+ All Categories
Home > Documents > Spin and Magnetic Moments (skip sect. 10-3)

Spin and Magnetic Moments (skip sect. 10-3)

Date post: 14-Jan-2016
Category:
Upload: aulani
View: 24 times
Download: 0 times
Share this document with a friend
Description:
Spin and Magnetic Moments (skip sect. 10-3). Orbital and intrinsic (spin) angular momentum produce magnetic moments coupling between moments shift atomic energies Look first at orbital (think of current in a loop) - PowerPoint PPT Presentation
Popular Tags:
23
P460 - Spin 1 Spin and Magnetic Moments (skip sect. 10-3) Orbital and intrinsic (spin) angular momentum produce magnetic moments coupling between moments shift atomic energies · Look first at orbital (think of current in a loop) · the “g-factor” is 1 for orbital moments. The Bohr magneton is introduced as the natural unit and the “-” sign is due to the electron’s charge L g L mvr L but r area current A I b l l m q r qv 2 2 2 e b m e 2 l b l zl b l l m g l l g l l L ) 1 ( ) 1 ( 2
Transcript
Page 1: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 1

Spin and Magnetic Moments(skip sect. 10-3)

• Orbital and intrinsic (spin) angular momentum produce magnetic

moments

• coupling between moments shift atomic energies

· Look first at orbital (think of current in a loop)

· the “g-factor” is 1 for orbital moments. The Bohr magneton is

introduced as the natural unit and the “-” sign is due to the electron’s

charge

LgL

mvrLbutr

areacurrentAI

b

llmq

rqv

2

22 e

b m

e

2

lblzlbll mgllg

llL

)1(

)1(2

Page 2: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 2

Spin • Particles have an intrinsic angular momentum - called spin though nothing is “spinning”

• probably a more fundamental quantity than massinteger spin Bosons half-integer

Fermions

Spin particle postulated particle

0 pion Higgs, selectron

1/2 electron photino (neutralino)

1 photon

3/2

2 graviton

• relativistic QM Klein-Gordon and Dirac equations for spin 0 and 1/2.

• Solve by substituting operators for E,p. The Dirac equation ends up with magnetic moment terms

and an extra degree of freedom (the spin)

22222 :: mpEDmpEKG

Page 3: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 3

Spin 1/2 expectation values • similar eigenvalues as orbital angular momentum (but SU(2)). No 3D “function”

• Dirac equation gives g-factor of 2

200232.2

,,

||...||,)1(

,

21

212

432

23

212

21

22

sSg

s

z

z

kijkji

g

SS

Sfor

ssSssS

SSS

bs

Page 4: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 4

Spin 1/2 expectation values • non-diagonal components (x,y) aren’t zero. Just indeterminate. Can sometimes use

Pauli spin matrices to make calculations easier

• with two eigenstates (eigenspinors)

0

0

01

10

10

01

10

01

2

22

2

432 2

i

iSS

S

SS

yx

z

ii

2

2

1

0

0

1

eigenvalueS

eigenvalueS

z

z

Page 5: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 5

Spin 1/2 expectation values • “total” spin direction not aligned with any component.

• can get angle of spin with a component

3

1

43

21

cos

S

Sz

Page 6: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 6

Spin 1/2 expectation values • Let’s assume state in an arbitrary combination of spin-up and spin-down states.

• expectation values. z-component

• x-component

• y-component

1|||| 22

bawithb

aba

)(

10

01||

222

2**

ba

b

abaSS zz

)(0

0 **2

2

2** abbab

abaSx

)(0

0 **2

2

2** abbaib

a

i

ibaS y

Page 7: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 7

Spin 1/2 expectation values example• assume wavefunction is

• expectation values. z-component

• x-component

• Can also ask what is the probability to have different components. As normalized, by

inspection

• or could rotate wavefunction to basis where x is diagonal

361

2**

2

2

2**

)1(22)1()(

0

0

iiabba

b

abaSS x

tx

31

21

61

65

61

2

65

2

)()(

)(

x

x

Syprobabilit

Syprobabilit

322

2

642

2622

2

)(

baS

bSaS

z

zz

2

16

1i

Page 8: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 8

• Can also determine

• and widths

2

31222

4**

4**

42

4**

4**

42

4**

4**

42

222

222

222

)(10

01

10

01

)(0

0

0

0

)(01

10

01

10

SSSS

bbaab

abaS

bbaab

a

i

i

i

ibaS

bbaab

abaS

zyx

z

y

x

))(1(4

)(

))(1(4

)(

))(1(4

)(

2**2

222

2**2

222

2**2

222

bbaaSSS

abbaSSS

abbaSSS

zzz

yyy

xxx

Page 9: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 9

• Can look at the widths of spin terms if in a given eigenstate

• z picked as diagonal and so

• for off-diagonal

0)11()(

40

1

10

01

10

0101

4

222

2

42

2

2

zzz

z

SSS

S

Widths- example

0

1

4)(

40

1

01

10

01

1001

00

1

0

001

2222

2

42

2

2

2

xxx

x

x

SSS

S

S

Page 10: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 10

• Assume in a given eigenstate

• the direction of the total spin can’t be in the same direction as the z-component (also true for l>0)

• Example: external magnetic field. Added energy

puts electron in the +state. There is now a torque

which causes a precession about the “z-axis” (defined by the magnetic field) with Larmor frequency of

Components, directions, precession

0

1

31

232

2

cos

S

Sz BS

BE s

BSB bsgs

Bg bs

z

Page 11: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 11

• Hamiltonian for an electron in a magnetic field

• assume solution of form

• If B direction defines z-axis have Scr.eq.

• And can get eigenvalues and eigenfunctions

Precession - details

ti

ti

be

aet

b

a

m

egB

m

egB

)()0(

1

0

40

1

4

Bm

egH

4

2S

)(

)(

t

t

dt

diH

10

01BB

10

01

4m

Beg

dt

di

Page 12: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 12

• Assume at t=0 in the + eigenstate of Sx

• Solve for the x and y expectation values. See how they precess around the z-axis

Precession - details

ti

ti

e

et

b

a

b

a

b

a

2

1)(

1

1

2

1

201

10

2

ti

eebaab

iS

tee

abbaS

titi

y

titi

x

2sin2

)2

(2

)(2

2cos2

)2

(2

)(2

22**

22**

Page 13: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 13

• can look at any direction (p 160 and problem 10-2 or see Griffiths problem 4.30)

• Construct the matrix representing the component of spin angular momentum along an arbitrary radial direction r. Find

the eigenvalues and eigenspinors.

• Put components into Pauli spin matrices

• and solve for its eigenvalues

Arbitrary Angles

kjir ˆcosˆsinsinˆcossinˆ

cossinsincossin

sinsincossincos

i

iSr

10|| ISSr

Page 14: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 14

•Go ahead and solve for eigenspinors.

•Gives (phi phase is arbitrary)

•if r in z,x,y -directions

kjir ˆcosˆsinsinˆcossinˆ

cossinsincossin

sinsincossincos

i

iSr

)tan(cos

sin

sin

)cos1(

)sin(cossincos

1

2sincos1

2

2

useeae

ab

aiba

b

aforS

ii

r

2

2

2

2

cos

sin1

sin

cos

i

ri

r efor

e

21

2

2

21

22

21

21

212

1

2

,,:

,0,:

1

0,

0

10:

i

iy

x

z

Page 15: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 15

Combining Angular Momentum • If have two or more angular momentum, the combination is also an eigenstate(s) of

angular momentum. Group theory gives the rules:

• representations of angular momentum have 2 quantum numbers:

• combining angular momentum A+B+C…gives new states G+H+I….each of which satisfies “2 quantum number and number of states” rules

• trivial example. Let J= total angular momentum

stateslllllm

l

12,1...1,

......,1,,0 23

21

221sin

,,0 21

21

21

doubletdoubletglet

JJSLif

SSLLSLJ

z

ii

kijkji SiSS ,

Page 16: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 16

Combining Angular Momentum • Non-trivial examples. add 2 spins. The z-components add “linearly”

and the total adds “vectorally”. Really means add up z-component and then divide up states into SU(2) groups

1322

sin

0,01,0,1,1

1

0

0

1

,

21

21

21

21

21

21

21

21

21

21

221

121

221

1

glettripletdoubletdoublet

JJANDJJ

SSJ

J

SSwithSSif

zz

z

zz

4 terms. need to split up. The two 0 mix

Page 17: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 17

Combining Angular Momentum • add spin and orbital angular momentum

2423

,,,

,,,,,

101

1,0,11,

21

21

21

23

23

23

21

21

21

21

23

21

21

21

21

21

doubletquartetdoublettriplet

JJANDJJ

J

LSwithLSif

zz

z

zz

Page 18: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 18

Combining Angular Momentum • Get maximum J by maximum of L+S. Then all possible combinations

of J (going down by 1) to get to minimum value |L-S|

• number of states when combined equals number in each state “times” each other

• the final states will be combinations of initial states. The “coefficients” (how they are made from the initial states) can be fairly easily determined using group theory (step-down operaters). Called Clebsch-Gordon coefficients

• these give the “dot product” or rotation between the total and the individual terms.

mlmlmm

mlmlmm

mmmmm

mmmmtotalml

mmmmtotalml

21

21

2121

2121

2121

Page 19: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 19

Combining Angular Momentum

•Clebsch-Gordon coefficients

•these give the “dot product” or rotation between the total and the individual terms. “easy” but need to remember what different quantum number labels refer to

mlmlmm

mlmlmm

mmmmm

mmmmtotalml

mmmmtotalml

21

21

2121

2121

2121

Page 20: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 20

Combining Angular Momentum • example 2 spin 1/2• have 4 states with eigenvalues 1,0,0,-1. Two 0 states mix to form eigenstates of S2

• step down from ++ state

• Clebsch-Gordon coefficients

1

00

1

,,,

z

zz

z

S

SS

S

)1)((

21

21

mlmlC

SSS

SSS zzz

orthogonalml

ml

mlmlCmlS

S

CS

CS

)(2

10,0

)(2

10,1

0,120,1)1,1(1,1

)2

(2

),(

),(

21

21

2

21

21

1

2

1

Page 21: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 21

Combining Ang. Momentum • check that eigenstates have right eigenvalue for S2

• first write down

• and then look at terms

• putting it all together see eigenstates

21212122

21

21212122

21

2122

21

221

2

2

222

2)(

SSSSSSSS

SSSSSSSS

SSSSSSS

zz

yyxxzz

yx iSSS

)(2

1X

XXSSSS

SSSSand

SSSSwith

XXSS

XXS

XSSXS

zz

22112

212

221

1212

21

222

221

21

21

)(

0

0

)2

)(2

(22

4

3

4

3))()((

2

1

XXXS

0

2)1( 2

21

43

4322

Page 22: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 22

• L=1 + S=1/2

• Example of how states “add”:

• Note Clebsch-Gordon coefficients (used in PHYS 374 class for Mossbauer spectroscopy).

23

23

21

21

23

21

21

21

23

21

21

21

23

21

21

21

23

21

21

23

23

21

21

1

0

1

1

0

1

JJJSL zzz

3

)2(,

3

1 sqrt

2 terms

21

31

21

3

)2(21

21

21

3

)2(21

31

21

23

01

01

sqrt

sqrt

zz

mj

mj

SL

Page 23: Spin and Magnetic Moments (skip sect. 10-3)

P460 - Spin 23

• Clebsch-Gordon coefficients for different J,L,S


Recommended