+ All Categories
Home > Documents > Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2...

Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2...

Date post: 24-May-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
46
© SCKCEN, 2018 Spent fuel management in Belgium current status, prospects and P&T impact studies Eef Weetjens [email protected] Engineered and Geosystems Analyses Unit Waste and Disposal Expert Group
Transcript
Page 1: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Spent fuel management in Belgium current status, prospects and P&T impact studies

Eef Weetjens [email protected] and Geosystems Analyses Unit

Waste and Disposal Expert Group

Page 2: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

2001 Catholic University of Leuven: Bio-Engineer Environmental Technology

2001- … Performance and Safety Assessments geological disposal

2016 - … (currently part-time) Support Safety Report surface disposal

Bio Eef Weetjens

Relevant activities: impact of P&T on geological disposal in the framework of

EC project RED-IMPACT

NEA P&T expert group

Development of MYRRHA (an ADS pilot facility) at SCK•CEN

National project ASOF

Page 3: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Spent fuel in Belgium

Page 4: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Nuclear energy in Belgium

Belgium has NPP’s at Doel (4 PWR units) and Tihange (3 PWR units)

Together they provide about half of the domestic energy production

Page 5: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Spent fuel origin/quantities

26/06/2019

Reactor Net capacity Start of

operation

Foreseen

lifetime

Fuel

type

Assembly

length

Burn-up

(GWd/tHM)

%U5 #

Doel 1 433 MWe 15/02/1975 50 y

UOX 8 ft 36-47-55 4.3 2359Doel 2 433 MWe 01/12/1975 50 y

Tihange 1 962 MWe 01/10/1975 50 yUOX

12 ft36-45-62

45-50-50

4.2

7.7

5109

144Doel 3 1006 MWe 01/10/1982 40 y

UOX

MOXTihange 2 1008 MWe 01/02/1983 40 y

Doel 4 1033 MWe 01/07/1985 40 y

UOX 14 ft 36-44-62 4.1 3426Tihange 3 1046 MWe 01/09/1985 40 y

• Values for MOX in red

• Reference values in green44.88 4.2

Page 6: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Spent fuel (SF) management in the past

<1993: Reprocessing & reuse of Pu (and REPU) as MOX fuel

>1993: no more reprocessing

SF & waste projections at reactor end of life

630 tHM irradiated fuel reprocessed

66 tHM irradiated MOX fuel

390 canisters (150l) vitrified high-level waste HLW

432 canisters (150l) with compacted hulls and endpieces

4643 tHM irradiated UOX fuel

SF management options

Direct disposal

Reprocessing (partial/full)

Reprocessing and advanced partitioning for conditioning (P&C) and/or transmutation (P&T)

Former reprocessing activities and projections of nuclear waste

Ultimate waste

Page 7: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Belgian disposal concepts

Page 8: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Categorisation of nuclear waste in Belgium

26/06/2019

Page 9: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

ONDRAF/NIRAS planned (2021) surface disposal facility for category A waste

26/06/2019

!! Radiological limits, Cs and Sr waste

• activity concentration at different scales (waste drum, monolith, module, groups of modules and tumulus)

• total activity limitations for the disposal facility

Page 10: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

ONDRAF/NIRAS proposed geological repository for disposal of B & C waste

26/06/2019

Page 11: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Shielded waste packages: supercontainers and monoliths

26/06/2019

Supercontainer

Monolith-B

MOX SF UOX SF HLW

Bituminised

waste

Compacted

waste

Page 12: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Recent changes in repository lay-out and footprint

Working hypothesis: partial reprocessing

Reprocessing all (144) MOX assemblies, and

Reprocessing roughly about 1000 assemblies of each of the UOX (8ft, 12ft and 14ft) type fuel assemblies

26/06/2019

Page 13: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

1. Partitioning of (activation- and) fission products for transmutation (P&T)

or (interim) storage and conditioning in dedicated matrices (P&C)

Long-lived: 99Tc (214ky), 126Sn (230ky), 79Se (356ky), 93Zr (1.53My), 135Cs (2.3My), 107Pd (6.5My) and 129I (16.1My)

only 99Tc en 129I are theoretically fit for transmutation, but efficient transmutation is hard to achieve

Heat producing: 137Cs (30y) and 90Sr (29y)

Removal of Mo and noble metals higher glass loading

© SCK•CEN

Emphasis on optimisation of

repository footprint

P&T as a means to reduce the waste burden: FP

Emphasis on reduction of RN lifetime

Page 14: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

2. Separation of actinides to recycle/transmute

still high amount of fissile/fertile materials after SF irradiation

93,6% U

1,0% Pu

0,08% Np

0,18% Am

0,002% Cm

Rest: ~5% fission and activation products

At industrial level: in advanced reactor types with fast neutrons

generation IV reactors: critical reactors

ADS (Accelerator Driven Systems): sub-critical reactors

© SCK•CEN

To make optimal use of fissile resources

To reduce radiotoxicity

P&T as a means to reduce the waste burden: actinides

Page 15: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Impact of P&T on waste disposal

Page 16: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

EC RED-IMPACT project (2004-2007)/(NEA EG P&T (2006))

A1: reference “once through” cycle in PWRsUOX spent fuel

A2: mono-recycling of Pu as MOX in PWRsV-HLW, ILW, MOX spent fuel

A3: multi-recycling of Pu in (Na-cooled) FRsV-HLW, ILW

B1: multi-recycling of Pu and MA in (Na-cooled) FRsV-HLW, ILW

B2: double strata cycle of PWR’s en ADSV-HLW (UOX, MOX, ADS), ILW (MOX, ADS-pyro, ADS-oper)

open

cycle

partially

closed

cycle

closed

cycle

All of these are ‘equilibrium’ scenarios

Industrial fuel cycles

Innovative fuel cycles

Page 17: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Impact on natural U use

Natural U use for production of 1 TWh(e):

B2: 25% more efficient w.r.t. U consumption

Fast reactors (A3/B1): efficiency x 100 and more through use of natural or depleted U in

MOX instead of enriched U

Fuel cycle A1 A2 A3 B1 B2

Nat. U consumption kg/TWh(e) 20723 18448 986 106 15766

normalised 1 0.89 0.048 0.0051 0.76

A1: open cycle PWR with UOX fuelA2: mono-recycling of Pu as MOX in PWRsA3: multi-recycling of Pu in Na-cooled FRsB1: multi-recycling of Pu and MA in Na-cooled FRsB2: double strata cycle of PWR’s and ADS

Page 18: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Impact on radiotoxicity to be disposed

Radiotoxicity /10

if Pu is recycled

(multi-recycling)

Radiotoxicity /100

if Pu and MA are

recycled

Radiotoxicity = activity × dosefactor ingestion

Page 19: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Impact on long-term dose for repository in clay

Typical bimodal shape:

actinides are very well sorbed

in clay host rocks

Differences mainly due to

fate of I-129, and amounts of

ILW produced

Page 20: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Impact on waste volumes

Dimensions of waste packages in Red-Impact (not much more than an overpack)

Dimensions of ONDRAF/NIRAS supercontainers/monoliths

Fuel cycle A1 A2 A3 B1 B2

TOTAL HLW (m3/TWhe) 3.86 2.13 1.27 1.21 1.41

relative TOTAL HLW (-) 1.00 0.55 0.33 0.31 0.37

TOTAL HLW + ILW (m3/TWhe) 3.86 4.62 6.57 6.50 4.75

relative HLW +ILW (-) 1.00 1.20 1.70 1.68 1.23

Fuel cycle A1 A2 A3 B1 B2

TOTAL HLW (m3/TWhe) 27.01 22.85 15.82 14.96 17.53

relative TOTAL HLW (-) 1.00 0.85 0.59 0.55 0.65

TOTAL HLW + ILW (m3/TWhe) 27.01 27.25 25.19 24.33 23.44

relative HLW +ILW (-) 1.00 1.01 0.93 0.90 0.87

Page 21: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Impact on repository footprint

Theoretical maximum disposal density: decay heat calculations versus near field temperature criterion <100°C

Variants of B1: Impact of separation of 137Cs and 90Sr:

Cs and Sr streams are individually vitrified (waste loading 60%)

100 years decay storage

Fuel cycle A1 A2 A3 B1 B2

TOTAL HLW (m2/TWhe) 711 464 174 94 145

relative (-) 1.00 0.65 0.24 0.13 0.20

! No ILW considered

Fuel cycle B1.1 (40FP-60Cs-60Sr) B1.4 (60FP-60Cs-60Sr)

TOTAL HLW (m2/TWhe) 21.86 21.95

relative (-) 0.031 0.031

Factor ~10

Factor ~30

Page 22: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Application to Belgian geological repository: impact on gallery length (km)

MA+FP P&T case based on extrapolations from Oigawa et al. 2006

Page 23: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Application to Belgian geological repository: impact on footprint (km2)

Page 24: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Conclusions from impact studies so far

Geological disposal is needed in every scenario considered.

The time needed for isolation & confinement in geological disposal is equal in all

scenarios, because it depends on impact of mobile fission and activation

products, which are not targeted in any P&T scenario

Partitioning helps to reduce repository size

Full reprocessing: ↆ needed gallery length with factor 2

FP Partitioning (Cs/Sr decay): ↆ needed gallery length with factor 5

Transmutation helps to reduce the waste’s radiotoxicity

Pu multi-recycling: ↆ radiotoxicity with factor 10

Pu multi-recycling + MA transmutation: ↆ radiotoxicity with factor 100

Page 25: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Ongoing studies and projects

Page 26: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

SCK•CEN’s MYRRHA Project: an Accelerator Driven System

Page 27: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

REACTOR

BUILDINGLINAC

FRONT-

END

~ 500 m

~ 200 m

Masterplan full Myrrha

Page 28: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Key technical objective of the MYRRHA project: an Accelerator Driven System

MYRRHA – An Accelerator Driven System

Demonstrate the ADS concept at pre-industrial scale

Fast neutron source multipurpose and flexible

irradiation facility

Accelerator

particles protons

beam energy 600 MeV

beam current 2.4 to 4 mA

Reactor

power 65 to 100 MWth

keff 0,95

spectrum fast

coolant LBE

Target

main reaction spallation

output 2·1017 n/s

material LBE (coolant)

Page 29: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

MYRRHA application portfolio

Radio-isotopes

Fundamental

research

Multipurpose

hYbrid

Research

Reactor for

High-tech

Applications

Fission GEN IV Fusion

Source: SCK•CEN MYRRHA Project Team, MYRRHA Business Plan

SMR LFR

SF/ Waste

Page 30: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Governmental support for MYRRHA / phased approach

Belgium allocated 558 MEUR for 2019 – 2038:

Phase 1

287 MEUR investment (CapEx) for building MINERVA (Accelerator up 100 MeV + PTF) for

2019 – 2026

156 MEUR for OpEx of MINERVA for the periode 2027-2038

Phases 2-3

115 MEUR for further design, R&D and Licensing for 2019-2026

A stage-gate decision will be taken in 2026 whether to proceed with phases 2

and 3, either sequentially, or in parallel

Belgium requests to establish an International non-profit organization

(AISBL/IVZW) in charge of the MYRRHA facility for welcoming the international

partners

Page 31: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Governmental support for energy transition: the ASOF project

Advanced Separation for Optimal management of spent Fuel (2018-2022)

targets the development of new, innovative processes for the separation (WP1), conversion

(WP2) and conditioning (WP3) of spent fuel

WP1: MA separation (Am) and separation of short-living FP (Cs, Sr)

WP2: conversion of Am concentrate to oxide for production of Am transmutation targets

T2.1 study of production stability of the sol-gel and downblending processes through

simulant materials (see next slides and sciencedirect)

Page 32: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Manual microsphere fabrication

33

UO2(NO3)2 solution

1.) sol preparation

Ln(NO3)3 solution

Ln = Nd(III), Ce(III)

HMTA/urea solution

Metal blend

Metal blend

Sol silicone oil

ϑ = 90 °C

2.) gelation

1. petrolium ether (2x)

2. ammonia, w(NH3) = 12.5 %, (3x)

3.) washing and aging

4.) drying at air

5.) thermal treatment

Page 33: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Internal gelation: Gelification and post gelation treatment

34

washing

aging

before drying

after dryingdroplets during gelation

Page 34: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Pure U and U/Nd particle preparation

35

after gelation washing aging before drying after drying

U particles

χ(Nd) = 20 %

R(HMTA) = R(urea) = 1.2 𝑅 𝑥 =𝑛(𝑥)

𝑛(𝑀𝑛+)

U/Nd particles

Page 35: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Pure U vs. U/Ce particle preparation

36

after gelation washing aging before drying after drying

U particles

χ(Ce) = 5 %

precursor:

Ce(NO3)3∙6H2O)

R(HMTA) = R(urea) = 1.2 𝑅 𝑥 =𝑛(𝑥)

𝑛(𝑀𝑛+)

U/Ce particles

Page 36: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Preparation of U/Ce particles using Ce4+ as precursor

37

5 % Ce: succeeded

10 % Ce: agglomeration in

gelation column

Page 37: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Governmental support for energy transition: the ASOF project

Advanced Separation for Optimal management of spent Fuel (2018-2022)

targets the development of new, innovative processes for the separation (WP1), conversion

(WP2) and conditioning (WP3) of spent fuel

WP1: MA separation (Am) and separation of short-living FP (Cs, Sr)

WP2: conversion of Am concentrate to oxide for production of Am transmutation targets

T2.1 study of production stability of the sol-gel and downblending processes through

simulant materials (see next slides and sciencedirect)

WP3: conditioning of waste streams from partitioning scenarios

WP4: Impact of advanced separation on a geological repository

Page 38: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Cs and Sr waste: category A waste?

Decay storage

Cooling period: 100 years is generally considered in the literature

To be checked if that would be enough to ‘declassify’ waste from C to B

Radiotoxicity: comparison with

disposal (capacity) limits of cat. A facility

Cs-137

– OLI (eastern tumulus): 5.57E+13 Bq

– BLI: 2.42E+14 Bq

Sr-90

– OLI (eastern tumulus): 2.20E+12 Bq

– BLI: 9.57E+12 Bq

Cs waste will also contain long-living

isotope Cs-135 (t1/2: 2.3E+6 a)

26/06/2019

time (y) Cs-137 Sr-90

0 1.34E+19 9.01E+18

30 6.70E+18 4.38E+18

60 3.35E+18 2.13E+18

90 1.68E+18 1.03E+18

120 8.38E+17 5.02E+17

150 4.19E+17 2.44E+17

180 2.09E+17 1.18E+17

210 1.05E+17 5.75E+16

240 5.24E+16 2.79E+16

270 2.62E+16 1.36E+16

300 1.31E+16 6.59E+15

330 6.54E+15 3.20E+15

360 3.27E+15 1.56E+15

390 1.64E+15 7.56E+14

420 8.18E+14 3.67E+14

450 4.09E+14 1.78E+14

480 2.05E+14 8.66E+13

510 1.02E+14 4.21E+13

540 5.11E+13 2.04E+13

570 2.56E+13 9.93E+12

600 1.28E+13 4.82E+12

630 6.39E+12 2.34E+12

660 3.20E+12 1.14E+12

Page 39: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

General conclusions

Page 40: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Conclusions (1/2)

Present Belgian context:

Implementation of the law on nuclear phase-out

Suspension of reprocessing of commercial spent fuel

Belgium considers a broad spectrum of possible SF management scenarios

Direct disposal

Full (TOPMOX) or partial reprocessing

footprint /5

P&C (advanced separation to optimize waste management, with focus on

Cs/Sr separation)

P&T (decrease of radiotoxicity with focus on transmutation of Am in ADS)

footprint /10?

Page 41: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Conclusions (2/2)

Growing Consensus on impact of P&T:

Thermal output can be significantly reduced by partitioning of Cs/Sr (P&C) and Am (P&T)

Radiotoxicity can be significantly decreased in case of Pu (FR) and Am (ADS) recycling

No impact on long-term dose from a geological repository (determined by fission products)

No impact on already produced (conditioned) category C and B waste

New (cat. B) waste forms will be produced in P&C/ P&T scenarios

Most steps in advanced fuel cycles are in R&D phase

difficult to assess the actual benefits for GDF and for the fuel cycle as a whole

Realistic full life cycle analysis is necessary

Page 42: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Thank you

Page 43: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Reserve slides

Page 44: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Decay heat for a reference UOX assembly

26/06/2019

Page 45: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Radiotoxicity (actinides) of a reference spent fuel assembly

26/06/2019

Page 46: Spent fuel management in Belgium - Nucleus · e 15/02/1975 50 y UOX 8 ft 36-47-55 4.3 2359 Doel 2 433 MW e 01/12/1975 50 y Tihange 1 962 MW e 01/10/1975 50 y UOX 12 ft 36-45-62 45-50-50

© SCKCEN, 2018

Radiotoxicity (FAPs) of a reference spent fuel assembly

26/06/2019


Recommended