+ All Categories
Home > Documents > Spectral Element Fast Solver for Piezoelectric Structures

Spectral Element Fast Solver for Piezoelectric Structures

Date post: 06-Apr-2018
Category:
Upload: ramy
View: 222 times
Download: 0 times
Share this document with a friend

of 31

Transcript
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    1/31

    Time Domain SpectralElement Fast Solver for

    Piezoelectric Structures

    Ramy Mohamed & Patrice Masson

    GAUS, Department of Mechanical Engineering

    Universit de Sherbrooke

    Nov, 3, 2011

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    2/31

    Outline

    Outline

    1 IntroductionHistoryContextMotivation

    2 Model DevelopmentPrevious WorkNumerical SimulationFormulation

    3 ResultsTime Domain Results

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 2 / 23

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    3/31

    Introduction History

    SEMHistory

    Origin in CFD

    1 Patera, A. T.; J Comput Phys 54, (1984).

    2 Korczak, K. Z., and Patera, A. T.; J Comput Phys 62, (1986).

    Computational Seismology

    1 Seriani, G., and Priolo, E.; Finite Elements in Analysis and Design 16,

    (1994).

    2 Komatitsch, D., and Villote, J. P.; Bullet Seis Soc Amer 54, (1998).

    3 Komatitsch, D., and Tromp, J.; Geophys J Int 139, (1999).

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 3 / 23

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    4/31

    Introduction Context

    Active SHM System

    An ultrasound pulse isinjected into the structurethrough an integratedpiezoelectric element.

    Then a sensor collects thesignal carryinginformation about theregion being queried.

    C. E. S. Cesnik and A. Raghavan, Ch 3, Encyclopedia of SHM.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 4 / 23

    I d i C

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    5/31

    Introduction Context

    Guided Waves for SHM Application

    Piezoceramic (PZT) for SHM

    Low cost, small size, and easily integrated into the structure.

    strain coupled with the structure, and operates at different frequencies.

    Guided Waves for SHM

    Two dimensional, enabling scanning the whole cross section from few

    locations.

    Propagation for long distance with low losses of energy.

    multi-modal and dispersive, making interpretation of the signals very

    difficult.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 5 / 23

    I t d ti C t t

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    6/31

    Introduction Context

    Active-SHM via Guided Waves

    The frequency (wavelength) is dictated by the smallest detectabledamage.

    Relatively narrow band frequency content.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 6 / 23

    Introduction Motivation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    7/31

    Introduction Motivation

    High vs Low Frequency

    General Elastodynamics Equations

    Axial and flexural waves are lowfrequency approximations of

    fundamental Lamb modes S0,and A0.

    For accurate simulations at highfrequency we need to solve the

    general elastodynamicsequations.0 2 4 6 8 10

    0

    5

    10

    15

    PhaseVelocity(Km

    /s)

    Frequency x thickness (MHz mm)

    Flexural Wave (Approx. A0)

    Axial Wave (Approx. S0)

    S0 Lamb Mode

    A0 Lamb Mode

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 7 / 23

    Introduction Motivation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    8/31

    Introduction Motivation

    Challenges at High Frequency: Numerical Dispersion

    2D Elastic Wave

    P Relative error in P-wavephase velocity, and S Relativeerror in S-wave phase velocity.

    n Number of nodes perWavelength.

    Minimum number of nodes perminimum wavelength is 5 for

    SEM as opposed to 20 for theFEM for the same numericaldispersion error (0.1%).

    SE- Seriani & Oliveira; Wave Motion, (45), 2008.

    FE- Zyserman et. al. Int. J. Numer. Meth. Engng, (85), 2003.

    20 10 5 4 3.3 2.85 2.5 2.2 210

    5

    0

    5

    10

    15

    20

    25

    n

    P,

    S

    Non Conforming FE

    Conforming FE

    Legendre SE

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 8 / 23

    Model Development Previous Work

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    9/31

    Model Development Previous Work

    SEM: Lamb Wave

    LW Propagation

    1 Kudela, P.,et al.; J Sound Vibr 300, (2007).

    2 Kudela, P., et al.; J Sound Vibr 302, (2007).

    3 Peng, H., Meng, G., and Li, F.; J Sound Vibr 320, (2009).

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 9 / 23

    Model Development Previous Work

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    10/31

    Model Development Previous Work

    SEM: Lamb Wave

    LW Propagation

    Coupling Platewith

    Actuator(s)

    Coupling Platewith Sensor(s)

    1 Kim, Y., Ha, S., and Chang, F. K.; AIAA Journal 46(3), (2008).

    2 Ha, S., and Chang, F. K.; Smart Mater Struct 19, (2010).

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 9 / 23

    Model Development Numerical Simulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    11/31

    p

    FEM vs SEM: Computational Efficiency

    2D Case

    Circular frequency

    Period time = 2

    Wavelength = cp 1

    Average element size h 1

    Time Step t h 1

    Number of elements Nel A

    h2

    2

    Number of time steps Nt =Tsimt

    Total ops O(3)

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 10 / 23

    Model Development Numerical Simulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    12/31

    p

    FEM vs SEM: Computational Efficiency

    2D Case

    Circular frequency

    Period time = 2

    Wavelength = cp 1

    Average element size h 1

    Time Step t h 1

    Number of elements Nel Ah2 2

    Number of time steps Nt = Tsimt

    Total ops O(3)

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 10 / 23

    Model Development Numerical Simulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    13/31

    SEM: 2D Shape Functions

    The 2D shape functions is the tensor product of the 1D Lagrange polynomials. The

    displacementueN|e and electric potential

    eN|e

    Mode shape of the A0 @ 450kHz

    Mode shape of the S0 @ 450kHz

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 11 / 23

    Model Development Numerical Simulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    14/31

    SEM: Mapping

    x

    y

    Ji,j = J(i, j)

    F (x, y)

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 12 / 23

    Model Development Numerical Simulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    15/31

    SEM: Mapping

    x

    y

    Ji,j = J(i, j)

    F (x, y)

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 12 / 23

    Model Development Numerical Simulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    16/31

    Spatial Integration Scheme: LGL Numerical Integration

    Finite Element (p=6)Gauss Quadrature

    x quadrature node, collocation node.

    Legendre Spectral ElementLGL Quadrature

    quadrature nodes is the collocation nodes.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 13 / 23

    Model Development Numerical Simulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    17/31

    FEM vs SEM: Computational Efficiency

    Computational Cost

    C =

    n

    2

    r1.0

    tB

    n

    r

    the required number of grid

    points per wavelength for 0.1 %disperison error.

    B is the average number of non-zeroterms in a row in the product of

    matrices M1K.

    The same procedure as in Dauksher & Emery; Int J

    Numer Meth Engng (45), 1999.

    2 x 2 3 x 3 4 x 4 5 x 5 6 x 6 7 x 7 8 x 8 9 x 9 10 x 10

    0.1

    0.5

    1

    5.0

    10

    Element dimensions

    C/Cref

    SEMt

    tstable= 1

    SEMt

    tstable= 0.5

    FEMt

    tstable= 1

    FEM

    ttstable = 0.5Cref

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 14 / 23

    Model Development Formulation

    http://goback/http://find/http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    18/31

    Strong FormAssumptions & Boundary Conditions

    p

    g

    e

    s

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries. Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 15 / 23

    Model Development Formulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    19/31

    Strong FormAssumptions & Boundary Conditions

    s

    p

    e

    g

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries. Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 15 / 23

    Model Development Formulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    20/31

    Strong FormAssumptions & Boundary Conditions

    s

    p

    g

    e

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries. Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 15 / 23

    Model Development Formulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    21/31

    Strong FormAssumptions & Boundary Conditions

    s

    p

    g

    e

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries. Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 15 / 23

    Model Development Formulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    22/31

    Strong FormAssumptions & Boundary Conditions

    s

    p

    g

    e

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries. Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 15 / 23

    Model Development Formulation

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    23/31

    Strong FormAssumptions & Boundary Conditions

    s

    p

    The structure material s was modeled as purely elastic.

    Traction and displacement continuity corresponding (i. e. idealbonding) at the interface g.

    Traction free external boundaries. Isolated non-electroded electrical boundaries.

    Uniform excitation voltage distribution on the electroded boundary.

    Zero initial conditions.

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 15 / 23

    Results

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    24/31

    Benchmark setup

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 16 / 23

    Results Time Domain Results

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    25/31

    Results @ 200 kHz

    The results of the FE simulation (ANSYS), and the SEM (5.5 toneburst).

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 17 / 23

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    26/31

    Results Time Domain Results

  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    27/31

    CPU Time

    The solver was written in Fortran 2003. The solver were built using Intel Fortran compiler, under Windows 7 with a 2.26 double

    core processor, and 4 GB RAM. Both cores were used in both ANSYS, and SEM solver (through the auto-parallelization of the

    compiler).

    SEM FEM

    Frequency (kHz) 200 450 200 450

    Number of Elements 845 1520 9123 45132

    CPU time (min) 14 32 32 54

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 19 / 23

    Conclusions

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    28/31

    Conclusions

    The strong coupling of piezoelectric equations in SEM settings offersa higher accuracy in the simulation.

    SEM is more accurate and computationally efficient than the FEMwith respect to modeling GW propagation in relatively complex thin

    walled structures, especially at high frequencies. Less numerical dispersion is achievable with linear increase in

    computational requirements. Valuable when modeling complexgeometry, material anisotropy, and heterogeneity.

    Versatile optimizations for different kinds of structures, for examplethe proposed element is optimized for thin walled sections (3 nodes inthe thickness direction and 6 in the longitudinal direction).

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 20 / 23

    Conclusions

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    29/31

    This work has been supported by the Natural Sciences and Engineering ResearchCouncil of Canada (NSERC).

    http://groups.google.com/group/semsolve

    Thank You

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 21 / 23

    Conclusions

    M E

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    30/31

    Matrix EquationsStrong Coupling

    Semidiscrete EquationsM 0

    0 0

    u

    +

    Kuu Ku

    KTu K

    u

    =

    0

    fe

    Condensed Form

    Mu +

    KuuKuK1K

    T

    u

    u = K1 fe MU + KU = F

    Time Integration

    MUn+1 + (1 + )KUn+1 KUn = F(tn+)

    Time step limited by CFL condition

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 22 / 23

    Conclusions

    M i E i

    http://find/http://goback/
  • 8/3/2019 Spectral Element Fast Solver for Piezoelectric Structures

    31/31

    Matrix Equations

    Iterative coupling per time step implemented by Kim, Y., Ha,

    S., and Chang, F. K.; AIAA Journal 46(3), (2008)

    Ku K = Pin p

    Mu = FextFint

    in s+p

    @ tn1u @ tn1

    (u,) @ tn

    One step simultaneous solution based on strong coupling in

    condensed form used in the present study

    MU + KU = Fin s+p

    Ramy Mohamed (UdS-GAUS) SEM Fast Solver for PZT Structures 3 Nov 2011 23 / 23

    http://find/http://goback/

Recommended