+ All Categories
Home > Documents > Spinning Dust Emission: A New Window in Astrophysics · • Spinning dust sensitive to Tgas—> can...

Spinning Dust Emission: A New Window in Astrophysics · • Spinning dust sensitive to Tgas—> can...

Date post: 29-Jun-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
30
Radio User’s Workshop, Daejeon, August 16-17, 2018 0 25 50 75 100 125 X 0 20 40 60 80 100 120 Y μJy/pixel 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 MWC 758 at 33 GHz simulation Probing Nanoparticles and Disk Imaging Spinning Dust Emission: A New Window in Astrophysics V892 Tau Nanodiamond Thiem Hoang (KASI & UST)
Transcript

Radio User’s Workshop, Daejeon, August 16-17, 2018

0 25 50 75 100 125X

0

20

40

60

80

100

120

Y

µJy/pixel

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007MWC 758 at 33 GHz simulation

Probing Nanoparticles and Disk Imaging

Spinning Dust Emission: A New Window in Astrophysics

V892 TauNanodiamond

Thiem Hoang (KASI & UST)

Planck Collaboration

Anomalous Microwave Emission (AME) Discovery & Spinning Dust

▪ 1996 Kogut et al. found emission excess at 31 GHz▪ 1997 Leitch et al. found emission excess at 14.5 & 31GHz (AME intro)▪ 1998 Draine & Lazarian proposed spinning dust by very small grain (PAH)

Planck Collaboration 2011, A20

Planck (2011) discovered 4 new AME regions

Spinning dust provides a great fit to AME from Planck

free-free

thermal dustspinning dust

Perseus CloudPlanck Collaboration+2011

5

Planck (2013) discovered 98 clouds with AME

Spinning dust becomes an accepted CMB foreground

6Copyright of Planck Collaboration

Physics of Spinning Dust EmissionRapidly spinningDipole moment

• Electric Dipole: polarity, e.g., polar bonds (C-H, Si-H), asymmetric change distribution on grain surface.

• Grain rotation: gas-grain collisions, UV photons and FIR emission

Ped (ω) =23

µ2ω4

c3

Emission Power Rotation Frequency

Spinning Dust Emission Model

PAH

μ

ĴĴ

ω

a1

μ

Hoang, Draine, & Lazarian (2010) Hoang, Lazarian, & Draine (2011) spinning &

wobblinga2

a1θ

μ

Draine & Lazarian (1998)spinning only

Emissivity integrated over size distribution:

jνnH

=14π

da 1nHdndaamin

amax∫ 4πω2 fω 2πPed (ω)

Spinning Dust Emission Spectrum

• Peak emissivity increases by a factor ~ 2.• Peak frequency increases by a factor ~1.4 to 1.8.

our result

Hoang, Draine & Lazarian (2010)

Draine & Lazarian (1998)

old

new

a2

a1

Ĵ

θ

μ

a3

Key Developments of Spinning Dust Theory

AME from nanosilicates: Hoang + (2016), Hensley & Draine (2017) AME polarization: Hoang + (2013), Hoang & Lazarian (2016a, 2017)

Dickinson, et al., incl Thiem Hoang (2018, A&A Review)

What are the possible carriers of AME?1. Spinning dust emission:

1. spinning carbonaceous nanoparticles (PAHs; nanodiamonds)

2. spinning silicate nanoparticles (Hoang et al. 2016) 3. spinning iron nanoparticles (Hoang & Lazarian 2016)

2. Magnetic Dipole Emission

NanosilicatePAH molecule Iron Nanoparticle

spinning nanosilicates (Hoang et al. 2016)

free-free

thermal dust

spinning dust

Planck (2011)

spinning PAH (Planck collaboration 2011)

spinning iron nanoparticle (Hoang & Lazarian 2016)

13

Spinning Dust: A New Tool in Astrophysics

• To Probe Cosmic Nanoparticles • To image circumstellar disk and dense cores

Can we use spinning dust to trace nanoparticles in the disk interior?

• Nanoparticles play important roles in disks (e.g., MRI activity, ambipolar diffusion

Why nanoparticles?

• Can trace nanoparticles in any regions (cf. Mid-IR)

Advantages over mid-IR

15 Credit: internet

Current Technique: Tracing PAHs/nanoparticles with Mid-IR Emission

H C

• Mid-IR emsision need UV photons to excite PAHs

16

Mid-IR tracer of PAHs in circumstellar disksIR Emission from disks (Seok & Li 2017)

]

• Strong PAH features detected (Acke + 2004, Habart + 2004)

• 9.7 micron Silicate emission features detected in some disks

• Mid-IR only traces PAHs in the surface layer

Modeling Spinning Dust Emission from Disks

• Observations provide smoking-gun evidence for spinning PAHs and spinning nano silicates

• Spindust trace Nanodust in the entire disk (cf. Mid-IR)

• PAHs/VSG well mixed to the gas due to turbulence (Dullemond + 2005)

• Fragmentation produces PAHs/VSG

• Grain coagulation and dust settling

spinPAH

TE, a

max

=1m

m

Herbig AeBe

spinPAH+TE

101 102Frequency (GHz)

10−1

100

101

102

F ν(mJy)

spinPAH, (a0,σ) = (2A, 0.2)(a0,σ) = (3A, 0.3)(a0,σ) = (4A, 0.4)(a0,σ) = (5A, 0.5)

Spinning Dust Emission from Disks

• Spinning dust dominates over thermal dust at freq < 70 GHz

T-Tauri

spinPAH

TE

spinPAH+TE

101 102

Frequency (GHz)

10−1

100

101

102

F ν(m

Jy)

spinPAH, (a0,σ) = (2A, 0.2)(a0,σ) = (3A, 0.3)(a0,σ) = (4A, 0.4)(a0,σ) = (5A, 0.5)

Bigger PAH

Small PAH

Hoang et al. 2018, ApJ, 862, 116Posted on March 29, ArXiv: 1803.11028

Hoang et al. 2018, ApJ, 862, 116

Spinning Dust successfully reproduce Emission Excess from Herbig Ae/Be Disks

First Detection of AME from Herbig Disks

CMB B-modes

Solar flare,Corona heating

V892 Tau

• AME might not originate from nanodiamond

• Spinning PAHs/Nanosilicates cannot be ruled out

June 12, 2018

Nanodiamond

345 GHz

Toward Disk Imaging at multi wavelengths

How will disks look like in ALMA Band 1 and SKA?

SPHERE (NIR)

ALMA (sub/mm)

Cm Imaging MWC 758 with Spinning Dust

0 25 50 75 100 125X

0

20

40

60

80

100

120

Y

µJy/pixel

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 25 50 75 100 125X

0

20

40

60

80

100

120

Y

µJy/pixel

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 25 50 75 100 125X

0

20

40

60

80

100

120

Y

µJy/pixel

0.000

0.002

0.004

0.006

0.008

0.010

Simulation from Hoang et al. 2018

22 GHz 33 GHz

60 GHz 80 GHz

• Spinning dust sensitive to Tgas—> can trace gas thermal structure • Intra-cavity may be due to the Tgas dependence of spinning dust

Cavity

345 GHz, ALMA Band 7

Dong et al. (2018)

0 25 50 75 100 125X

0

20

40

60

80

100

120

Y

µJy/pixel

0.000

0.002

0.004

0.006

0.008

0.01044 GHz

23

Planck 2013 discovered 98 clouds with AME

Abundance of Nanoparticles Constrained by Planck AME Data

Constraining Abundance of Nanoparticles by Planck AME Data

• PAHs/Nanoparticles decreases with NH

• Dust coagulation occurs in dense regions

Vinh & Hoang (2018, to be submitted)

NH(cm-2)

Nan

o Ab

unda

nce

(%)

25

Summary and Discussion• AME is real, lots of observational evidence for spinning dust• Spinning dust is an accepted emission mechanism in astrophysics• Future radio observations (ALMA Band 1, SKA, ngVLA) should use spinning dust as a tool

• To study nanoparticles in disks and dense regions• Imaging disks and gas temperature probe• Remaining issue: AME polarization and nanoparticle alignment

26

Future Perspectives

Dickinson et al. 2017, including T. Hoang

27

Spinning dust in star forming regions

31 GHz

Dickinson + 2009

28

Spinning dust in star forming complexes W43 W47

Genova-santos et al 2017

29

Spinning dust in nearby galaxy NGC 6946

AMI Consortium: Scaife+2010

Murphy+2010

Thank You Very Much!감사합니다!


Recommended