+ All Categories
Home > Documents > SPE Thermal Analysis 2018 Solid · 2018. 12. 6. · Polypropylene Random...

SPE Thermal Analysis 2018 Solid · 2018. 12. 6. · Polypropylene Random...

Date post: 24-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
56
12/6/2018 1 Thermal Analysis in Failure and Compositional Analysis Jeffrey A. Jansen December 5, 2018 Thermal Analysis Jeffrey A. Jansen The Madison Group 608-231-1907 [email protected] Goals Become familiar with how thermal analysis can be used to identify and characterize polymeric be used to identify and characterize polymeric materials. Gain insight into how composition and structure can be evaluated analytically. Understand which thermal analysis technique to use to get the desired information. Thermal Analysis Jeffrey A. Jansen The Madison Group 608-231-1907 [email protected]
Transcript
  • 12/6/2018

    1

    Thermal Analysis in Failure and Compositional Analysis

    Jeffrey A. JansenDecember 5, 2018

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    Goals

    • Become familiar with how thermal analysis can be used to identify and characterize polymeric be used to identify and characterize polymeric materials.

    • Gain insight into how composition and structure can be evaluated analytically.

    • Understand which thermal analysis technique to use to get the desired information.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    2

    Agenda

    • Introduction• Differential Scanning Calorimetry• Differential Scanning Calorimetry• Thermogravimetric Analysis• Thermomechanical Analysis• Dynamic Mechanical Analysis

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    Thermal Analysis

    [email protected] Analysis

    Jeffrey A. Jansen The Madison Group

  • 12/6/2018

    3

    DIFFERENTIAL SCANNING CALORIMETRY DIFFERENTIAL SCANNING CALORIMETRY (DSC)

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DSC measures the temperatures and heat flows associated with transitions in

    DSC

    heat flows associated with transitions in materials as a function of time and temperature in a controlled atmosphere. The difference in the

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    amount of heat required to increase the temperature of a sample and reference is measured.

    [email protected]

  • 12/6/2018

    4

    DSC measurements provide quantitative and qualitative information

    DSC

    quantitative and qualitative information about physical and chemical changes that involve endothermic or exothermicprocesses, or changes in heat capacity.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    Endothermic: heat flows into the sampleExothermic: heat flows out of the sample

    [email protected]

    DSC

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    5

    PET

    DSC

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    ASM Handbook Vol 11 “Characterization of Plastics in Failure Analysis”Jeffrey A. Jansen,

    [email protected]

    DSC Samples DSC ExperimentsV i f l

    DSC

    • Intractable Solid• Powder• Liquid• Typically 5-25 mg

    • Variety of sample pans depending on experiment – Typically Al

    • Heating capability to 725°C

    • Variable heating rate –Variable heating rate typically 10 °C/min.

    • Variety of purge gases –typically inert (N2)

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    6

    DSC Applications• Material identification

    DSC

    – Polymer identification– Polymer type differentiation– Copolymer vs. homopolymer

    • Material condition– Degradation– Purity / Contamination– Oxidative stability

    • Material properties – heat historyCrystallinity

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    – Crystallinity– Thermal history– Specific Heat capacity– Heat of reaction / reaction kinetics– Degree of cure

    [email protected]

    Semi-crystalline vs. Amorphous 0.11 Polyethylene––––––– Poly(m ethyl m ethacrylate)–––––––

    DSC – Material ID

    -0.1

    0.0

    Hea

    t Flo

    w (W

    /g)

    -2

    -1

    0

    Hea

    t Flo

    w (W

    /g)

    Semi-crystalline

    Amorphous

    -0.3

    -0.2

    -4

    -3

    0 50 100 150 200 250Tem perature (°C )Exo Up Universal V4.7A TA Instrum ents

    Amorphous

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    7

    Glass transitions are much weaker than melting transitions

    1P o lye thylene–––––––

    DSC – Material ID

    -2

    -1

    0

    Hea

    t Flo

    w (W

    /g)

    P o lye thylene––––––– P o ly(m ethyl m e thacryla te )–––––––

    -4

    -3

    25 75 125 175 225Tem pera ture (°C )E xo U p U n iversa l V 4 .7 A T A In stru m ents

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DSC – Material IDMelting point can be used to identify plastics

    0

    -2

    -1

    Hea

    t Flo

    w (W

    /g)

    P o lye thylene––––––– P o lypropylene––––––– P o ly(butylene te rephtha la te )––––––– N ylon 6 /6–––––––

    P o ly(phenylene su lfide )

    -4

    -3

    0 100 200 300 400Tem pera ture (°C )

    P o ly(phenylene su lfide )––––––– P o lye the re the rke tone––––––– P o lye the rke tonee the rke toneke tone–––––––

    E xo U p U n iversa l V 4 .7 A T A In s tru m en ts

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    8

    DSC – Material ID

    Similar FTIR spectra

    2 1 1 .7 1 ° C5 0 .6 0 J /g

    2 5 0 .8 5 ° C5 9 .9 2 J /g

    0 4

    - 0 .2

    0 .0

    )

    N y lo n 6– – – – – – – N y lo n 6 /6– – – – – – –

    2 2 1 .3 1 ° C2 6 0 .9 0 ° C

    - 1 .2

    - 1 .0

    - 0 .8

    - 0 .6

    - 0 .4

    Hea

    t Flo

    w (W

    /g)

    2 5 7 5 1 2 5 1 7 5 2 2 5 2 7 5 3 2 5T e m p e r a tu r e ( ° C )E x o U p U n iv e r s a l V 4 . 7 A T A I n s t r u m e n t s

    Different melting points

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DSC – Material ID

    PEEK

    PEKEKK

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    9

    0.0

    0.0

    0.5

    DSC – Material ID

    167.83°C

    164.16°C

    119.42°C -0.2

    -0.1

    Hea

    t Flo

    w (W

    /g)

    -2 0

    -1.5

    -1.0

    -0.5

    Hea

    t Flo

    w (W

    /g)

    148.49°C-0.4

    -0.3

    -3.0

    -2.5

    -2.0

    0 50 100 150 200Tem perature (°C )

    Polypropylene H om opolym er––––––– Polypropylene B lock C opolym er––––––– Polypropylene R andom C opolym er–––––––

    Exo U p U niversa l V4.7A TA Instrum ents

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DSC – Material IDGlass transition temperature can be used to identify plastics

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    10

    DSC can provide information about polymer blends-0 .2

    P C +A B S B lend––––––– P C +A B S A lloy–––––––

    DSC – Material ID

    108 .05°C (I)

    109 .98°C (I)-0 .03551W /g

    -0 .4

    -0 .3

    Hea

    t Flo

    w (W

    /g)

    Single Tg – Alloy with miscible configuration

    Double Tg – Blend with ( )

    -0 .02737W /g

    134 .95°C (I)-0 .02545W /g

    -0 .6

    -0 .5

    0 50 100 150 200Tem pera ture (°C )E xo U p U n iversa l V 4 .7A T A Ins trum en ts

    two phases

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    • Housing for Electrical Appliance

    Appliance Housing

    DSC

    pp• Failures Occurred During

    Assembly - Insertion of Screws Into Bosses

    • Failures Limited to a Production Lot

    • Injection Molded• Acrylonitrile:butadiene:

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    • Acrylonitrile:butadiene: styrene (ABS) Resin -Grade Unknown

    • Regrind Used in Production

    Source: “Testing Beats Talking”, Appliance Manufacturer, Business News Publishing Company, J.A.. Jansen, March 2001, pg. 21-24.

    [email protected]

  • 12/6/2018

    11

    • Cracking within screw bosses

    Appliance Housing

    DSC

    bosses

    • Brittle fracture appearance

    • No significant ductility -stress whitening and permanent deformation absent

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    • Reference good parts produced results for

    Appliance Housing

    DSC

    produced results for ABS

    • Failed parts produced results with ABS bands and additional absorbances

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    12

    Appliance Housing• Reference good parts

    produced results for

    DSC

    produced results for ABS

    • Failed parts produced results with ABS bands and additional absorbances

    • Contamination with

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    thermoplastic ester

    [email protected]

    • Melting point indicative of

    Appliance Housing

    DSC

    contamination - PBT Resin

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    13

    • Molded plastic couplings exhibited abnormally brittle

    Plastic Couplings

    DSC

    yproperties.

    • Specified to be molded from a custom-compounded glass-filled nylon 6/12 resin.

    • An inspection of the molding resin used to produce the discrepant parts revealed

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    differences in the material appearance, relative to a retained resin lot.

    ASM Handbook Vol 11 Jeffrey A. Jansen“Characterization of Plastics in Failure Analysis”

    [email protected]

    • DSC thermograms obtained on the samples

    Plastic Couplings

    DSC

    pthat produced brittle parts showed an endotherm associated with melting of the nylon 6/12 resin.

    • The results also exhibited transitions indicative of the presence of

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    contaminant materials• One of the resin showed a

    secondary melting point at 165°C indicative of polypropylene.

    [email protected]

  • 12/6/2018

    14

    • DSC thermograms obtained on the samples

    Plastic Couplings

    DSC

    obtained on the samples that produced brittle parts showed an endotherm associated with melting of the nylon 6/12 resin.

    • The results also exhibited transitions indicative of the presence of contaminant

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    pmaterials

    • The second sample showed a second melting transition at 260 °C -nylon 6/6 resin.

    [email protected]

    DSC - Crystallinity

    PPS shows low temperature crystallization1.5

    118.54°C

    244.65°C

    248.45°C32.20J/g

    0.5

    1.0

    Hea

    t Flo

    w (W

    /g)

    First Heating Run

    Jeffrey A. Jansen The Madison Group

    281.31°C

    265.60°C29.83J/g

    114.52°C14.83J/g

    -0.5

    0.0

    0 50 100 150 200 250 300 350Temperature (°C)Exo Up Universal V4.7A TA Instruments

    Thermal Analysis608-231-1907

    [email protected]

  • 12/6/2018

    15

    DSC - Crystallinity

    0.0PPS shows low temperature crystallization

    272.88°C32.30J/g

    -0.4

    -0.3

    -0.2

    -0.1

    Hea

    t Flo

    w (W

    /g)

    S d H i R

    Jeffrey A. Jansen The Madison Group

    281.47°C-0.6

    -0.5

    0 50 100 150 200 250 300 350 400Temperature (°C)Exo Up Universal V4.7A TA Instruments

    Second Heating Run

    Thermal Analysis608-231-1907

    [email protected]

    DSC - Crystallinity

    PE shows reduction in heat of fusion119 44°C

    7119.44°C

    121.38°C238.2J/g

    0

    1

    2

    3

    4

    5

    6

    Hea

    t Flo

    w (W

    /g)

    First Heating Run

    Jeffrey A. Jansen The Madison Group

    133.25°C

    130.21°C193.5J/g

    Heat to 300°C @ 10°C/min. in N2Cool to -80°C @ 10°C/min. in N2

    -5

    -4

    -3

    -2

    -1

    -100 -50 0 50 100 150 200 250 300Temperature (°C)Exo Up Universal V4.7A TA Instruments

    Thermal Analysis608-231-1907

    [email protected]

  • 12/6/2018

    16

    DSC - Crystallinity

    PE shows reduction in heat of fusion0

    127.79°C236.3J/g

    -3

    -2

    -1

    Hea

    t Flo

    w (W

    /g)

    Jeffrey A. Jansen The Madison Group

    135.06°CHeat to 400°C @ 10°C/min. in N2-5

    -4

    -100 0 100 200 300 400Temperature (°C)Exo Up Universal V4.7A TA Instruments

    Second Heating Run

    Thermal Analysis608-231-1907

    [email protected]

    2 .0

    POLYPROPYLENEPOLYPROPYLENE

    The cooling portion of the run can be useful to compare materials – nucleation.

    DSC - Crystallinity

    1 .0

    1 .5

    Hea

    t Flo

    w (W

    /g)

    WITH NUCLEATING AGENTS

    POLYPROPYLENEWITHOUT NUCLEATING AGENTS

    -1.0

    -0.5

    0.0

    Hea

    t Flo

    w (W

    /g)

    Crystallization during the cooling run

    0 .0

    0 .5

    4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0T e m p e ra tu re (°C )E xo U p

    -1.560 80 100 120 140 160 180 200

    Temperature (°C)Exo Up

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    17

    Molecular degradation alters thermal transitions0 .3

    F a ile d S a m p le– – – – – – – M o ld in g R e s in– – – – – – –

    DSC - Degradation

    1 4 3 3 0 °C (I)

    1 4 9 .1 5 °C (I)-0 .0 4 3 4 5 W /g

    0 .1

    0 .2

    Hea

    t Flo

    w (W

    /g)

    g

    1 4 3 .3 0 C (I)-0 .0 4 9 7 2 W /g

    0 .00 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

    T e m p e ra tu re (°C )E xo U p U n iv e rs a l V 4 .7 A T A In s t ru m e n ts

    Reduction in Tg due to molecular degradation

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    Molecular degradation alters thermal transitions

    DSC - Degradation

    Reduction in Tm due to molecular degradation

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    18

    Oxidative Induction Time (OIT)S am ple : S am ple 1S ize : 6 .4850 m gM ethod : C us tom

    D S C R un D ate : 26 -F eb-2014 11 :21Ins trum ent: D S C Q 2000 V 24 .10 B u ild 1

    DSC – Oxidative Stability

    7.80m in179.83°C

    18.65m in

    100

    150

    200

    Tem

    pera

    ture

    (°C

    )

    -1

    0

    1

    2

    Hea

    t Flo

    w (W

    /g)

    7 .05m in169.98°C

    0

    50

    T

    -3

    -2

    0 5 10 15 20 25 30Tim e (m in)Exo U p Universa l V4 .5A TA Instrum ents

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    1.0

    1.2 Control Part––––––– Failed Part–––––––

    DSC – Oxidative Stability

    0.2

    0.4

    0.6

    0.8

    Hea

    t Flo

    w (W

    /g)

    13.18min0.22min

    -0.2

    0.0

    0 5 10 15 20Time (min)Exo Up Universal V4.7A TA Instrum ents

    Antioxidant still presentAntioxidant consumed

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    19

    DSC

    DSC Limitations • Materials with similar melting points cannot be • Materials with similar melting points cannot be

    distinguished:nylon 6 & poly(butlylene terephthalate) polypropylene & polyacetal copolymer

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    THERMOGRAVIMETRIC ANALYSIS (TGA)

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    20

    TGA

    Thermogravimetric analysis (TGA) is a thermal analysis technique that measures the amount analysis technique that measures the amount and rate of change in the weight of a material as a function of temperature or time under conditions of a controlled atmosphere. These weight changes include decomposition, dehydration and oxidation dehydration, and oxidation.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    Mechanisms of Weight Change in TGA

    W ight L

    TGA

    • Weight Loss:– Decomposition: The breaking apart of chemical bonds.– Evaporation: The loss of volatiles with elevated temperature.– Reduction: Interaction of sample to a reducing atmosphere

    (hydrogen, ammonia, etc).– Desorption.

    • Weight Gain:Oxidation: Interaction of the sample with an oxidizing – Oxidation: Interaction of the sample with an oxidizing atmosphere.

    – Absorption.

    All of these are kinetic processes (i.e. there is a rate at which they occur).

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    21

    TGA is employed in problem solving and research

    TGA

    to evaluate composition and thermal stability. TGA is used to determine characteristics such as:

    •the level of organic and inorganic components in materialsvolatiles content

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    •volatiles content•degradation and decomposition temperatures

    [email protected]

    TGA

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    22

    TGA

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    ASM Handbook Vol 11 Jeffrey A. Jansen“Characterization of Plastics in Failure Analysis”

    [email protected]

    TGA Samples TGA Experiments

    TGA

    • Intractable Solid• Powder• Liquid• Gas• Typically 10-25 mg

    • Multiple pan types - typically platinum

    • Heating capability to 1200 °C• Variable heating rate - :

    typically 20 °C/min.• Variety of atmosphere gases –Typically 10 25 mg y p g

    typically nitrogen then air

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    23

    TGA Applications

    TGA

    • Quantitative formulation information: • Polymer• Plasticizer• Fillers - carbon black and mineral fillers

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    • Modifiers• Assessment of thermal stability

    [email protected]

    TGA

    Quantitative Formulation Information

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    TA Instruments

    [email protected]

  • 12/6/2018

    24

    TGA

    • 1st Step CaC2O4•H2O (s) CaC2O4 (s) + H2O (g)

    Calcium Oxalate Monohydrate Calcium Oxalate

    • 2nd Step CaC2O4 (s) CaCO3 (s) + CO (g) Calcium Oxalate Calcium Carbonate

    • 3rd Step CaCO3 (s) CaO (s) + CO2 (g)Calcium Carbonate Calcium Oxide

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    TGA

    Quantitative Formulation Information

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    TA Instruments

    [email protected]

  • 12/6/2018

    25

    TGA

    Polycarbonate / Acrylic Blend

    Relative Blend Information

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    Thermal Analysis of PolymersM.P. SepeRAPRA Technology

    [email protected]

    TGA

    Sample: MRP Orignal TGA Run Date: 09-Dec-2015 19:42

    Formulation Information

    Unkno n R bber Material

    22.85% Plasticizer(4.00mg)

    36.22% Polymer(6.34mg)

    481°C

    Heat to 650°C @ 20°C/min in N2Cool to 500°CHeat to 1000°C @ 20°C/min in Air

    0.4

    0.6

    0.8

    1.0

    Der

    iv. W

    eigh

    t (%

    /°C

    )

    40

    60

    80

    100

    Wei

    ght (

    %)

    Size: 17.4940 mgMethod: N2/Air

    TGA Instrument: TGA Q500 V20.10 Build 36Unknown Rubber Material

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    25.41% Carbon Black(4.44mg)

    Residue:15.52%(2.72mg)

    367°C

    0.0

    0.2

    D

    0

    20

    0 200 400 600 800 1000Temperature (°C) Universal V4.7A TA Instruments

    [email protected]

  • 12/6/2018

    26

    • Housing for Electrical Appliance

    Appliance Housing

    TGA

    Appliance

    • Failures Occurred During Assembly - Insertion of Screws Into Bosses

    • Failures Limited to a Production Lot

    • Injection Molded

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    • Acrylonitrile:butadiene:styrene(ABS) Resin - Grade Unknown

    • Regrind Used in ProductionSource: “Testing Beats Talking”, Appliance Manufacturer, Business News Publishing Company, J.A.. Jansen, March 2001, pg. 21-24.

    [email protected]

    • Separation of ABS and PBT Resins

    Appliance Housing

    TGA

    PBT Resins

    • Approx. 24% PBT

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    27

    • Molded plastic clips exhibited low strength

    Plastic Clips

    TGA

    gand failed QC testing.

    • Specified to be molded from a 10% aramid fiber and 15% PTFE modified polycarbonate resin .

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    • Molded plastic clips exhibited low strength

    Plastic ClipsSample: HolsterSize: 14.7790 mg TGA

    File: T:\_TGA\TEC008525.001Operator: MKKInstrument: TGA Q500 V20.10 Build 36Control Sample

    TGA

    gand failed QC testing.

    • Specified to be molded from a 10% aramid fiber and 15% PTFE modified polycarbonate resin .

    • TGA testing of the control sample produced

    0.6036% volatiles(0.08921mg)

    96.83% wt loss in N2(14.31mg)475.77°C

    592.32°C

    1.5

    2.5

    3.5

    Der

    iv. W

    eigh

    t (%

    /°C

    )

    40

    60

    80

    100

    Wei

    ght (

    %)

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    complicated weight loss profile consistent with stated material.

    2.063% wt loss in air(0.3049mg) Residue:

    0.5006%(0.07398mg)

    heat 20°C/min to 900°C, N2equilibrate at 500°Cheat 20°C/min to 1000°C

    -0.5

    0.5

    0

    20

    0 200 400 600 800 1000

    Temperature (°C) Universal V4.5A TA Instruments

    [email protected]

  • 12/6/2018

    28

    • TGA testing of the control sample produced

    Plastic ClipsWeight Loss Profile Comparison

    TGA

    p pcomplicated weight loss profile consistent with stated material.

    • Failed part material showed different profile.

    • Lack of aramid fibers.35

    55

    75

    95

    Wei

    ght (

    %)

    Holster––––– · Resin––––––– Clip–– –– –

    Control Samples

    Failed Part

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    -5

    15

    0 200 400 600 800 1000

    Temperature (°C) Universal V4.5A TA Instruments

    [email protected]

    TGA - Degradation

    Molecular degradation alters weight loss profiles

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    29

    TGA

    Thermal Stability

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    TA Instruments608-231-1907

    [email protected]

    TGA Limitations

    TGA

    • Compositional data limited to major ingredients

    • Limited by thermal separation

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    30

    TGA Curves are not ‘Fingerprint’ CurvesBecause most events that occur in a TGA are kinetic in

    TGA

    • Pan material type shape and size

    Because most events that occur in a TGA are kinetic in nature (meaning they are dependent on absolute temperature and time spent at that temperature), any experimental parameter that can effect the reaction rate will change the shape / transition temperatures of the curve. These things include:

    • Pan material type, shape and size.• Ramp rate.• Purge gas.• Sample mass, volume/form and morphology.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    THERMOMECHANICAL ANALYSIS THERMOMECHANICAL ANALYSIS (TMA)

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    31

    TMA is a thermal analysis technique that

    TMA

    TMA is a thermal analysis technique that measures linear or volumetric dimensional changes within a sample as a function of temperature or time.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    TMA is a thermal analysis technique that measures linear or volumetric dimensional changes within a sample as a

    TMA

    function of temperature or time. The technique can be used to measure different physical attributes of the sample including:• Coefficient of thermal expansion (CTE) • Softening temperature or glass transition temperature• Melting temperature

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    • Melting temperature• Crystalline to amorphous transition temperatures• Tensile or compression modulus

    [email protected]

  • 12/6/2018

    32

    TMA

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    ASM Handbook Vol 11 “Characterization of Plastics in Failure Analysis”Jeffrey A. Jansen,

    TMA

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    33

    TMA Samples TMA Experiments

    TMA

    • Intractable Solid – must be of uniform geometry and have two flat and parallel sides

    • Fibers and films

    • Variety of probes depending on experiment

    • Temperature range: subambient to 1000 °C

    • Variable heating rate –typically 5 °C/min.

    • Variety of purge gases –typically inert (N2)

    • Compressive force

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    TMA Probe Types

    TMA

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    34

    TMA Applications to Failure Analysis

    TMA

    • Assessment of molded-in residual stress• Coefficient of thermal expansion • Determination of material transitions• Chemical compatibility

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    TMA

    Sample: 230 overmold sample 3 TMA Run Date: 29-Apr-2011 10:32

    Coefficient of Thermal Expansion

    120.00°CAlpha=262.6µm/(m·°C)

    100

    150

    200

    250

    ensi

    on C

    hang

    e (µ

    m)

    Sample: 230 overmold sample 3Size: 6.4070 mmMethod: 0.02N-5C-150C

    TMA Run Date: 29 Apr 2011 10:32Instrument: 2940 TMA V2.4E

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    40.00°C

    Heat to 150°C @ 5°C/min. in N2-50

    0

    50Dim

    e

    20 40 60 80 100 120 140 160Temperature (°C) Universal V4.7A TA Instruments

    [email protected]

  • 12/6/2018

    35

    TMA

    • Unfilled polycarbonate resin

    • Insert molded in

    Chemical Sensor

    • Insert molded in conjunction with a steel tube

    • Service includes ambient temperature exposure

    • Stress cracking over time

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    Failure Analysis of a Polysulfone Flow Sensor Body – A Case StudyJeffrey A. JansenPractical Failure Analysis Volume 1(2) April 2001

    [email protected]

    TMA

    • Coefficient of thermal expansion normal for

    Chemical Sensor

    expansion normal for polycarbonate

    • No signs of molded-in stress

    • Disparity with coefficient of thermal expansion for steel insert

    PC

    Steel

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    Failure Analysis of a Polysulfone Flow Sensor Body – A Case StudyJeffrey A. JansenPractical Failure Analysis Volume 1(2) April 2001

    [email protected]

  • 12/6/2018

    36

    TMA

    Glass Transition Temperature

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    TMA

    Glass Transition Temperature

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    37

    TMA

    Glass Transition Temperature / Cure

    Phenolic Resin Post Cure

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    Thermal Analysis of PolymersM.P. SepeRAPRA Technology

    [email protected]

    • Unfilled polycarbonate resin• Resin grade and processing

    Vehicle Grille

    TMA

    • Resin grade and processing conditions not known

    • Steel logo nameplate secured to part with threadlocker

    • Manufacturing change resulted in different adhesive

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    • Anaerobic phenolic / methacrylate adhesive

    • Failures took place while in storage

    [email protected]

  • 12/6/2018

    38

    • Unfilled polycarbonate resin

    • Resin grade and processing

    Vehicle Grille

    TMA

    • Resin grade and processing conditions not known

    • TMA indicated the presence of molded-in residual stress in the failed grille.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    TMA Limitations

    TMA

    • Sample preparation – need to flat / parallel surfaces

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    39

    DYNAMIC MECHANICAL ANALYSIS(DMA)

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DMA

    • Dynamic mechanical analysis (DMA)• Technique in which a small deformation is applied q pp

    to a sample in a cyclic manner. This allows the material’s response to stress, temperature, frequency and other values to be studied.

    • Assesses the proportion of elastic and viscous components in a polymer

    • Determines the factors that change this balance • How will a material perform in a given application

    environment

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    40

    DMA

    Applies a sinusoidal deformation to a sample of known geometry. The sample can be subjected by a known geometry. The sample can be subjected by a controlled stress or a controlled strain. For a known stress, the sample will then deform a certain amount. How much it deforms is related to its stiffness (modulus). A force motor is used to generate the sinusoidal wave and this is transmitted to the sample via a drive shaft.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DMA

    Elastic System Viscous System

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    41

    DMA Methodology

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DMA Methodology

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    42

    DMA

    DMA applies an oscillatory load to a sample to pp y pevaluate the strain response to stress.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DMA

    Viscoelastic System

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    43

    DMA

    For a viscoelastic material, the stress and strain will be out of phase by some quantity known as the phase angle – common referred to as delta (δ).

    Small phase angle – highly elasticLarge phase angle – highly viscous

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DMA

    Complex response of the material is resolved into:

    E’ elastic or storage modulus (tensile)The ability of the material to store energy.

    E’’ viscous or loss modulus (tensile)The ability of the material to dissipate energy.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    Tan δ E’’ / E’Measure of material damping

    [email protected]

  • 12/6/2018

    44

    TEMPERATURE DEPENDENCY

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DMA Temperature Sweep

    Storage Modulus• Contribution of the elastic component in the • Contribution of the elastic component in the

    polymer – store energy under conditions of stress

    • Stiffness of the material – resistance to strain

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    45

    14000

    Sample: Nylon 6 - 30% GFSize: 35.0000 x 12.0600 x 3.0500 mmMethod: temp Ramp -40 to 175 C at 2c/mi

    DMA Run Date: 31-Dec-2013 10:46Instrument: DMA Q800 V20.9 Build 27

    DMA - Modulus

    • Modulus over a temperature

    g

    0.00°C9133MPa

    25.00°C6611MPa

    6000

    8000

    10000

    12000

    Sto

    rage

    Mod

    ulus

    (MP

    a)

    range

    100.00°C3728MPa

    2000

    4000

    -50 0 50 100 150Temperature (°C) Universal V4.7A TA Instruments

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    14000

    Sample: Nylon 6 - 30% GFSize: 35.0000 x 12.0600 x 3.0500 mmMethod: temp Ramp -40 to 175 C at 2c/mi

    DMA Run Date: 31-Dec-2013 10:46Instrument: DMA Q800 V20.9 Build 27

    DMA - Modulus

    • Modulus over a temperature

    g

    0.00°C9133MPa

    25.00°C6611MPa

    6000

    8000

    10000

    12000

    Sto

    rage

    Mod

    ulus

    (MP

    a)

    range• Superior to

    tensile testing

    100.00°C3728MPa

    2000

    4000

    -50 0 50 100 150Temperature (°C) Universal V4.7A TA Instruments

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    46

    DMA - Modulus

    • Comparison of two materials 10000

    PC–––––––PC / PBT Bl d• Modulus cross-

    over

    100

    1000

    Sto

    rage

    Mod

    ulus

    (MP

    a)

    PC / PBT Blend–––––––

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    1

    10

    -50 0 50 100 150Temperature (°C) Universal V4.7A TA Instruments

    [email protected]

    DMA - Molecular Structure

    • Structural information

    Crosslinked

    Semi-crystalline

    Tg

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    Amorphous Tg

    [email protected]

  • 12/6/2018

    47

    DMA - Molecular Structure

    2500

    3000 Polycarbonate––––––– Nylon 6–––––––

    • Amorphous vs. Semi-crystalline –t t l

    Amorphous

    1000

    1500

    2000

    2500

    Sto

    rage

    Mod

    ulus

    (MP

    a)

    structuralp

    TgTg

    0

    500

    -50 0 50 100 150Temperature (°C) Universal V4.7A TA Instruments

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    Semi-crystalline

    [email protected]

    DMA - Viscous Properties

    Loss Modulus• Contribution of the viscous component in the • Contribution of the viscous component in the

    polymer – flow under conditions of stress• Creep / cold flow or stress relaxation• Not the derivative of the storage modulus

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    48

    DMA - Viscous Properties

    Tan Delta• Comparison of polymers where storage and • Comparison of polymers where storage and

    loss moduli are subject to change because of alterations on composition, geometry, or processing conditions

    • Index of viscoelasticity• Unitless / dimensionless

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DMA - Glass Transition Temperature

    • DMA provides best measurement technique –direct assessment of molecular changes within the materialmaterial

    • Onset of sharp reduction in storage modulus –practical effect of temperature on load-bearing capabilities

    • Loss modulus peak temperature – corresponds well with other thermal analysis techniques, ASTM D 4065ASTM D 4065

    • Tan Delta peak temperature - material has highest ratio of flow to storage – the point of highest realtive viscous contribution

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    49

    DMA - Glass Transition Temperature

    • Polycarbonate• Determining the 5003000

    Sample: PCSize: 35.0000 x 12.9100 x 3.3100 mmMethod: temp ramp -60 to 175 C at 2c/mi

    DMA Run Date: 06-Feb-2015 11:32Instrument: DMA Q800 V21.1 Build 51

    glass transition temperature (Tg)

    138.86°C

    146.62°C152.84°C

    1.0

    1.5

    2.0

    Tan

    Del

    ta

    200

    300

    400

    Loss

    Mod

    ulus

    (MP

    a)

    1000

    1500

    2000

    2500

    Sto

    rage

    Mod

    ulus

    (MP

    a)

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    0.5

    0

    100

    0

    500

    50 100 150Temperature (°C) Universal V4.7A TA Instruments

    [email protected]

    DMA - Alloy or Blend

    • PPO / PS Resin Blend 50400

    Sample: Noryl 731 tensile barSize: 35.0000 x 12.4700 x 3.0700 mm DMA

    File: T:\_DMA\2012\ENB013385P.405Operator: MKKInstrument: DMA Q800 V20.9 Build 27

    22.00°C330.3kPSI

    144.20°C

    temperature rampheat 2°C/min from 15°C to 150°C40 um at 1 Hzdual cantilever 0.4

    0.6

    0.8

    1.0

    Tan

    Del

    ta

    20

    30

    40

    Loss

    Mod

    ulus

    (kPS

    I)

    200

    300

    Stor

    age

    Mod

    ulus

    (kPS

    I)Tg 215°C

    Tg 100°C

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    0.2

    0

    10

    0

    100

    0 20 40 60 80 100 120 140 160

    Temperature (°C) Universal V4.5A TA Instruments

    Resin Alloy: Single Tg 144 °C

    Resin Blend: Two Tg

    [email protected]

  • 12/6/2018

    50

    DMA - Impact Resistance

    • Secondary transition –

    Sample: ABSSize: 35.0000 x 9.9400 x 3.7000 mmMethod: temp Ramp to 120 C at 2c/min

    DMA Run Date: 06-Sep-2011 13:52Instrument: DMA Q800 V20.9 Build 27transition short range molecular mobility

    • Energy b i

    -4.26°C

    2.39°C

    0.02

    0.03

    0.04

    Tan

    Del

    ta

    40

    60

    80

    100

    Loss

    Mod

    ulus

    (MP

    a)

    1000

    1500

    2000

    2500

    3000

    Stor

    age

    Mod

    ulus

    (MPa

    )

    p p

    absorption – impact properties

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    0.01

    0

    20

    0

    500

    1000S

    -50 -25 0 25 50 75 100Temperature (°C) Universal V4.7A TA Instruments

    [email protected]

    TIME DEPENDENCY

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    51

    DMA - Creep

    Creep is…..

    the tendency of a solid material to deform permanently under the influence of constant stress (tensile, compressive, shear, or flexural). It occurs as a function of time through extended exposure to of time through extended exposure to levels of stress that are below the yield strength of the material.

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    DMA - Creep

    • Low to moderate forces exerted over an extended time → lower ductility. Can result in brittle fracture in

    ll d til l tinormally ductile plastics• Inherent viscoelastic nature of polymers leads to time

    dependency• Prolonged static stresses lead to a decay in apparent

    modulus through localized molecular reorganization of polymer chainspolymer chains

    • At stresses below the yield point molecular reorganization includes disentanglement as there is no opportunity for yielding

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    52

    Time and Temperature

    Time and Temperature phave the same effect

    on Plastics

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

    Time and Temperature

    1.0

    1.5

    2.0

    Tan

    Del

    ta

    200

    300

    400

    Loss

    Mod

    ulus

    (MP

    a)

    1000

    1500

    2000

    2500

    Sto

    rage

    Mod

    ulus

    (MP

    a)

    0 .5

    0

    100

    0

    500

    -50 0 50 100 150Tem perature (°C) Universal V4.7A TA Instrum ents

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    [email protected]

  • 12/6/2018

    53

    Time and Temperature

    1.0

    1.5

    2.0

    Tan

    Del

    ta

    200

    300

    400

    Loss

    Mod

    ulus

    (MP

    a)

    1000

    1500

    2000

    2500

    Sto

    rage

    Mod

    ulus

    (MP

    a)

    0 .5

    0

    100

    0

    500

    -50 0 50 100 150Tem perature (°C) Universal V4.7A TA Instrum ents

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    TIME – Scale Unknown

    [email protected]

    DMA-TTS

    3000

    Sample: PolyacetalSize: 35.0000 x 12.4800 x 3.1200 mmMethod: Creep TTS

    DMA Run Date: 18-Aug-2015 15:15Instrument: DMA Q800 V21.1 Build 51Time-Temperature

    Superposition• Multiple fifteen-

    1000

    1500

    2000

    2500

    Flex

    ural

    Mod

    ulus

    (MP

    a)

    minute determinations for at isothermal conditions

    • From 10 to 145°C increments of 5°C

    • Evaluations conducted using a

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    0

    500

    0 20 40 60 80 100 120 140 160Temperature (°C) Universal V4.7A TA Instruments

    dual cantilever configuration

    • Stress of 1.9 MPa

    [email protected]

  • 12/6/2018

    54

    DMA - Creep Projection

    2000

    2500

    Apparent Modulus v. TimePolyacetal

    • Master curve as semi-log

    l t

    0

    500

    1000

    1500

    Appa

    rent M

    odulus (M

    Pa) Creep at 25 °Cplot

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    0.001 0.01 0.1 1 10 100 1000 10000 100000Time (hours)

    [email protected]

    DMA - Creep Projection

    100

    PolyacetalTensile Stress ‐ Strain at 25 °C Stress / 

    StrainModulus

    • Tensile properties to

    t bli h

    20

    30

    40

    50

    60

    70

    80

    90

    Stress (p

    si)

    Stress (M

    Pa)

    Yield

    Proportional Limit

    establish modeling parameters

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    0

    10

    20

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0Strain (%)

    [email protected]

  • 12/6/2018

    55

    DMA - Creep Projection

    6 500

    7.500

    8.500Polyacetal‐ Strain v. Time

    Creep at 25 °C15 MPa

    • Use stress to d t i

    ‐0.500

    0.500

    1.500

    2.500

    3.500

    4.500

    5.500

    6.500

    0.001 0.01 0.1 1 10 100 1000 10000 100000

    Strain (%

    )

    Time (hours)

    20 MPa

    determine strain over time

    • Project time to cracking

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    Projected time to cracking:15 MPa: >200,000 hours (22.8 years)20 MPa: 45,700 hours (5.2 years)

    [email protected]

    Comparing Creep Resistance

    2000 Eastar GN071––––––– Xenoy 5720U–––––––PC+PBTCopolyester

    1000

    1500

    Sto

    rage

    Mod

    ulus

    (MP

    a)

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    0

    500

    25 75 125 175Temperature (°C) Universal V4.7A TA Instruments

    [email protected]

  • 12/6/2018

    56

    Comparing Creep Resistance

    250000

    300000

    50000

    100000

    150000

    200000

    Appa

    rent M

    odulus (p

    si)

    Apparent Modulus v. TimeCreep at 25 °C

    PC+PBTCopolyester

    Thermal Analysis Jeffrey A. Jansen The Madison Group

    00.001 0.01 0.1 1 10 100 1000 10000 100000

    Time (hours)

    [email protected]

    Q ti ?Questions?

    Jeffrey A. Jansen The Madison Group

    Thermal Analysis [email protected]


Recommended