+ All Categories
Home > Documents > Spectroscopy 1

Spectroscopy 1

Date post: 07-Jul-2018
Category:
Upload: ervaishali
View: 215 times
Download: 0 times
Share this document with a friend

of 44

Transcript
  • 8/18/2019 Spectroscopy 1

    1/44

    Optical Electronic Spectroscopy 1

    Lecture Date: January 23 rd , 2008

  • 8/18/2019 Spectroscopy 1

    2/44

    The Electroma netic Spectrum

    • UV-Visible• X-ray

  • 8/18/2019 Spectroscopy 1

    3/44

    !hat is Electronic Spectroscopy"

    • Spectroscopy of the electrons surrounding an atom or amolecule: electron energy-level transitions

    Atoms: electrons are inhydrogen-like orbitals

    (s, p, d, f)

    Molecules: electrons are inmolecular orbitals (HOMO,

    L MO, !)

    ("he L MO of ben#ene)("he $ohr model for nitrogen)

    Fromhttp://education.jlab.org

  • 8/18/2019 Spectroscopy 1

    4/44

    Optical Electronic Spectroscopy

    • Definition: Spectroscopy in the optical (UV-Visible) rangeinvolving electronic energy levels excited byelectromagnetic radiation (often valence electrons )

    • !his lecture is related to the "high-energy# ("non-optical#)electron spectroscopy covered in the X-ray lecture

    • $ethods: % &tomic absorption % &tomic emission (e g ' -*+S) % $olecular UV-Visible absorption % ,uminescence .luorescence hosphorescence

  • 8/18/2019 Spectroscopy 1

    5/44

    De#initions o# Electronic $rocesses

    • +mission: radiation produced by excited molecules ionsor atoms as they relax to lo/er energy levels• &bsorption: radiation selectively absorbed by moleculesions or atoms accompanied by their excitation (orpromotion) to a more energetic state

    • ,uminescence: radiation produced by a chemical reactionor internal electronic process possibly follo/ingabsorption

  • 8/18/2019 Spectroscopy 1

    6/44

    %ore Electronic $rocesses

    • .luorescence: absorption of radiation to an excited statefollo/ed by emission of radiation to a lo/er state of thesame multiplicity % *ccurs about 01 -2 to 01-3 seconds after photon absorption

    • hosphorescence: absorption of radiation to an excitedstate follo/ed by emission of radiation to a lo/er state ofdifferent multiplicity % *ccurs about 01 to 01 -2 seconds after photon absorption

  • 8/18/2019 Spectroscopy 1

    7/44

    !hat is Emission"

    • &toms4molecules are driven to excited states (in this caseelectronic states) /hich can relax by emission ofradiation

    $ 5 heat $6

    • *ther process can be active such as "non-radiative#relaxation (e g transfer of energy by random collisions)

    $6 $ 5 heat

    ∆E 7 h ν

    &i her ener y

    Lo'er ener y

    • *+S 7 *ptical +mission Spectroscopy

  • 8/18/2019 Spectroscopy 1

    8/44

    !hat is ()sorption"

    • +lectromagnetic radiation travels fastest in a vacuum % 8hen +$ radiation travels through a substance it can be slo/edby propagation "interactions# that do not cause fre9uency

    (energy) changes:

    • &bsorption does involve fre9uency4energy changes sincethe energy of +$ radiation is transferred to a substanceusually at specific fre9uencies corresponding to naturalatomic or molecular energies % &bsorption occurring at optical fre9uencies involves lo/ to mid-

    energy electronic transitions

    i

    i

    c n ν =

    c 7 the speed of light ( ; 11 x 013 m4s)ν

    i 7 the velocity of the radiation in the medium in m4sn i 7 the refractive index at the fre9uency i

  • 8/18/2019 Spectroscopy 1

    9/44

    ()sorption and Transmission

    • !ransmittance:! 7 4

    1

    b

    1

    • &bsorbance: & 7 -log01 ! 7 log 01 14

    A is linear vs. b!(A preferred over T)

    Graphs from http://teaching.shu.ac.u /h b/chemistr"/tutorials/molspec/beers#.htm

  • 8/18/2019 Spectroscopy 1

    10/44

    The *eer+Lam)ert La'

    • !he

  • 8/18/2019 Spectroscopy 1

    11/44

    De iations -rom the *eer+Lam)ert La'

    • Deviations from s la/ (i e deviations from thelinearity of absorbance vs concentration): % 'ntermolecular interactions at higher concentrations % hemical reactions (species having different spectra) % ea= /idth4polychromatic radiation

    • s la/ is only strictly valid /ith single-fre9uency radiation• @ot significant if the band/idth of the monochromator is less

    than 0401 of the half-/idth of the absorption pea= at half-height

    %or an alternati&e &ie', see: $are, illiam * A More +edagogically ound "reatment of $eer s La': A eri&ation $ased on a .orpuscular-+robability Model, J. Chem. Educ. $%%%& 77, /0/*

  • 8/18/2019 Spectroscopy 1

    12/44

  • 8/18/2019 Spectroscopy 1

    13/44

    De iations #rom the *eer+Lam)ert La'

    • Deviations caused by use of polychromatic light on aspectrum in /hich changes a lot over the band/idth ofthe light

    • onsider t/o /avelengths a and b /ith εa and εb ε 6 7155, 155

    ε 6 7815, 015

    'oncentration ( )

    A b s o r

    b a n c e

    ( A )

    ++

    = −−+ bcbbcaba

    ba ba P P

    P P A ε ε 7575log 55

    55

    ε 6 7555, 7555

  • 8/18/2019 Spectroscopy 1

    14/44

    *asic .nstrument Layout #orOptical Spectroscopy

    • &bsorption:/adiation

    Source Sample!a elen th

    Selector Detector

    photoelectric transducer

    • .luorescence hosphorescence and Scattering:Sample !a elen thSelector Detector photoelectric transducer

    /adiationsource

    • +mission and chemi-luminescence

    Samplesource

    !a elen thSelector

    Detector photoelectric transducer

    (A1B angle)

  • 8/18/2019 Spectroscopy 1

    15/44

    (tomi ation: The Di idin Line #or (tomic %olecular

    • Samples used in opticalatomic (elemental)spectroscopy are usuallyatomiCed

    • !his destroys molecules (ifpresent) and leaves theatoms

    • !he UV-visible spectrum ofthe atoms is of interest notthe molecular spectrum

  • 8/18/2019 Spectroscopy 1

    16/44

    Elemental (nalysis

    • Elemental analysis % 9ualitative or 9uantitativedetermination of the elemental composition of a sample

    • *ptical electronic methods are heavily used in elementalanalysis

    • *ther elemental analysis methods not discussed here: % $ass spectrometry ($S) e g ' -$S % X-ray methods % *ther methods (radiochemical) % lassical

  • 8/18/2019 Spectroscopy 1

    17/44

    (tomic Electronic Ener y Le els

    • +lectronic energy leveltransitions in hydrogen % the simplest of all

  • 8/18/2019 Spectroscopy 1

    18/44

    (tomic Electronic Ener y Le els

    • Used to denoteenergy levels andlabel term (Erotrian)diagrams for thehydrogen atom

    %igure from the apphire 4lectronic pectroscopy oft'are +ackage, .a&endish 2nstruments Limited*

    • !erm symbols and electronicstates: used to precisely definethe state of electrons

    $*/$

    s,p,d,f,g(l value)

    $*/$

    +#/$

    jm j

    s l 70 +spinmultiplicity

    2j+1

    s 7 total spin 9uantum number j 7 total angular momentum 9uantum number l 7 orbital 9uantum number (s p d fF)m j 7 state

    $Term:

    ,evel:

    -tate:

  • 8/18/2019 Spectroscopy 1

    19/44

  • 8/18/2019 Spectroscopy 1

    20/44

    (tomic Electronic Ener y Le els• !he population of energy levels partly determines the

    intensity of an emission pea=

    • !he alues from .a#es pg 8/, "able 7)

  • 8/18/2019 Spectroscopy 1

    21/44

    (tomic Electronic Ener y Le els

    1 2111 01111 02111 ?1111

    1

    ?1111

    I1111

    H1111

    31111

    011111

    8avelength 4 nm

    ' n t e n s

    i t y

    4 & r b

    i t r a r y

    U n

    i t s

    The simulated spectrum for the sodium atom

  • 8/18/2019 Spectroscopy 1

    22/44

    (tomic Emission

    • !/o types of emission spectra: % ontinuum % ,ine spectra

    • +xamples: % ' -*+S (inductively-coupled

    plasma optical emissionspectroscopy) also =no/n as ' - &+S

    % ,'

  • 8/18/2019 Spectroscopy 1

    23/44

    Torches and (tomic Emission• Listory: +mission came first (study of sunlight by .raunhofer in

    030J identification of spectral "lines#) studied throughout the

    0311>s and early 0A11>s &tomiCer4

    +mission Source!emperature

    (B )

    .lame 0J11-;021

    lasma (e g' ) I111-3111

    +lectric arc I111-2111

    +lectric spar= M01111

  • 8/18/2019 Spectroscopy 1

    24/44

    $lasma Torches• lasma: a lo/-density gas

    containing ions and electronscontrolled by +$ forces

  • 8/18/2019 Spectroscopy 1

    25/44

    $lasma Torches• 'n the inductively-coupled

    plasma (' ) torch the

    sample /ill reside forseveral milliseconds atI111-3111G

    • *ther torches % directcurrent plasma

    • $icro/ave induced plasma

    +hoto by Ste e ! ech , http:99'''*cee*&t*edu9program?areas9en&ironmental9teach9smprimer9icpms9icpms*htm@Argon 05+lasma9 ample 052oni#ation

    • &n argon ' torch in action:

  • 8/18/2019 Spectroscopy 1

    26/44

    %ore on $lasma Torches

    iagram from Lagalante, Appl* pect* ;e&ie's* 3B, 7/7 (7///)

    • &nother vie/ of an argon ' torch:

  • 8/18/2019 Spectroscopy 1

    27/44

    (rc and Spar4 Sources #or (tomic Emission

    • &rc and spar= sources % used for 9ualitative analysis oforganic and geological samples % *nly semi-9uantitative because of source instability % Spar= sources achieve higher energies

    • Several mg of solid sample is pac=ed bet/eenelectrodes 0-;1 & of current is passed achievingseveral hundred volts potential

    • &pplications include metals analysis or cases /heresolids must be analyCed

  • 8/18/2019 Spectroscopy 1

    28/44

    (tomic Emission: %ono+ and $olychromators

    • Diffraction gratings are usedto select /avelengths (incombination /ith collimatinglens and slits)

    • +chelle (ladder) gratings:high dispersion and highresolution

    % 0111-0211 grooves4mmtypical for UV-Vis /or= % Ne9uire filters to isolate

    "orders# (i e n70)

    m λ 7 d (sin i 5 sin r )

  • 8/18/2019 Spectroscopy 1

    29/44

    (tomic Emission: Detectors

    • &t the end of the spectrometer photons are detected

    • ommonly used detectors: % hotomultiplier tubes ( $!) % dynamic range 01A

    %Solid-state detectors:• harge-coupled devices ( D) % 0D or ?D arrays

    (charge readout or "transfer# devices)• Silicon photodiodes /ith thousands of individualelements

    • Very sensitive very /ell-suited to echelle grating

    polychromators very fast

  • 8/18/2019 Spectroscopy 1

    30/44

    %odern .5$+OES Spectrometers

    • +xample system:Varian Vista N*

    • .eatures:0 &xial flame vie/

    ? +chelle gratingpolychromator ; D detector

    •D chips are

    often made of sub-arrays matched toemission lines

    %igure from >arian >ista +;O sales literature*

  • 8/18/2019 Spectroscopy 1

    31/44

    Detection Limits o# .5$+OES

    • !ypical detection limits(Varian Vista $ X):

    • onsiderations includethe number of emissionlines spectral overlap

    • ,inearity can spanseveral orders ofmagnitude

    • See also .igure 01-0; inS=oog et al

    Element !a elen th nmDetection Limit

    a6ial u LDetection limit

    radial u L &g ;?3 1H3 1 2 0 &l ;AH 02? 1 A I &s 033 A3 ; 0? &s 0A; HAH I 00

  • 8/18/2019 Spectroscopy 1

    32/44

    (tomic ()sorption 7 Early &istory

    • 'n the beginning % atomic emission /as the only /ay todo elemental analysis via optical spectroscopy

  • 8/18/2019 Spectroscopy 1

    33/44

  • 8/18/2019 Spectroscopy 1

    34/44

    (tomic ()sorption: Sources• Lollo/ cathode lamps % sputtering of an element of

    interest generating a line emission spectrum:

    • !ypical line/idths of 1 11? nm (1 1?P)• *ther && Sources: electrode-less discharge lamp (+D,) %

    see S=oog h A

  • 8/18/2019 Spectroscopy 1

    35/44

    (tomic ()sorption: %onochromators• !he monochromator filters out undesired light in &&

    (typical band/idths are 0 angstrom41 0 nm)

    • Unli=e ' -*+S /here the mono- or polychromatoractually analyCes the fre9uency % 'n other /ords % there is no need to scan the grating Oust set

    (aimed through a slit) and run

    • +chelle (ladder) gratings are popular:

    Figure from T. ang& in 0. 'a1es& ed& 23 ing4s Anal"tical nstrumentation 5andboo 6

  • 8/18/2019 Spectroscopy 1

    36/44

    Other -eatures o# (tomic ()sorption Systems

    • Sample nebuliCers: roduces aerosols of samples tointroduce into the flame (oxyacetylene is the hottest)

    • Detectors: ommon examples are photomultiplier tubesD (charge-coupled devices) and many more

    • $onochromator: removes emissions from the flame(flame is often =ept cool Oust to avoid emission)• $odulated source (chopper): also removes the remainingemissions from the flame !he signal of interest is givenan & modulation and passed through a high-pass filter

    • Spectral interferences: % &bsorption from other things (besides the element of interest) %other flame components particulates etcF Scattering cancause similar problems

    %

  • 8/18/2019 Spectroscopy 1

    37/44

    Detection Limits o# (tomic ()sorption Systems

  • 8/18/2019 Spectroscopy 1

    38/44

    &o' (re Elements (ctually (naly ed"

    • .or && and ' -*+S samples are dissolved or digestedinto solution• Samples are flo/ed into the flame4plasma and analyCed

    • !/o methods for 9uantitative analysis: % Standard calibration: the un=no/n sample>s

    absorbance4emission is compared /ith several references /hich"brac=et# the expected concentration (,inear relationship) % Standard addition: the un=no/n sample is divided into several

    portions *ne portion is directly analyCed the others have thereference material added in varying amounts !he linear

    relationship is determined and the intercept is used to calculatethe real concentration of the un=no/n

    • &t the end: the results yield elements in ppm ppbmg4m, etcF

  • 8/18/2019 Spectroscopy 1

    39/44

  • 8/18/2019 Spectroscopy 1

    40/44

    (tomic -luorescence• 'nstrumentation

    Sample !a elen thSelector Detector

    photoelectric transducer

    /adiationsource

    (A1B angle)

    • Sources include hollo/-cathode lamps

    electrodeless dischargetubes (brighter) and lasers(brightest)

    +icture from +erkin-4lmer

    L + d d * 4d ' S t L *S

  • 8/18/2019 Spectroscopy 1

    41/44

    Laser+.nduced *rea4do'n Spectroscopy L.*S• Qust li=e ' -*+S except a focussed laser creates the

    plasma:

    Figure from 7- Arm"/Ames

    Fiber optic

    El t l ( l i 'ith O ti l S t

  • 8/18/2019 Spectroscopy 1

    42/44

    Elemental (nalysis 'ith Optical Spectroscopy• & comparison of the techni9ues % the choice is not al/ays clear

    lasma +mission(' -*+S)

    && (.lame) &tomic.luorescence

    Dynamic Nange 8ide ,imited 8ideRualitative &nalysis Eood oor oor $ultielement Scan Eood oor oor

    !race &nalysis Eood Eood Eood

    Small samples Eood Eood Eood$atrix interferences ,o/ Ligh ,o/

    Spectralinterferences

    Ligh ,o/ ,o/

    ost $oderate ,o/ $oderate

    • Speciated analysis: !he analysis of atomic "species# elements inchemically distinguishable environments • +xamples of hyphenation to add "speciation#:

    % ' -*+S coupled to a L ,

    % && coupled to a E

  • 8/18/2019 Spectroscopy 1

    43/44

    &ome'or4 $ro)lemsOptical Electronic Spectroscopy

    hapter 3:roblem 3-A

    hapter 01:roblem 01-?

  • 8/18/2019 Spectroscopy 1

    44/44

    -urther /eadin

    Nevie/ S=oog et al hapters H-01Nevie/ aCes hapters ;-I

    *ptical +lectronic SpectroscopyL & Strobel and 8 N Leineman " hemical

    'nstrumentation: & Systematic &pproach# ;rd +d8iley (0A3A)


Recommended