+ All Categories
Home > Documents > Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf ·...

Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf ·...

Date post: 07-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
78
Spintronic devices P.P.Freitas INESC-Microsistemas e Nanotecnologias/ Instituto Superior Técnico (Lisbon,PT) and International Iberian Nanotechnology Laboratory (Braga, PT) http://www.inesc-mn.pt Frontiers on Magnetism, Benasque, February 2014
Transcript
Page 1: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Spintronic devices

P.P.Freitas

INESC-Microsistemas e Nanotecnologias/

Instituto Superior Técnico (Lisbon,PT)

and

International Iberian Nanotechnology Laboratory

(Braga, PT)

http://www.inesc-mn.pt

Frontiers on Magnetism, Benasque, February 2014

Page 2: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

-Present markets: Data storage : PC+consumer electronics Sensors: automotive: current, power, position-linear and angular, battery cell monitoring

navigation systems-digital compassMRAM: 1st generation

-Emerging markets: NVM: STT-RAM (MRAM), M-FPGA ( integrated Sensor + CMOS)

-New sensor markets:Low power ( <mW) , low noise (nT/sqrt(Hz),medium landscape (<5mm2) integrated sensors-point of care biosensor arrays (MR sensor arrays, microfluidics, CMOS, packaging)-scanning sensor arrays (high resolution current imaging, non destructive testing)(MR, CMOS, packaging)-remote sensor networks ( hybrid RF antenna-MR sensor microsystems)

Very low noise -pT/sqrt(Hz)-integrated sensors for low frequency (1Hz) applications-MCG/MEG-hybrid MEMS-flux guide-MR sensor arrays-smart microelectrode arrays for neuroelectronics

Page 3: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

1-Data Storage

Courtesy of Seagate

100,000

All Drives

Industry Trend up to 1991

(30% CAGR)

Industry AD Trend 1991-1996

(60% CAGR)

10,000

100

1000

1010

111980

1985 1990 20001995 2005

Are

al D

ensity (

Mbits/in

2)

Industry Drive Demo

Industry AD Trend

1996-2001 (100% CAGR)

Future Trend

Inductive

AMR

CIP Spin-Valve

2007,260 Gbit/in2)

MTJ+PR

GMR GMR heads

TMR TMR heads

2011,600 Gbit/in2)

Page 4: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Technology Transitions in Magnetic Recording

*After S.Iwasaki, IEEE Trans. on Magnetics (1985)

CPP Transducers

Tunneling and SV

Perpendicular Recording

B

L

dP

Perpendicular: BL 0; Hd 0

Perpendicular Recording

Page 5: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

MTJ-MRAMCross section

MOSFET

500A

P-type Si substrate

300A

500A 3000A

STI

N+diffuision

GC

C0

M0

C1

M1

CX MX

MTJ

M2

II-SOLID STATE NON-VOLATILE MEMORIES

Page 6: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

3 MRAM Approaches

50nm

50nm<L<150nm

<0,5ns

Iw # Jc.L2/AR

Elliptic with AR~1,5

Shape anisotropy

~1-2ns~1-2nsWriting speed

<25nm50nm Superparamagnetic

limit

25nm<L<200nmDown to L=200nm Useable range

Iw # Jh.L2Iw # 2480.(AR-1).t.8.Ms/ LWriting current

CircularElliptic with AR~1,5Bit shape

Exchange biased

storage layerShape anisotropyStabilization scheme

50nm

50nm<L<150nm

<0,5ns

Iw # Jc.L2/AR

Elliptic with AR~1,5

Shape anisotropy

~1-2ns~1-2nsWriting speed

<25nm50nm Superparamagnetic

limit

25nm<L<200nmDown to L=200nm Useable range

Iw # Jh.L2Iw # 2480.(AR-1).t.8.Ms/ LWriting current

CircularElliptic with AR~1,5Bit shape

Exchange biased

storage layerShape anisotropyStabilization scheme

FIMS writing TAS+ FIMS writing CIMS writing

IW#(AR-1).t.Ms/L

L>200nm(no toggle)

25nm

35nm<L<200nm

35nm 50nm

50nm<L<150nm

<0,5ns

Iw # Jc.L2/AR

Elliptic with AR~1,5

Shape anisotropy

~1-2ns~1-2nsWriting speed

<25nm50nm Superparamagnetic

limit

25nm<L<200nmDown to L=200nm Useable range

Iw # Jh.L2Iw # 2480.(AR-1).t.8.Ms/ LWriting current

CircularElliptic with AR~1,5Bit shape

Exchange biased

storage layerShape anisotropyStabilization scheme

50nm

50nm<L<150nm

<0,5ns

Iw # Jc.L2/AR

Elliptic with AR~1,5

Shape anisotropy

~1-2ns~1-2nsWriting speed

<25nm50nm Superparamagnetic

limit

25nm<L<200nmDown to L=200nm Useable range

Iw # Jh.L2Iw # 2480.(AR-1).t.8.Ms/ LWriting current

CircularElliptic with AR~1,5Bit shape

Exchange biased

storage layerShape anisotropyStabilization scheme

FIMS writing TAS+ FIMS writing CIMS writing

25nm

25nm<L<150nm

NEXT MRAM project ( 2000-2005)

Page 7: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

III) Magnetoresistive Sensors in AutomobileApplications, other industrial applications

+ Navigation Systems

+ Electric Batteries Safety Systems

+ Acceleration Sensors for Airbags (MEMS+Magnetoresistive)

Advantages:• Contactless, wear-free operating

principle for angular and linear

measurement

• Large air gap

• Large permissible air gap tolerances

• Withstands extreme operating

conditions

• Full redundancy possible

• Failsafe design

• Flexible integration

• High bandwidth for measurements

in time slots of less than 100 ms

*Information from Sensitec

website

At least 15 different types of sensors using magnetoresistive

devices are already being integrated in automobiles

Page 8: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

DNA targets

DNA probes

Substrate

Passivation

Magnetic labels

Spintronic transducer

Hybridization of DNA probe and target

IV-MagnetoResitive (MR) Biochips:diagnostics

Trends in Biotechnology, August 2004

Page 9: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

V-Biomedical imaging applications

• Requirements:• Magnetoencephalography-fT• Magnetocardiography –pT• Low field MRI-fT

• Increase GMR/TMR sensitivity, decrease noise background

• Devices:• GMR/TMR + fluxguide hybrid sensors• MEMS + GMR/TMR hybrid sensors

Page 10: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

MR sensors: basics1-Anisotropic Magnetoresistance

( intrinsic property)

3d moments

J

3d moments

J

M J

M J

Non spherical

3d wave functions

Different Scattering

cross sections

J.Smit, Physica 16, 612 (1951); T.R.McGuire and R.I.Potter, IEEE Trans.Magn., 11, 1018(1975);

O.Jaoul, I.A.Campbell, and A.Fert, J.Magn.Magn.Mater., 5, 23(1977); L.Berger, AIP Conf.Proc., .34,

355(1976); L.Berger, P.P.Freitas, J.D.Warner, and J.E.Schmidt, J.Appl.Phys., .64, 5459 (1988).

Page 11: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

AMR in thin Ni80Fe20 films

0 200 400 600 800

0.5

1.0

1.5

2.0

2.5

3.0

d:N

ord

iko_3600\

CN

F_N

iFe_C

NF

_A

pril2

004.o

pj

Ta 50Å/ NiFe X/ Ta 50Å

Nordiko 3000

Ta 50Å/ NiFe X/

NiFe @ 2 sccm Xe

NiFe @ 4 sccm Xe

AM

R [

%]

NiFe nominal thickness [Å]

(Ni80Fe20)60Cr40 buffer

Ta buffer

Buffer controls grain size, mean free path and specularity

Page 12: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

1-Control the magnetics of the thin NiFe slab:Magnetic Energy of a semi-infinite thin film (w>>h,t)

H

M

e.a.h

t

w

E/V=-o H.M + K sin2 - ½ o Hd.M

Where Hdy = -My Ny

Minimizing energy:

sin = o H Ms/ 2 Keff

Keff = K + ½ o Ms2 Ny

Ny (t/h ) ln [(h-)/ ]B.D.Cullity(1972) Introduction to Magnetic Materials, A.W, MA Theory Magnetic Recording, N.Bertram, p.172

Hd

How to make an AMR sensor?

Page 13: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

MR

R

H

R=Rper+R cos2

Chapter 7, Theory of Magnetic Recording, N.Bertram, 1994

N.Smith, IEEE Trans.Magn., 23, 259, 1987

M

M

M

J

J

J = /4h

w

R

2- R vs H response for a single NiFe stripe

NON linear near H = 0

Page 14: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

3-Biased Soft Adjacent Layer AMR sensor

Chapter 7, Theory of Magnetic Recording, N.Bertram, 1994

N.Smith, IEEE Trans.Magn., 23, 259, 1987

R

Hext

M

M

J

J

SAL MR

M

Hsal

+

Hdem

Linearized output

Page 15: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Micromagnetic simulation for SAL and MR layers

-200 -100 0 100 200

0.0

0.2

0.4

0.6

0.8

1.0 Ms(SAL)=Ms(MR)=800emu/cc

t spacer

= 100A

t SAL

=200A

t MR

=250A

j=1.2x107A/cm

2

h=4m, w>>hnorm

aliz

ed M

R

H(Oe)

AMR heads used till 1995 in HDD and still in use for tape recording

0 4h(m)

Page 16: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

• The Spin Valve Sensor

Contact pad

Free

Pinned

W

L

h

p

f

Spacer

Exchange

Contact pad

1-C.Tsang, R.E.Fontana, T.Lin, D.E.Heim, V.S.Speriosu, B.A.Gurney, and M.L.Williams, IEEE Trans.Magn., 30, 3801 (1994).

3- B.Dieny, V.S.Speriosu, S.S.Parkin, B.A.Gurney, D.R.Wilhoit, and D.Mauri, Phys.Rev.B, 43, 1297(1991).

4- D.E.Heim, R.E.Fontana, C.Tsang, V.S.Speriosu, B.A.Gurney, and M.L.Williams, IEEE Trans.Magn.., 30, 316 (1994); P.P.Freitas,J.L.Leal, L.V.Melo, N.J.Oliveira, L.Rodrigues, and A.T.Sousa, Appl.Phys.Lett., 65, 493 (1994);

J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn., 30, 3031(1994).

V = ½ (R/R).I.Rsq.(W/h) <1-cos (f-p )>

GMR effect, spin dependent scattering At NM/M interfaces and in the bulk

(1986)

Page 17: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Spin Valve sensors-magnetic response

-900 -600 -300 0 300 600 900

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

As deposited

Hex=362 Oe

magnetic

mom

ent [m

em

u]

H [Oe]

Neel Coupling

F

P

Ta 50A

MnIr

CoFe

Cu

CoFe

NiFe

Ta

-150 -100 -50 0 50 100 150

0

2

4

6

8

10

Standard Spin Valve (#SV052)

MR = 9.6 %

Resistance = 47 ohm

Hf = 9 Oe

Hc = 3 Oe

MR

(%

)

Magnetic Field (Oe)

Page 18: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

SV materialsBasic stack(94-97)

Specular SAF(01-)

Ta 50A

MnIr/MnPt

CoFe

Cu

CoFe

NiFe

Ta

8%<MR<10%Hc < 2OeHf < 10 OeHex > 600 Oe(MnIr)

> 1000 Oe (MnPt)

NiFeCr

MnIr/MnPt

CoFe

Cu

CoFe

NiFe

Ta

CoFe

Ru

SAF+NiFeCr(97-02)

NiFeCr

MnIr/MnPt

CoFe

Cu

CoFe

NiFe

NOL2

Ru

NOL1CoFe

Hex > 3000 Oe 14%<MR<16(20)%

10%<MR<15%

Page 19: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

AF

MpMf

Hext

Hj

Hdem,f

Cu

J

Hf

Spin Valve Sensor: biasing

sinf = o [Hext-Hj-Hdem,p+Hf ] Ms / 2 Keff

Hdem,p

Page 20: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Sensor design issues

R

H

Unpatterned

MR loopPatterned

underbiased

Patterned

Properly biased

Page 21: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Micromagnetic simulation for SV sensor

-150 -100 -50 0 50 100 150

-1.0

-0.5

0.0

0.5

1.0 tfree

=60A

tpinn

=30A

tCu

=22A

Hf=10Oe

Hex

=600 Oe

h=2m

j=1x10 8 A/cm

2

w>>h

<sin

() fr

ee>

H(Oe)

unpatterned

0 2h(m)

Page 22: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Spin Valve Sensor Transfer Curve

575

580

585

590

595

600

605

610

-150 -100 -50 0 50 100 150

0

1

2

3

4

5

6

V

(mV

)

H = -15 Oe

H = 15 Oe

i = 8 mA

R = 72,0 W

MR =5,85 %

S = 0,14 %/Oe

2x6 m2

tp2d07s6

MR

(%

)

H (Oe)

Ta20Å/NiFe30Å/CoFe20Å/Cu28Å/CoFe25Å/MnIr60Å/Ta25Å

Page 23: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

How to chose the best sensor? Noise spectrum

INESC-MN

0.1 1 1010

-17

10-16

Calculated thermal background

data

fit

SV(V

2/H

z)

Frequency (kHz)

0.1 mA sense current

1/f knee at 1 kHz

~1; ~1

R ~ 650 W

Nc ~ 1.8 E+11 noise carriers

For 1 mA sense current:

• 1/f knee at 50 kHz

• thermal noise: 0.2 nT/√Hz (linear regime)

• 30 Hz: 13 nT/√Hz (corresponds to 250 nV)

U shaped SVs, (80x2m2)

1 nT/sqrt (Hz)

Sv (thermal) = 4 KB T R

Page 24: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

The Magnetic Tunnel Junction-Iincoherent tunneling through an amorphous barrier

ins

TMR=2P1P2/1+P1P2

CoFe 55

P=[D(F)-D(F)]/ [D(F)+D(F)]

P %

half metal 100-120 -80 -40 0 40 80 120

0

5

10

15

20

25

30

35

40

45

Al 15A, 60'' oxid.30eV O

2 beam

A=2x9m2

annealed @290ºC TMR= 40.0 %

R= 30kW

TM

R [%

]

Applied field [Oe]

Julliere´s model for incoherent tunnelingAccross amorphous barriers ( AlOx, TiOx)

Max TMR (RT)70%

(1998)

Page 25: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

INESC-MNTunnel Junctions deposited by Ion BeamNordiko 3000 deposition system

Target assembly (shield removed)

104 x 150 mm2

Deposition source

f10 cm

Pump 2000 l/s

TurboCryo Pump CTI-8F

neutralizer Xe, Ar

Deposition

gun

Assistgun

Ar,

O2,

Ar/O2shutter

sampleV+ V-

V- V+

neutralizer

NiFe

CuM

nIr

CoFe

Ta

Al

RFsource

RFsource

O2+

O+ Ar

++

Ar+

RF plasma

33 mA Xenon beam:

Acceleration= +1450 V

Deceleration = -300V

Dep. pressure: 3.5 x10-5Torr

Table rotation: 15 rpm

Table tilt: 80º

Deposition Conditions

Page 26: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

1nm thick barriers for read heads

CoFe

NiFe

MnIr

HfAlOx

CoFe

NiFe

Ta TiW(N)

Ta

1nm

2 3 4 5 6 7 8

0

20

40

60

80

100

120

1Torr 5mins

600AAl/Ta70A/NiFe40A/CoFe30A/X/CoFe30A/MnIr80A/Ta30A

HfOx

AlOx

(2ÅHf+(X-2)Å Al)Ox

((X-2)Å Al+2ÅHf)Ox

(2ÅZr+(x-2)ÅAl)Ox

Hf(

Oe

)

Barrier Thickness(A)

Page 27: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

INESC-MNTunnel Junctions CharacterizationAutomatic Measurement of Transport Properties

Automatic Measurement Setup

Probe Card

36 Kelvin

Needles

KLA 3700

Probe Station

Fully Automatic Measurement of magneto-

transport properties :

- Resistance

- Magnetoresistance Transfer Curve

- Current-Voltage Characteristic

- MR Bias Voltage Dependence

- Breakdown Voltage

- Current Induced Switching

Integrated Data Analysis Software

6’’ Wafers measurement capability (2 or 4

contacts)

Page 28: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

INESC-MNPatterned Junctions Transport Properties TMR(%)

20´´ RF power=110Wremote 0/-0V

4 sccm Ar + 40 O2

Ta 90Å/ NiFe 50Å/ MnIr 90Å/ CoFeB 40,50,60Å/ Al 9Å CoFe 30/NiFe 40/Ta 30/TiWN2

Oxidation: Top electrodeBottom electrode

60Å CoFeB 50Å CoFeB

-100 -75 -50 -25 0 25 50 75 100

0

10

20

30

40

50

TMR=47.6%

Area=2x4 m2

RxA=432 Wm2

Hf= 0 Oe

Hcfree

=22 Oe

TJ690-junction#278, annealed at 280ºC

Al600/Ta90/NiFe50/MnIr90/CoFeB50/Al9+ox/CoFe30/NiFe40/Ta30

TM

R [

%]

Field [Oe]

Hf < 2Oe, TMR > 50%, RA < 500 Ohm m2,Therm.Stab. 320 to 350C

Page 29: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

4)-process

1) Stack dep( 10 target PVD)

1h, 330ºC, 1T

2) Magn Anneal

5 Ta

50 CuN

5 Ta

5 Ta

5 Ru

7.5 IrMn/ or 20MnPt

0.85 Ru 2.6 CoFeB

1 MgO

3 CoFeB

0.21 Ta

16 NiFe

10 Ta

30 CuN

7 Ru

2 CoFe

Free

50 CuN

Buffer

SAF

Cap

The Magnetic Tunnel Junction-IICoherent tunneling through a crystalline MgO barrier

Page 30: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

The TMR device: process4) stack magn. characterization

Layer Ms(emu/cm3)

t(nm)

lex(nm)

Hk(Oe)

FL 1140 2.5 3.5 15

Barrier - 1 - -

RL 1140 2.5 3.5 15

Spacer - 0.85 -

PL 1070 2.3 3 15

AMF - 15 - -

Interfacial/interlayer Surface Coupling constants

(erg/cm2)

Exchange coupling between PL and AFM 0.34

Antiferromagnetic coupling for the SAF (PL/spacer/RL)

-0.53

Ferromagnetic coupling between SAF and FL

0.02

Micromagnetic Simulations:

Performed using time independent solutions of the

LLG equation.

Magnetic Parameters:

-10.0 0.0 10.0

-1.0

-0.5

0.0

0.5

1.0

Reference Layer

Free Layer

Norm

aliz

ed M

agnetic M

om

ent

H(kOe)

Unpatterned sample

Msat

(CoFeB)=1140 emu/cm3

Msat

(CoFe)=1070 emu/cm3

Hex

=3900 Oe

Hc(FL)=55 Oe

Hf(FL)=15 Oe

Pinned Layer

ExperimentalSimulation

Page 31: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Linear response optimization: 2nd annealing temperatureVSM plots obtained in a matrix of annealing temperature vs NiFe thickness

5 Ta / 15 Ru / 5 Ta / 15 Ru / 5 Ta / 5 Ru / 17 PtMn / 2.0 CoFe30 / 0.85 Ru / 2.6 CoFe40B20 / MgO

4x123 3kW 600sccm / 3.0 CoFe40B20 / 0.21 Ta / 8 NiFe / tMnIr / 2 Ru / 5 Ta / 10 RutMnIr=6 nm tMnIr=8 nm tMnIr=10 nm tMnIr=12 nmAnnealing

T=330 ºC

1 T, 2 hr, e. a.

T=200 ºC

1 T, 1 hr, h. a.

T=250 ºC

1 T, 1 hr, h. a.

tMnIr=14 nm tMnIr=16 nm

T=270 ºC

1 T, 1 hr, h. a.

The annealing temperature used to produce the linear response must be optimized for each stack :

notice that Hf, Hc and Hk change with the temperaure even after obtaining linear response.

Page 32: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

The basic TMR device: process5) CIPT transfer curve characterization

-100 0 1008.9

9.0

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Rsq

[Ws

q]

Field [Oe]

CIPT Transfer Curve for

a specific probe spacing

0.1 1 10 100 1000

80

100

120

140

160

180

200

220

CoFeB/MgO/CoFeB

CoFeB/CoFe/MgO/CoFe/CoFeB

TM

R (

%)

RxA (Ohm um2)

Page 33: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

The TMR device: process6) MPW , Wafer map, die layout

INESC-MN

6 TMR

10x4 µm2

Surface

defects

Buried

defects

4 TMR

10x2 µm2

4 TMR

10x4 µm2

2 TMR

20x4 µm2

4 TMR

10x10

µm2

72 TMR

50x50

µm2

26 TMR

100x100 µm2

Process

test

area

NDT testing

Page 34: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Cu

Cu Cu

Ni

Mg

Mn

Ta

The TMR device-process

7) MTJ ion milling , w/wo SIMS end point detection

Page 35: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Multiproject Wafer Service ( 200mm and 150mm, INL and INESC MN )

MTJ stacks

deposited on

Si/SiO2 blank

wafers and

patterned with

minimum feature

sizes of 1µmm

Process extension

to 100 nm

features

available

Page 36: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

TMR sensor: output, noise, detectivity

(V2/Hz)

(V)

(T2/ Hz)

(V/T)

For a series of N sensors

(T2/ Hz)

Page 37: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Full Wheatstone BridgeMagnetic sensor requirements

H =0 ; Vout=0 H ≠0

Bridge output is immune to thermal driftsVancouver

May 11th, 2012Intermag 2012 : GG-07 Slide 2/11

Page 38: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Final Device GeometryFull Whetstone Bridge Incorporating MTJs connected in Series

V+ V-I+ I-

Type I MTJs

R

H

Type II MTJs

R

HIrMn

CoFeRuCoFeBMgOFree Layer

Buffer

Cap

IrMn

CoFeRu

CoFeBMgOFree Layer

Buffer

Cap

CoFeRu

2-layer SAF Reference

3-layer SAF Reference

vLinear MTJ

I I

Magnetic field

3.6mm

Individual MTJ Area: 5x70 µm2

MTJ Elements in series: 110 per arm

VancouverMay 11th, 2012

Intermag 2012 : GG-07 Slide 9/11

Page 39: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Current in plane Transfer CurvesMTJ Stack I vs. MTJ Stack II after annealing

STEP #7 : Magnetic

Annealing

Tannealing = 330C

Dwell Time : 2h

Cool down field : 1T

TMR after Annealing ~175%

MTJ 1 MTJ 2

-100 0 1008.9

9.0

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Rs

q [Ws

q]

Field [Oe]

-100 0 100

Field [Oe]

MTJ Type I MTJ Type II

RxA=10.7 kΩµm2 RxA=11.5 kΩµm2

VancouverMay 11th, 2012

Intermag 2012 : GG-07 Slide 7/11

Page 40: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

2D MagnetometersOutput from two orthogonal bridges

V+ V-I+ I-

-314 -312 -310 -308 -306 -304 -302 -300 -298

-320

-318

-316

-314

-312

-310

-308

-306

-304

Offset Corrected

XX Field Sensor Output [mV]

Off

set

Co

rrecte

d

YY

Fie

ld S

en

so

r O

utp

ut

[mV

]

YY

Fie

ld S

en

so

r O

utp

ut

[mV

]

XX Field Sensor Output [mV]

VBridge

=3.3V

-8 -6 -4 -2 0 2 4 6 8

-8

-6

-4

-2

0

2

4

6

8V

+V

-I+

I-

XX Component

SensorYY Component

Sensor

Sensor output during a 360○ rotation

13.3 mV/V/Oe sensitivity 0.31 Oe field

VancouverMay 11th, 2012

Intermag 2012 : GG-07 Slide 11/11

ENIAC-JTI

Page 41: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

NDT Testing with TMR sensors

INESC-MN

Aluminum Mock-up with a width of 100 µm

and a depth ranging of 0.2, 0.5 and 1 mm

In collaboration with INESC ID

FP7-IMAGIC

Page 42: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

-100 -80 -60 -40 -20 0 20 40 60 80 100

3000

4000

5000

6000

7000

8000

9000

Linear range : -29 Oe to 20 Oe

Hc = 0.55 Oe

Hf= 5.7 Oe

Re

sis

tan

ce

[W

]

H [Oe]

TMR=174.5%

RxA= 30.6 kWm2

Series of 1102 MTJs with

100x100m2

200mm wafer processed at INL

TJ933 – Si / Al2O3 (100nm) / [5 Ta / 25 CuN]x6 / 5 Ta / 5 Ru / 20 IrMn / 2 CoFe30 / 0.85 Ru / 2.6

CoFe40B20 / MgO 2x41 / 2 CoFe40B20 / 0.21 Ta / 4 NiFe / 0.20 Ru / 6 IrMn / 2 Ru / 5 Ta / 10 Ru

(Ta/Cu) x n

Buffer minimizes

Interconnect

resistance

contribution

MINIMIZING INTERCONNECT RESISTANCE IN LARGE MTJ SERIES, stack 4

Page 43: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Previous results – Buried defects

INESC-MN

Page 44: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

INESC-MN

Internal TMR probe tests at INESC MN

fbias=999kHzI s = 100 µA 0-p

f excitation = 1000 kHzI exc = 1 A 0-p

f meas =1 kHz

Page 45: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

INESC-MN

Friction Stir Welding detection

WeldingDefect

400 µm

TMR - Single ended TMR - differential

Top view(scanning side)

Bottom view(Welding side)

Cross section

Signal (µV) Signal (µV)

1mm/s

Page 46: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Scanning probescurrent imaging in Ics

100 1000 10000 100000

10

100

No

ise

(n

T/H

z0

.5)

Frequency (Hz)

INESC MN-NEOCERA

2x2 m2

SPIN, 2011

Page 47: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

TMR sensor linearization strategies2: thin CoFeB ( out of plane)

INESC-MNSlide 5

glass/Ta 5/Ru 18 /Ta 3/PtMn 18/CoFe 2.2/ Ru 0.9/

CoFeB3/MgO1.35/CoFeB 1.55 / Ru 5/Ta 5

P. Wiśniowski et al, JAP 103,07A910 (2008)

P. Wiśniowski et al, IEEE Trans. Mag.,44(11), 2551-2553 (2008)

Thick Free layer

TMR @ 20°C 76%

Sensitivity @ 0 Oe &20°C

250 V/V/Tesla

Linear range @20°C [-5 Oe; 5 Oe]

Voltage Noise @ 10 kHz & 20°C

700 nV/√Hz(for single TMR)

Voltage Noise @ 10 MHz & 20°C

70 nV/√Hz(for single TMR)

Field Noise @ 10 kHz & 20°C

6 nT/√Hz(for single TMR)

Field Noise @ 10 MHz & 20°C

0.6 nT/√Hz(for single TMR)

Page 48: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

With permission from M.Pannetier, C.Fermon

Reaching pT detectivity with MR sensors

Page 49: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

With permission from M.Pannetier, C.Fermon

Hybrid SC-SV devices, measured at 4K

Page 50: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Hybrid MTJ+flux guide structures: towards pT detection at RT and low freq.

500 m

10 m

Goal: increase volume of free layer-reduce magnetic 1/f noise

increase junction area-decrease barrier 1/f noise

increase sensitivity: flux guides + MgO MTJ

MTJ pillarFlux guide tip

Top contact

Long.

Permanent

Magnet biasing

Biomagsens Mid Term Review INESC-MN

Page 51: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Noise characteristics

0 20 40 60 80 1000

50

100

150

200

VThermal

+VShot

= 0.42 nV/Hz0.5

SRS SIM910 Amplifier,40 dB

Span 100Hz; RBW 1Hz; AVG 1000

=3.2 E-9 m

2

51 pT @ 30 Hz

97 pT @ 10 Hz

Wafer#1650 (Singulus), RxA 150 Wm2

PME2, Sensor# 55

A[m2] = 676(26x26) ; R

Low= 1.36 W

Ro = 2.1 W; TMR = 97%; S = 72 %/Oe

Field ResolutionS

v[p

T/H

z0.5]

f[Hz]

Room

Temperature

External

Long Bias 35 Oe

IBias [A]

0.01

0.1

Biomagsens Mid Term Review INESC-MN

Appl. Phys.Lett., 91, 102504, August 2007

(1pT at 500 kHz)

Need reduce 1/f mag and

white mag noise

Page 52: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

INL approach to picoTesla field detectionLarge Arrays of linear MTJs integrating large area MTJs

Detection of very weak magnetic fields at INL :

Array of 1102 MTJs connected in series with an individual area of 100x100 m2

Direct detection of weak magnetic fields obtained WITHOUT magnetic shielding.

Total Area : 4x6 mm2

-400 -300 -200 -100 0 100 200 300 400

3000

4000

5000

6000

7000

8000

9000

10000

Resis

tan

ce [W

]

Measured Applied Magnetic Field [Oe]

TMR=174.5%

RxA= 30.6 kWm2

R [1 MTJ] =3.06 W

Linear range : [-29 Oe : 20 Oe][H=0] :

dR/dH= 126.2 W/Oe

Page 53: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

INESC-MN’s static, multiplexed MR biochip8 mm 40 µm

Sensor

Spotted probe

ftmolar sensitivity (DNA chip)multiplexed analysis

CMOS, microfluidics, sensors

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

No target DNA

V

bin

din

g

ac

/ V

senso

r

ac

DNA concentration (M)

Passive hybridization

Assisted hybridization

Non-Complementary

target DNA*

Tech review, Lab On Chip 2012

Page 54: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Snip2Chip Lisbon meeting INESC-MN

1-d) Spotting biological targets on the biosensing platform

1 µM Oligo solution, Cy5 labeled200 pL droplets

Gesim spotter

Spotting site

Disposable biochip

Page 55: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Blood finger-prick

Sample preparation step

separation of plasma from blood cells

Plasma injected in the detection chip

Measurement of the chip

Protein/DNA Biochip

Cell free DNA detection in blood

As cancer biomarker

Page 56: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

ENVIRONMENT MONITORING, SECURITY AND FOOD QUALITY CONTROL

Elisabete Fernandes, PhD StudentContact E-mail: [email protected]

Protein A MNPs 250 nm covered

with anti-Salmonella antibody

Salmonella Enteritidis

Salmonella Bacterio(phage) PVP-SE1

-50

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Time (min)

Δ V

Vrm

s)

"Reference Sensor"

"Negative Sensor"

"Positive Sensor"

The signal obtained…

Specific bacteriophage for Salmonella enteritidis

Affinity of the specific phage was about20 times higher (average absolute valueof 100 µV against 5 µV).

No bacteriophage

Unspecific bacteriophage

Also used for protein and immuno assays

Page 57: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Detecting labelled cells in flow

Page 58: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Cell detection – Kg1a cells/CTCs

cell=5-10m

Cells marked with 50nm

FeOx particles

Lab on Chip ( 2011)

NANODEM FP7 (2012-2015)

Page 59: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Stimulation electrode

Recording electrode

Rat hippocampus

Synaptic current monitoring with highSpatial resolution ( with A.Sebastiao, IMM, V.Santos, ICVS)

INESC MN and IMM

MAGNETRODES, FP7 (2013-2016)

Page 60: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Si Needles with MR sensors or planar electrode array of MR sensors

INESC – MN

400µm Oxide Layer

Substract

SV SV SVSV

Mice Brain Slice

Stimulation Electrode Recording

ElectrodeMagnetic

field

Action Potential Currents

0.4µm

Mic

ron

eed

le s

en

sor

arr

ayP

lan

ar s

en

sor

arra

y

Probe design for in-vitro applications

Page 61: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

1mm width

0.5 mm width

1) Shaft angle 18º

2) Thickness < 100 µm

3) Length ~ 1 cm

18º

• Optimized SV and MTJ sensors

• Probe specifications:

FP7 MAGNETRODES (2013-2015)Probe desigb for in-vivo applications

Page 62: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

1mm width 0.5 mm width175 μm width 100 μm width

Silicon probes

INESC-MN

Page 63: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

– Probe Tip Area -1000x1000 µm2

– 140 Magnetic Tunnel Junction sensors

– each sensor – 50x50 µm2

Page 64: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Flexible Probes(polyimide)

Page 65: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Measurement of neuronal activity using magnetoresistive sensor integrated in Micromachined Needles

Results – MTJ response

INESC – MN

The MTJ sensor readout:

- 20μV amplitude

- 20uV amplitude signal corresponds to a magnetic field of about 3μT.

- Type of signal expected

1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70-60

-45

-30

-15

0

15

30

45

60

OutP

ut

Voltage (

uV

)

Time (s)

Signal

Impulse

In Vivo - Spinal Cord

Page 66: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

VI: New spintronic Nanodevices ( STT-RAM, Nano Osc., ...)

Applications

Jie Yang et al. IEEE Trans. Magn., 46, NO. 6 (2010)

Spin Transfer Torque -MRAMs Spin Transfer Torque based NanoOscilators Magnetoresistive Nanosensors with improved spatial resolution

Memory Elements High Frequency Generators Field Nanosensors

MR element with TE and BE -100 -50 0 50 100

0

1

2

3

4

5

6

7

50 nm

100 nm

200 nm

500 nm

800 nm

1000 nm

Mag

neto

resi

stan

ce (

%)

H(Oe)

2000 nm

heigth

L=8 m

distance btw ctcs = 4 m

Spin Valve Sensor

Cross section

MOSFET

500A

P-type Si substrate

300A

500A 3000A

STI

N+diffuision

GC

C0

M0

C1

M1

CX MX

MTJ

M2

Page 67: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Micromagnetic Simulations

2

-10.0 0.0 10.0 20.0

-1.0

-0.5

0.0

0.5

1.0

-10.0 0.0 10.0

-1.0

-0.5

0.0

0.5

1.0

ma

gn

etic m

om

en

t / A

rea

(m

em

u/c

m2)

H(kOe)

Micromagnetic Simulation

Jex

= 0.34 erg/cm2

JSAF

= -0.53 erg/cm2

Jf = 0.02 erg/cm

2

Ms(CoFeB) =1070 emu/cm

3

Ms(CoFe)=1200 emu/cm

3

magnetic moment/Area

H(kOe)

VSM curve

Unpatterned

(memu/cm2)

HkFL

RL

PL

Hap

FreeLayer

Dot = 50 nm

50 nm

-1500 -1000 -500 0 500 1000 1500

-3x104

-2x104

-1x104

0

1x104

2x104

20 nm30 nm

40 nm

50 nm

60 nm

70 nm

80 nm

Mag

netic

Mom

ent (

T.n

m3)

Applied Field (Oe)

90 nm

Free-Layer behavior

Accurately choose the properties/dimensions of nanostructures to fabricate in accordance with the envisaged application

Process for STT Nano-oscilators: Simulations

Page 68: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

INESC-MN

INESC MN

Clean room class 1000

Obrigado!

INL

Page 69: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

MR DEVICE MICROFABRICATION PROCES Current-perpendicular-to-plane (CPP) device fabrication

Page 70: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Microfabrication process

Page 71: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Optical lithography - DWL

Page 72: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,
Page 73: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,
Page 74: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,
Page 75: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Critical Step #1 : Ion Milling of a NanoPillarEtch Stop Point Detection

Ion Gun

TiW Ru Ta

IrMn

NiFeMgO

IrMn

Key Parameters :

RF Power : 190WV+: +150VV- : -1500VI+ : 184mAI- : -43mA

Ar Flow : 45 scmmP=3.21x10-4 TorrNeutralizes : 2 x [90mA; 4 sccm ]Rotation : 30 rpm

BragaJune 6th, 2012

Slide 4/15

Page 76: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,
Page 77: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,
Page 78: Spintronic devices P.P.Freitasbenasque.org/.../135_Spintronic_devices_Benasque_paulo_freitas.pdf · J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn.,

Up to 70,000 sensor devices in a 200mm diameter wafer


Recommended