. choosi ng the posi t i on of t he t angent i nt er val

    to provi de the abi l i ty to i ntersect any crtt i

    I f the actual bui l d rate i n the f i el d exceeds the structural markers i n the tangent i nterval so t

    pl anned (m ni mum rate, the l ength of the tangent

    one can adj ust the second bui l d ki ckof f po

    . -

    48

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    4/15

    4

    HORI ZONTALWELL PLANNI NG- BUI LDCURVEDESIGN

    NMTECH890008

    based on the actual observedposi ti on i n the stra-

    remaini ng height,

    The bui l d turn i nterval al so

    ti graphi ccol umn.

    has a greater total curvaturethan the bui l d of a

    simpl e tangent desi gn, however, the i ncrease is

    not l arge, For the exampl e case, the total dogl eg

    A ComDl eLLanaent Bui l dCurve

    i n the bui l d curve i s onl y 10%l arger than for a

    compl eti ngsi mpl etangent desi gn.

    The compl ex tangent bui l d curve provi des the next

    l ogi cal step i n control l i ngthe accuracy of hi t- Thl s desi tn has i ts greatest appl i cati onfor hor~-

    t i ng a smal l TVD t ar get .

    A typi cal compl ex

    tangent bui l d curve design i s shown i n Fi gure 4.

    zontal hol es that are dr i l l ed to a st ructural

    target . I t i s qui te useful when the f i nal target

    The desi gn cal cul at ions for the exampl e are

    posi ti on i s defi nedby the tops of formati onsthat

    i ncl udedi n Tabl e 3.

    For thi s bui l d curve desi gn,

    ar e l ocat ed w thi n t he second bui l d cur ve.

    one uti l i zes the fi rst bui l d i nterval to establ i sh

    Al thoughone can cert ai nl y not make l arge correc-

    the perf ormance l evel s of the angl e- bui l dmotor

    ti ons, the si ze of the adj ustment can be si gni f i-

    sel ect ed f or t he j ob j ust as i s done w t h t he

    cant. For exampl e, i n our 6- 1/ 2’ / 100 f t

    si mpl e tangent method.

    However, i nsteadof usi ng

    design bui l d case, we w l l r each 70’ when we

    thi s same curvature i n sel ecti ngthe ki ckoff poi nt

    are 53 ft above the hori zontal target.

    At that

    for the second bui l d curve, the concept i s to use

    point , i t i s possi bl e to reach the hor i zontal

    a l ower desi gn rate than was actual l y experi enced

    target w th our maxi mum 8“/100 f t bui l d rate

    i n the upper part of the hol e,

    i n a vert ical hei ght of onl y 43 f t by turni ngthe

    tool face strai ght up. Thi s woul d al l owa 10 ft

    I n the exampl e case, he have desi gned the fi rst

    upward verti cal adj ustment fr omonl y 53 ft above

    bui l d at the expected mni mum rate of

    the target. I t i s al so possi bl eto achi evedown-

    8“/100 f t and desi gned the second bui l d w th a

    ward target adj ustments byi ncreasi ng the tool f ace

    bui l d rat e that i s 1. 5*/ l CO f t l ess than t he angl e.

    f i r st bui l d rate or 6-1/2° / 100 f t .

    One of the

    key concepts of thi s techni que i s that the l ower

    The compl ex bui l d curve provi des a trade- off be-

    Wgn rate for the second bui l d can be obtai ned

    tween target TVD accuracy and target posi ti onand

    c

    the same angl e-bui l d motor as the f i rst

    di recti on,

    Tabl e 4 summari zes the eff ect of the

    bui l by or ient ing the tool f ace to the r ight or

    tr ade- of f s.

    To use thi s design most eff ecti vel y,

    l ef t of vert i cal .

    The 6-1/ 2’ / 100 ft vert i cal

    the wel l desi gner needs to establ i sh a greater

    bui l d rate can be obtai ned from the 8“/100 f t

    l ati tude i n end of curve di spl acement and di rec-

    angl e-bui l dtool used i n the f i rst bui l d by turn-

    t i on t o maxim ze t he cont rol of t he ver ti cal

    i ng the tool f ace of the angl e- bui l d motor to

    target.

    35” l eft or r i ght of vert i cal ,

    The wel l could be desi gned to pl ace al l of t he I t LQdeal Bui l dCurve

    t urn i n one di r ect i on i f t hat were desi r ed.

    However, i n most si tuati ons i t i s better to turn

    The i deal bui l dcurve i s shown i n Fi gure5. I t i s

    t he wel l t o ei t her t he l ef t or r i ght f or about

    si mpl y a compl ex bui l d curve w thout a tangent

    hal f of the second bui l d and then i n the opposi te

    i nterval ,

    I t coul d therefore be dr i l l ed w th a

    di rect i onf or the f i nal hal f .

    In

    our exampl e we si ngl eangl e- bui l dmotor run unl ess l i mt edby the

    chose to turn the wel l l ef t for the f i rst hal f and

    bi t l i f e.

    Obvi ousl y thi s woul d provi de the l owest

    ri ght for the second hal f. Thi s strategyproduces

    cost method for dri l l i ng a bui l d curve.

    I t woul d

    a change i n azimut h of 16, 8’ t o t he l ef t f ol -

    al so requi re that the expected range of perfor-

    l owed by a turn to t he ri ght of 14. 7”.

    The

    mance of the angl e-bui l dtool woul d be l ess than

    approxi matevert i cal secti on and other key di men-

    coul d be absorbed by the adj ustment of tool face

    sions of the second bui l d can be computed using

    angl e whi l e dr i l l i ng the second bui l d and turn

    thebui l d turn equati ons5 through11.

    secti on, Al thoughwe can probabl ynot predi ct the

    bui l d rate perf ormanceof angl e- bui l dmotors pre-

    The compl exbui l d curve desi gn i s not i ntendedto

    cisel y enough to use the I deal bui l d curve on the

    produce a strai ght wel l bore path but to provi de

    fi rst wel l i n an area, i t shoul dbe considered.for

    the dr i l l er w th the abi l i ty to adj ust the curva-

    the secondor thi rdwel l i n an area,

    ture rate both upward and downward whi 1e dri 11i ng

    the second bui l d curve, Compari ng thi s exampl e

    w th the exampl eof the simpl e tangent bui l d curve

    J Oaue and Drag

    shows some of the advantagesand di sadvantagesof

    thi s desi gn, The greatest di sadvantageof thi s

    Af ter one has desi gnedthe opti mumbui l d curve f or

    desi gn i s that the l ength, hei ght and di spl acement the wel l , one of the next questi ons i s howf ar CGFI

    of the second bui l d are i ncreased The l ength of

    you dri l l hori zontal l y, The probl emnow shi fts

    the second bui l d i s i ncreased f r om 500 f t t o

    fr omdi recti onal control to torqi i s~nd drag, I rIa

    615 f t . The height i s i ncreased f r om168 f t t o

    206 ft , and the di spl acement l ength i s i ncreased

    gi ven hol e, the maxi mum hori zontal l ength i s

    from460 ft to 567 ft , The pri ncipal advantageof

    reachedor perhaps exceededwhenyou can no l onger

    rotate the pi pe or suf f i ci ent ly l oad the bi t to

    t hi s desi gn i s t hat t he act ual hei ght of t he

    dr i l l .

    Tabl e 5 1i sts the current record hori zon-

    second bui l d curve can be adj usted both up and

    tal l engths as a funct i onof hol e si ze and bui l d

    down.

    The maximumvert i cal adj ustment i s as much

    curvature rates.

    Al though we do not know how

    as 38 f t upward i f t he change i s known at the

    begi nni ngof the second bui l d curve. Thi s woul d

    cl ose these record l engths were to the l i mts, i t

    i s assur ingto real i ze that the l i mt i s not l ess

    provi de a maximumhei ght adj ustment of 18%of the

    than these l engths,

    The wel 1 desi gner needs to

    - .

     

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    5/15

    .

    t

    SPE20150

    NMTECH890008

    FRANKJ . SCHUH

    I

    understandthe torque and drag consequencesof hl s

    al ter~atedesi gnchoi ces.

    One sol uti on adopted by many operators on thei r

    f i rst attempt i s to pl an for a hor izontal l ength

    on the l ow side of the spect rum

    That concept

    w l l pr obabl y gener at e 500 f t as super saf e,

    1, 000 ft as reasonabl e, 2, 000 ft as aggressi ve,

    and 4, 000 f t woul d equal the record.

    If

    one stays

    under the 2,000 ft mark, i t i s unl i kel y that true

    torque and drag l i mt s w l l be reached. Operati on-

    al probl ems w th torque or drag i n thi s l ength

    woul d i ndi cate some other probl emsuch as cutt i ngs

    accumul ati onor wal l sti cki ng. However, to opti -

    mze the cost of hori zontal hol es, one must come

    t o gri ps w t h t he t rue l i m ts. Tabl e 6 l i st s t he

    most i mportant factors aff ecti ng the torque and

    drag l i mts.

    I

    To pl an for 2,000 ft hor i zontal wel l l ength, i t i s

    probabl y necessary to consi der the torque and

    drag.

    The torque and drag anal ysi s must i ncl ude

    predi cti onsof the torque and drag whi l e rotati ng

    off bottom dri l l i ngw th surfacerotati on, dri l l -

    i ng whi l e steeri nga down hol e motor, and the drag

    forces whi l e tr i ppi ng.

    It

    ts al so i mportant to

    know the stresses on the dri l l stri ng components

    due to the curvatureof the hol e and these l oads.

    There are a number of propri etary and commerci al

    torque and drag computer model s that can be used

    to prepare the best possi bl e estimates of torque

    and drag for a hor i zontal hol e.

    If

    the wel l

    course i s qui te compl ex or i f the wel l i s a combi -

    nat ion di rect ional wel l w th a shal l ow ki ckcf f

    poi nt and a l ong tangent secti on, these programs

    of f er the onl y reasonabl emethod for anal yzi ngthe

    probl em However, for a typi cal on- shore hori zon-

    t al hol e t hat uses a deep ki ckof f poi nt and a

    rel ati vel ycompact bui l d curve, i t i s possi bl e to

    esti mate the torque and drag usi ng some rel ati vel y

    si mpl eapproxi mati ons.

    I f one assumes that:

    I

    o The bui l d cur ve can be r epr esent ed by a

    si mpl e90° arc.

    I

    o The same si ze and wei ght of pi pe are used

    throughout the bui l d curve.

    o The hol e i s approxi matel yhori zontal .

    o None of the pipe in the hor i zontal hol e i s

    buckl ed. (See Appendi x 2) .

    o The coef f i ci ent of f r i ct i on i s equal to .33.

    I

    The torque and drag rel ati onshi ps can be reason-

    abl y approxi matedby the fol l ow ngrel ati onshi ps.

    1

    Torquef or the pi pe i n the hori zontal hol e i s:

    1

    I

    OD* Um*L

    Th. _

    . . . . . .   . .

    (14)

    72

    The torque for rotat i ng pfpe in the 90” bui l d

    depends on the magni tude of the axi al force ap-

    pl i ed to the end of the curve. Mhi l e dr i l l i ng a

    hori zontal hol e w th surface rotati on, the axi al

    f orce at t he end of the curve i s equal t

    wei ght on the bi t.

    ForU08c . 33 . I i m R:

    I

    OD

    Q

    Wm

    R

    Tb =

    . , . . * . . . . .

    (

    72

    I

    I

    ForUOB> . 33 wUrn“ R:

    oo.wm” R OD o UOB

    Tb =

    .—

    +—

    . . . . (

    1+4 46

    For exampl e, l ets consider a hori zontal hol

    a bui l d curve radi us of 850 f t and a hor

    l ength of 1,000 f t .

    Uhat i s the torque

    rotat ing of f bot tomw th 30,000 l b on th

    Assumng that we are usi ng 9.2 l b/ gal mu

    5 i n. Hevi wate dr i l l pi pe throughout the

    curve and hori zontal i nterval , the buoyant

    of t he pi pe i s Urn= . 86   50 l b/ f t .

    The

    i n the hori zontal part of the hol e woul d be:

    6. 5   ( . 86 “ 50) “ 1000

    Th =

    72

    I

    Th = 3, 882 ft- l bf.

    I

    The torque i n the bui l d curve whi l e rotat

    ~gttomwhen UOB =

    O i s cal cul ated frome

    I

    la

    I

    81

    6.5 “ ( .86 “ 50)

     

    850

    Tb =

    144

    I

    Tb = 1650 ft- l bf.

    The total torque rotati ngoff bott omi s:

    T=Th+Tb . . . . .. . o- . - . . . - . zo~

    T =3882+ 1650= 5532 ft - l bf

    Ui th 30, 000 l b on the bi t, the force at the

    the curve exceeds . 33 . U   R and the to

    thebui l d curve i s cal cul a~edf romequati on

    6. 5

     

    (. 86 “ 50)

    . 850 6. 5

     

    30, 0

    Tb =

    +’

    144

    46

    I

    Tb= 5, 889 ft- l bf.

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    6/15

    =20150

    6

    HORIZONTALWELL PLANNI NG- BUI LDCURVE DESIGN

    MHTECH8

    ;~~ ~~otal torque rotati ng w th 30, 000 l b on the

    :

    T= Th+Tb

    T- 3, 882+ 5, 889 = 9, 771 ft- l bf

    The axi al drag whi l e l oweri ng the pi pe on a tri p

    or whi l o steeri ng w th a downhol e motor can be

    cal cul at~df romthe fol l ow ngapproxi mat i ons.

    For

    the pi pe i n the hori zontal hol e, the axi al drag i s

    gi venby:

    I

    % = . 33* Mm”L . . . . . . . . . (18)

    The drag f or t he pi pe i n the bui l d curve i s a

    functi onof the axi al force on the pi pe at the end

    of the curve as i t enter s the hor i zontal hol e.

    Thi s force i s equal to the wei ght on the bi t pl us

    the drag of the pi pe i n the hor i zontal .

    I f the

    bottomhol e assembl y i s expectedto provi de si gni f -

    i cant st abi l i zer drag, t hi s f or ce shoul d be

    i ncl udedin the end of curve force. Thi s force at

    the end of the curve i s gi ven by:

    Fo=Dh+U06+f3HA . . . . . . . . (19)

    I

    The drag for the pi pe i n the bui l d curve i s depen-

    dent on the magni tude of the axi al force at the

    end of the curve.

    I f Fo. 25. Wm”R:

    Db =

    .25 .

    Wm“

    R+. 69. F0 . . . . (21)

    The drag for the exampl e wel l descri bed above

    whi l e dri l l i ng w t h 30, 000 l b bi t l oad i n the

    steeri ngmode i s cal cul atedas fol l ows:

    (. 86   50) . 1000

    Dh =

    3

    oh= 14, 3331b

    Fo= 14, 333+30, 000

    F. = 44, 333 l b

    .250WM0 R= .Z5

     

    (. 86

     

    50) +850

    . 25 s Wm  

    R= 9, 1381b

    Therefore: F. > . 25 “ Wm s R

    (. 86   50)   850

    Db =

    + . 69 +44, 333

    4

    Db=9, ]37 +30, 390

    Db = 39, 727 l b

    The total drag i s:

    D=Dh+Db . . . . . . . . . . . . (22)

    D= 14, 333+39, 727

    D = 54, 960 l b

    To dr i l l w t h 30, 000 l b, i t w l l be necessa

    sl ack off the bi t l oad pl ’ {sthe drag or 84, 0

    i n thi s exampl e.

    To cal cul ate the hoi st ing drag, the steps

    qui te si ml ar.

    The drag i n the hori zontal po

    of the hol e i s gi ven by:

    Dh =

    . 33” WM”L . . . . . . . . . . (18

    The tensi l e drag i n the bui l d Interval i s a

    ti on of the tensi l e l oad on the pi pe at the e

    the curve.

    Thi s force i s equal to the fr i ct

    drag for the pi pe i n the hori zontal i nterval

    any nongravi ty fri cti onal l oads such as mgh

    caused by stabi l i zer hangi ng or other such

    fects.

    The drag around the bui l d curve i s c

    l atedas fol l ows:

    Fot=Dh+BHA . . . . . . . . . . . (23)

    I f Fot. 85. Wm~R

    Dbt=. 69* Fot- . 25. i fm*R . . . (25)

    These rel ati onshi ps can be used to esti mat

    magni tude of torque and drag for most hori z

    wel l desi gns. When these eval uati ons are co

    w th an anal ysi s of the cr i t i cal buckl i ng

    i ncludedi n Appendi x B, i t i s possi bl eto eva

    the aff ect on torque and drag by changi ng c

    nents i n the hori zontal dri l l stri ng. Reducin

    wei ght of the pi pe i n the hori zontal w l l dec

    torque and compressi vedrag as l ong as the l i

    pi pe does not buckl e. I f condi ti onsdi ctate

    buckl i ng w l l occur , the anal ysi s need go

    beyondthese si mpl e rel ati onshi ps.

    52

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    7/15

    .

    NMTECH890008

    FRANKJ . SCHUH

    SPE 20150

    v

    I -1’’””

    B

    BT

    Bv

    BHA

    o

    Db

    ‘ b’

    Dh

    DL

    F.

    Fot

    H

    11

    12

    L

    OD

    R

    Rv

    T

    Tb

    Th

    v

    Um

    UOB

    Bui l d Rate (“/100f t) .

    Total curvature for bui l d- turn segment,

    (’/100 f’) .

    Verti cal bui l d rate for bui l d-turn seg-

    ment, (“/ 100f t) .

    Nongravi ty i nduced axi al f ri cti onal force

    i n the bott omhol e assembl y, (l bf ).

    Total drag (l bf).

    Compressi ve Drag i n the bui l d curve,

    ( l bf) .

    Tensil edrag i n the bui l d, (l bf).

    Axi al drag whi l e pul l i ng or l oweri ng the

    pipe in the hor i zontal por ti on of the

    hol e w thout rotati on, (1bf) .

    Total dogl eg i n a bui l d-turn segment,

    (deg) .

    The axi al compressive force on the pi pe

    at the end of the curve, ( l bf) .

    Axi al tensi on at the end of the curve,

    ( l bf) .

    Di spl acement, ( f t) .

    I ni ti al i ncl i nati onangl e, (deg).

    Fi nal i ncl i nati onangl e, (deg).

    Length of hol e or pi pe segment, (f t) .

    Outsi de di ameter of the tool j oi nt s,

    (i n).

    Bui l d radi us of a segment or the overal1

    bui l d curve radi us for torque and drt ig

    esti mate, (f t) .

    Vert i cal bui l d radi us,

    Total torque (f tOl bf ).

    Rotat ing torque i n

    (ft- l bf)

    (ft).

    the bui l d curve,

    Rotati ng torque for pi pe i n a hori zontal

    porti onof the hol e, (ft. l bf) .

    Verti cal hei ght, (f t).

    The averaoe buoyant wei ~ht of the Di ne

    .

    ( i bmft).-

    Wei ght on bi t,

    Azi muthchange,

    Tool faceangl e,

    l bf) .

    (deg) .

    (deg) .

    I ‘eferences

    1.

    Oawson, Rapi er; Exxon Producti on Research

    and Pasl ay, P. P. ; Consul t ant : ‘ Dri l l

    Buckl i ngi n I ncl i nedHol es, ” J PT, (Oct. 1984

    2. Mori tes, Guntes:

    Worl dw de Hori zontal Dri l

    Surges,” Oi l & Gas J ournal , (Feb. 27, 1989).

    AppENDI XA

    J oraue and D aa ADorox

    i mati ons for A Uni f ormB

    Q &

    Let: D=

    F=

    f .

    1=

    R=

    T=

    w

    Fc =

    F. =

    OD =

    AT=

    Tnol j oi nt OD, ( i n. ) .

    Axi al f or ce on the pipe at any poin

    the curve.

    Coeff i ci ent of fri cti on.

    Angl e of hol e above hori zontal .

    I =0 atend of curve, (hori zontal ) .

    I =90” at KOP i n radi us.

    Radi us of bui l d curve, (f t) .

    Torque i n the bui l d curve.

    Uni t buoyant wei ght of the pi pe i n

    curve, (l b/ ft) .

    Lateral contact f orce i n curve,

    ( l b/ f t ) .

    Ax~~oompressi ve f orce on the pi pe at

    .

    Tool j oi nt OD i n bui l dcurve, (ft) .

    Torque producedal ong_a A@1ength

    el ement of pi pe, (ft l b).

    For these deri vati ons i t i s more useful to de

    the coordi nate systemfor angl e as begi nni ng

    zero at the hori zontal end af curve Dosi ti on

    90’ as the angl e for the

    poi nt.

    vert ical ki ck

    The torque produced al ong an

    pi pe i n a ci rcul ar bui l dcurve

    el emental l engt

    i s gi ven by:

    [1

    T=f~ABS;+wcos I A . . .

    (A-

    2

    The force at any poi nt al ong the bui l d curv

    gi venby:

    F. Fa

    -wsi nI . . . . , . . . .

    (A-

    Combi ni ngA- 1 and A-2:

    5$

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    8/15

    sPE20~50

    8

    HORI ZONTALUELL PLANNI NG- BUI LDCURVE DESIGN

    NNTECH89

    AT= f~ABS

    [

    F.

     

    -wsin I+wcos IA4 “

    2R

    . .,.

    .(A-3)

    For a Ci rcul ar bui l d arc:

    A4= R.

    AI.......,..

    . . (A- 4)

    Substi tuti ngA- 4 i n A-3 and rearranging to a dimen-

    si onl essform

    AT

    [

    F.

    =l ABS—

     

    i n I + cos I AI

    f , D. w~R 2 WOR

    . . . . . (A- 5)

    T

    =

    f*D.w R

    I=x/2 1

    [

    F.

    ~-ABS—

     

    in i + cos I AI

    1=0 2 w . R

    . . . . . (A-6)

    Usi ng an i terati venumeri cal procedure, we sol ved

    equati on A-6 i n terms of (F~wR) and pl otted the

    resul ts i n Fi g. 5.

    I n l i ght of the signi f i c ant uncer tai nt y in the

    magni tude of the fri cti on factor and radi us, we

    bel i eve that these resul t s can be adequatel y

    approxi mated by the two strai ght dashed l i nes

    shown on the f i gure.

    The resul t i ngapproxi mati on

    i n equati onf ormi s gi ven by:

    ForFocw

     

    R/ 3

    T=(f . D”w*R) / 2 . . . . . . . (A- 7)

    Fo>w*R/ 3

    UOB>. 33” WM*R

    OD.WOR OD*WOB

    Tb =——

    +—

    . . (A-1O)

    144 46””

    Compressi veDrag, whi l e dri l l i ng i n the steer

    mode or whi l e l oweri ngthe pi pe i n the hol e:

    l et Ft = force at the top of the curve.

    The change i n axi al force al ong the sl i di ng p

    i n a ci rcul ar bui l d curve i s gi ven by:

     

    F=f . ABS~

    +wcos IAi -w( si n I ) *A@

    R

    . . . . .

    (A-n)

    The axi al force at any poi nt i n the bui l dcurve

    al soaf fectedby the axi al drag bel owthat poi nt

    Fi =Fi - l +AF . . . . . . . . . . (A- 129

    At the bottomof the curve where I = O the axi al

    forcei s:

    Fi =o=Fo . . . . . . . . . . . . (A-13)

    Substi tuti ngfor At and di vi di ng to make the for

    di mensi onl essgi ves:

    ~“f

    “ABs[:+csin

    . . . . .

    (A-14)

    Ft

    [

    I=fi/2 Fi

    —+= ~:.

    WOR

    w R

     

    .

    F.

    T=(f . OD.w R)/ 4+ . . (A- 8)

    4-w*R

    f “ABs[A+cOsl l A1” (si nl ) “AII

    . . . . .

    (A- 15

    In oi l f i el duni ts for f= .33and WOB = F. these

    become:

    I

    The drag forceDf i n the bui l d curve i s gi ven by

    woBc.33. wm”R

    I

    Of

    t

    - Fo+w

     

    R.. . . . . . . . . . . . . . . . . . (A-16

    OD* WM* I

    Tb =

    . . . (A- 9)

    Di vi di ng by w o R to make the sol ut i

    72- ’ ’ ”””’

    di mensi onl ess:

    54

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    9/15

    .

    b

    SPE20~50

    NMTECH890008

    FRANKJ . SCHUH

    .

    Df Ft F. Pi Ft

    F.

    —=— .

    —+1 . .

    . (A-17) ,

    —“—

    — 1. . . .

    (A- 26)

    w*R

    w-R WOR

    w-R

    wok w*R

    Usi ng an i terati venumeri cal procedure, we pre

    The numerical sol ut ion for the tensi l e drag

    f ared the pl ot of (Df /wR) ver sus ( F~wR) f or

    = . 33 shown i n Fi g, 7.

    showni n Fi g 8 for f = .33.

    The approxi mati onfor tensi l e drag i s shown by t

    The approxi mat i on shown by the dashed l i nes i n dashedl i nes i n Fi b. 8 and i noi l f i el duni ts i s:

    Fi g. 7 i s oi l f i el d uni t s f or f= . 33 i s:

    for Fot < .85 “ Urn. R:

    For Fot < .25 . Urn

     

    R:

    Df=, 4. Wm*R . . . . . . . . . (A- 18)

    o~t = . 33. UmOR . . . . . . . . (A- 27)

    ForFo>.85*w *R:

    ForFo> . 25 “ Wm

     

    R:

    Dbt=.69. Fot- . 25” Wm”R

    . . ( A- 28)

    Df = .25 c Um  

    R+ . 69 “ F. . . . (A- 19)

    To sol ve f or t he t ensi l e dr ag ( pul l i ng out of

    hol e) :

    l et F. = tensi l ef orce at end of curve.

    [

    Fi

    AF=f*ABS- . - wcos I

    1

    .A@+w(si n I )”Ae

    l R

    . ..-

    “=f“ABs[A-cOsll

    ~+@i~~AI

    *K

    .

    . . . .

    (A- 21)

    tkwn

    dix 4

    Torque and drag force approxi mati onsf or the hor

    zontal porti on of a hol e assume that none of t

    pi pe i s buckl ed.

    Cri t i cal buckl i ng force for a pi pe i n hori zon

    hol ewas deri vedby Dawsoni .

    [

    1

    “I ” Umsinel ’ 2

    FC=2

    . . . . .

    (B-1)

    12.r

    Fc = cri ti cal buckl i ngforce, (l b).

    Where:

    Fi =Fi . l +AF . . . . . . . . . . ( ’ - 22)

    E = 29.6

     

    10s psi steel .

    Fi =O=Fo . . . . . . . . . . . . . (A- 23)

    I =momentof i nerti a, (i nt).

    f ‘ABs[A-cOsllA’+si”r

    A

    . ...

    (A- 24)

    The tensi l edrag force Df

    IS P;ien b’:

    Df=Ft- Fo-w *I i . , . . . . . (A- 25~

    I ndi mensi onl essf ormi t becomes:

    urn=buoyant wei ght of pi pe, (l b/ f t] ,

    [1

    5. 5 - MU

    Wm= Wa

    65.5

    . . . . . . .

    (B-2)

    Ua = averagewei ght of pi pe and tool j oi nts

    i n ai r , ( l b/ f t ).

    NW= Mud densi ty, ( l b/ gal ) .

    r = radi al cl earancebetweenpipe and hol e,

    (i n).

    There has been consi derabl econcernover the app

    pr iate radi al cl earance to use w th coupl ed

    tool j oi nted pi pe.

    If

    the pi tch of the buck

    pi pe i s I &rge compared to the di stance betw

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    10/15

    sPE 20150

    10

    HORI ZONTALUELL PLANNI NG- BUI LDCURVE DESIGN

    NNTECH

    tool j oi nts the radj al cl earance i s ~sfi ned by the

    t ool j oi nt 011 r at her t han t he OD of t he pi pe

    body.

    Si nc&thi s i s general l y the case for. hori -

    zontal dri l l i ng appl i cati onswe defi ne the radi al

    cl earanceas:

    r= (Dh - Dt j ) / 2. . . . . . . . . . . . . . . . . . .+ . . . (B-3)

    O = hol e angl e 90” for hori zontal hol e

    Dh=di ameter of hol e, (i n).

    Dtj =di ameter of tool j oi nt, ( i n. ).

    I n oi l fi el duni ts for a hori zontal hol e:

    [

    1

     

    (25.5 - Mu)1’2

    Fc=550. l“ua

    . . (8-4)

    Dh - Dtj

    Torque for rotati ng nonl wckl ed pi pe i n a strai ght

    i ncl i nedhol e:

    OD . Wm .

    L+fsi nO

    T=

    . . . . .

    (B- 5)

    24

    T = torque, (f t l bs) .

    I n oi l f i el duni ts w th f= .33 and for a hor izontal

    hol e:

    OD wWm“ L

    T.

    . . . . . . . . . . (B- 6)

    72

    Axi al drag for pul l i ng or pushi ng nonbuckl edpi pe

    i n a strai ght i ncl i nedhol e:

    D=Hm  L. f ”si n9 . . . . .

    . (B-7)

    Where:

    D= drag force, (l b).

    I n oi l f i el d uni ts f or a hori zontal hol e w t h

    f = . 33:

    Dh=. 33~ti m*L . . . . . . . . . (B- 8)

    WVATUREJMIIS

    o Rotate conventi onal steeri ngtool s 3- 4’ / 1

    o Rotate nonmagdri l l col l ars

    6- 7”/1

    o Use conventi onal producti ontool s

    10”/1

    o Rotate 5“ Heviwate drill pi pe

    12-15”/ 1

    o Motor dri l l i ngw thout rotati on

    30+”/ 1

    PLF

    TANGE~

    Gi ven:

    Expected angle bui l d per formance,

    9. 5’ / 100f t.

    M ni mumtangent l ength, 120 f t.

    Tangent angl e, 50’ .

    Target angl e 90” at 9000 f t TVD.

    Sol uti on:

    Use the mni mumexpected bui l d rate to pl

    bui l dcurve.

    Use the same bui l d r ate for f i r st bui

    secondbui l d i nterval s.

    5730 5730

    Bui l dradi us: R=

    —=—=716f t

    B8

    Hei ght f i rst bui l d:

    V=R. (si n I z- s

    V-716 “ (si n50-

    Hei ght of tangent:

    V=L” COSI

    n 11)

    si nO) = 549 f t

    v= 120

     

    Cos (50) = 77 ft

    Hei ght of secondbui l d:

    V= 716 . ( si n90 - si n 50)= 168f t

    KOP= 9000 - 349 - 77 - 168 =8,206 ft

    m

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    11/15

    .

    SPE20150

    N?4TECH890008

    FRANKJ . SCHUH

    .

    Di spl acement, f i rst bui l d:

    I

    Pl annedhei ght of bui l d curve:

    ti =R

     

    COS

    It -

    COS 12}

    549+ 77 + 168 = ?94 ft

    H= 716

     

    (eos O - cos 50) =256 f t

    I

    Requi redTangent Hei ght:

    Di spl acementof tangent:

    I

    794- 603 = 191 ft

    H= L. si n I

    Lengthof Tangent:

    H=120. si n50=92ft

    Di spl acementof secondbui l d:

    H- 716 .

     COS so - COS

    90) =460f t

    v

    191

    L. —=

    — = 297 f t

    Cos 1

    Cos 50

    Lengthof fi rst bui l d:

    I

    LEXTANGM EXANPLEPROB~

    100   (12 - rl )

    L.

    8

    GI VEN:

    10G   (50 - O)

    Expectedangl e bui l d perf ormance

    L=

    8 to 9. 5’ / 100ft.

    = 625 ft

    8

    Mni mumtangent l ength - 120 f t.

    Tangent angl e - 50”.

    Lengthof secondbui l d:

    Target angl e 90” at 9, 000 f t.

    100   (90 - 50)

    L=

    Second bui l d 1. 5°/ 100 f t l ess than t

    = 500 ft

    8

    f i rst bui l d

    NeasuredDepths:

    SOLUTI ON

    Atend of f i r st bui l d: 8206 + 625 = 8831 f t

    Use the 8° /100 f t mni mum expected bui

    rate for the f i rst bui l d.

    At end of t angent : 8831+ 120= 8951 f t

    I

    Use 8 - 1. 5 = 6. 5°/ 100f t for secondbui l d.

    At end of secondbui l d: 8951 + 500 = 9451 ft

    I f bui l d rate i s 9. 5”/ 100 f t, how l ong i s the

    tangent secti on?

    5730

    Bui l d r adi us: R=— =603 f t

    9. 5

    Hei ght fi rst bui l d:

    603 (sin50 -

    si n O) = 462 f t

    Hei ght secondbui l d:

    603 (sin90 -

    si n 50) =J m

    Total 603 f t

    Fi rst bui l d radi us:

    5730 5730

    R1 =

    —=—=716f t

    68

    5730 5730

    R2=— -

    —=882ft

    B

    6.5

    Hei ght fi rst bui l d:

    V-R . (si n 12 - si n I i )

    V =716 . ( si n 50 - si n O) = 549 f t

    Hei ght of tangent:

    VmL. coSI=120. coS51)= 77f t

    97

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    12/15

    SPE 20150

    12

    l i OR120NTALNELL PLANNI NG-

    WI1O

    CURVEOESI GN

    MMTECH890008

    Hei ght of secondbui I d:

    V

     

    882 s (si n90 - sl n 50)

     

    206 f t “

    KOPR 9,000 - 549 - 77 - 206 ~8,168 ft

    Di spl acementf i rst bui l d:

    H=R ~

     COS Ii

     

    COS Iz

    H=

    716 *

     COS

    O “

    COS

    50) = 256 ft

    Di spl acementt angent:

    H= Losl n In120. stn50=92f t

    Di spl acementof second8ui l d:

    H= 882 ~

     COS

    50- COS 90) =567 ft

    Lengthof fi rst bui l d:

    cos

    DL -

    Cos 11 * Cos 12

    cosAAZ=

    sl rr11si n 12

    AA = arc ~os COS 49, 23 -

    COS

    50

    X COS

    90

    z

    si n 60 x stn90

    = 31, 5*

    Azi muth change i f f i rst hal f of second bui l d fs

    turnedl ef t and

    secondhal f i s turnedri ght.

    Fi r st hal f : I I M50’ I I

     

    70’

    8,0

    Total dogl eg: OL R

    — (70 - 50)

     

    24. 62’

    6,5

    COS 24, 62 -

    COS

    50

     

    COS

    70

    Cos AAZ

     

    m. 96

    sl n50 s si n70

    100 ‘

    (12   11)

    L.

    B

    AAZ   ~rc cos (, 96)m16, 76”l ~f t

    100 (50 - o)

    L.

    = 625 ft

    8

    Lengtht angent: L

     

    120 f t

    Lengthof seccmdbui l d:

    100 (90 - 50)

    L=

    - 616 ft

    6, 5

    [1

    , 6

    Tool f acermgl @2ndbui l d~arc cos— 35, 7’

    8*O

    Azi muthchangei nsecondbutl d,

    Total dogl q i nsecondbui l d{s:

    Secondhal f : I t ~70” 12R90’

    8.0

    DLu — (90’ 70)=24, 62’

    6, 5

    AA2

    m

    [

    COS24, 62

    1

    - C os

    ?0 8

    Cos 90

    arc cos

    sin 70 ~

    sl n90

    = 14. 65”ri ght

    Totaldi recti onchang~i rrsecondbui l d:

    ~z

    =16, 76”(l ef t)+ 4, 6$’(ri ght)

      ~2, 11’ ( l ef t)

    8,( . )

    1, Target TVD VS, posi ti on

    and dfrect l on of the

    DLMuwmn

    (90 = i O)~49023’

    end of curve

    6,5

    i ?,EOC poslt l l onvs ‘ . ddi recti on,

    I f al l

    turn I s I n tho same di recti onthe azimuth

    3, Target TVD, Qoc posi ti on

    andd ractl onaccuracy

    changets:

    VS*

      ost

    I

     

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    13/15

    .

    H I ?TECH90008

    =20150

    FRAHKJ . SCHLJ H

    1

    ~’

    Type

    Si ze

    Radi us

    Length

    k++

    Short

    $3/ 4

    ; :

    425

    889

    Mediurn

    ;- 1/ 2

    300 1, 300

    300

    2,200

    8- 1/ 2

    400- 800 3, 350

    Long 8- 1/ 2 l , 0~O~; b500

    4,000

    12- 1/ 4

    s

    1,000

    NTAL TA I oETTRADE OFFS

    .

    1. Target TVD vs. posi ti on and di recti onof

    the end of curve.

    2. EOCposit on vs. EOCdirection.

    3. Target TVD, EOC posi ti onand di recti on

    accuracyvs. cost.

    m

    ORS ~TI NG TOROUEAND DRA~

    o Lengthof Hori zontal Hol e

    o Dr i l l str ingDesi gn

    - Hevi wate

    - Dri l l pi pe nhori zontalhol e

    - Requi redbi t l oads

    o Coef f i ci entof Fr i c ti on

    - Mud type

    o Rig Capaci t y

    - Torque

    - Axi al

    - Top dr i ve

    o Hori zontal Dri l l i ngTechni que

    - Surfacerotati on

    - Steeri ngmode

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    14/15

    SpEz

    O1~~CH 890

     

    HORI ZONTALUELL PLANNI NG- BUI LDCURVE DESI GN

    VERTICAL

    SECTION

    1

    R

    t+

    PLAN

    VIEW I

     

    2

    Fig.

    i Basic build curve geometry.

    PLAN

    VIEW f

    t-l=+

    2

    A/k

    Fig. 2 Build and turn geometry.

    549

    77 ‘

    8 deg/100 ft Build rate

    50 deg Tangent angle

    120 ft Tangent length

    Fig. 3 Simple tangent build

    716

    EOC

    w

    7i6’

    5U

    549‘

    77‘

    206

    PLAN

    VIEW

    8deg/ i OO ft motor

    build rate

    6.5deg1100’ 2ndbuild rate

    120 ft

    tmgont  t 50 deg  

    ngle

    Fig. 4 Complextangent build

    curve.

  • 8/19/2019 SPE-20150 Hor Well Plan-MS

    15/15

    , .

    SPEU150

    NMTECH890008

    FRANKJ . SCHUH

    15

    549

    206

    567‘

     

    l--f

    .

    a d8g/ l oo ft Total Curvatw e rate

    a deg/ l oo ft Fi rst bui l d r8te

    6. S dag/ 100 f t

      d Euild

    rate

    Fig. 5 Ideal build rate.

    F@. 6 Torque k

    the build curve,

    d

    ,

    Fi g. 7-Compwsti e drag i n bui l dcurve.

    3. 00

    2. s0

    -2. 00

    $

    ~

    y so

    s

    0

    1 00

    0. s0

    O*OO

    Ii

    *O i

    EOC FC

    5

    Fig. 8-Tensile drag in buiid curve.


Recommended