+ All Categories
Home > Documents > SPM 2014 Poster Tomographic Surface Reconstruction from ...SPM 2014 Poster Tomographic Surface...

SPM 2014 Poster Tomographic Surface Reconstruction from ...SPM 2014 Poster Tomographic Surface...

Date post: 09-Aug-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
1
SPM 2014 Poster Tomographic Surface Reconstruction from Point Cloud For more information, please contact Yukie Nagai at [email protected] Generating transmission-length maps ・・・ Sinogram (transmissionlength maps from various directions) Tomogram (CT image) Isosurface ・・・ 1. Computing transmission length Surface reconstruction by simulating CT scanning for point cloud Emanating virtual parallel cylindrical rays Transmission length: Transmission length Transmissionlength map = ݍ ݍ ݍ/ : distance from the ray source to a local maximum of the density of points on the front/back side ݍ ݍ ݍ ݍ Recognizing the front/back sides based on the direction of normals Omitting the points with normals almost orthogonal to the ray Ray source Point cloud with normals Principles of X-ray CT used for simulation Measuring Xray intensity with  projection angles  ߠ (generally  #detectors ) Transmission length the sum of the lengths of intersections of the object and a ray Sinogram transmissionlength maps Mean shift and merging Point density local maxima of point density Number of the maxima is odd Order of the sides of object (should be f, b, f, b, …) is wrong Local diffusion X X Tomogram 600 voxels Robustness to missing parts / noise Point cloud About 2.6 million points Transmission-length maps from various projection directions Using randomly selected directions as projection directions, the geometry which the conventional projection directions cannot     capture is better acquired Point cloud with missing parts Isosurface Conventional projection directions Conventional Proposal Randomly selected projection directions Future work Point cloud: about 170 thousand points Sinogram: 500x500 pixels Tomogram: 500 voxels SPoisson Wavelet Proposal Reconstructed mesh Detectors Rotation table Xray Object ߠ ܫ Improving computational time (currently, several tens of minutes) and estimation of transmission length Better expression of fine features and smooth surfaces Point cloud About 20 thousand points Noise robustness Missing parts Sinogram (sequential maps of log that is rational to transmission length) ߠ ߠ ߠ ߠ ߠ ߠ 2. CT reconstruction (OSEM method [Hudson and Larkin 94] and Laplacian smoothing) Point cloud About 1.8 million points SPoisson Proposal Sinogram 512x512 pixels 512 projections Proposal * SPoisson * * SPoisson: [Kazhdan and Hoppe 13] Sinogram 256x256 pixels 256 projections ** Wavelet: [Manzon et al. 08] Approximation error of SPoisson , Wavelet and proposal * ** Evaluation Lambert-Beer law: ܫ ܫ exp ߤ Xray with intensity  ܫ attenuation coefficient Yukie Nagai, Yutaka Ohtake, Hiromasa Suzuki School of Engineering, The University of Tokyo
Transcript
Page 1: SPM 2014 Poster Tomographic Surface Reconstruction from ...SPM 2014 Poster Tomographic Surface Reconstruction from Point Cloud For more information, please contact Yukie Nagai at yukie@den.t.u-tokyo.ac.jpGenerating

SPM 2014 PosterTomographic Surface Reconstruction from Point Cloud

For more information, please contact Yukie Nagai at [email protected]

Generating transmission-length maps

・・・

Sinogram (transmission‐length mapsfrom various directions) Tomogram

(CT image)

Isosurface

・・・

1. Computing transmission length

Surface reconstruction by simulating CT scanning for point cloud

Emanating virtual parallel cylindrical rays Transmission length:

Transmissionlength

Transmission‐length map

= ∑ ∑/ : distance from the ray source to a local maximum

of the density of points on the front/back side

Recognizing the front/back sides based on the direction of normals

Omitting the points with normalsalmost orthogonal to the ray

Raysource

Point cloudwith normals

Principles of X-ray CT used for simulation Measuring X‐ray intensity with  projection angles 

(generally  #detectors ) 

Transmission length ≡ the sum of the lengths

of intersections of the object and a ray

Sinogram  transmission‐length maps

Mean shift and mergingPointdensity

local maxima of point densityNumber of the maxima is odd 

Order of the sides of object (should be f, b, f, b, …) is wrong

Local diffusion

X

X

Tomogram600 voxels

Robustness to missing parts / noise

Point cloudAbout 2.6 million points

Transmission-length maps from various projection directions

Using randomly selected directions as projection directions, the geometry which the conventional projection directions cannot     capture is better acquired

Point cloud with missing parts

Isosurface

Conventional projection directions

…Conventional

Proposal

Randomly selected projection directions

Future work

Point cloud: about 170 thousand pointsSinogram: 500x500 pixelsTomogram: 500 voxels

SPoisson Wavelet Proposal

Reconstructed mesh

Detectors

Rotation table

X‐ray 

Object

Improving computational time (currently, several tens of minutes) and estimation of transmission length

Better expression of fine features and smooth surfaces

Point cloudAbout 20 thousand points

Noise robustness

Missing parts

Sinogram(sequential maps of logthat is rational to transmission length)

2. CT reconstruction(OSEM method [Hudson and Larkin 94]

and Laplacian smoothing)

Point cloudAbout 1.8 million points

SPoisson Proposal

Sinogram512x512 pixels512 projections

Proposal

*

SPoisson *

* SPoisson: [Kazhdan and Hoppe 13]

Sinogram256x256 pixels256 projections

** Wavelet: [Manzon et al. 08]

Approximation error of SPoisson , Wavelet and proposal* **

Evaluation

Lambert-Beer law: exp

X‐ray with intensity 

:attenuation coefficient

Yukie Nagai, Yutaka Ohtake, Hiromasa SuzukiSchool of Engineering, The University of Tokyo

Recommended