+ All Categories
Home > Documents > Spread Foundation EC7-Ex1+2

Spread Foundation EC7-Ex1+2

Date post: 25-Nov-2015
Category:
Upload: sconxstraton
View: 77 times
Download: 14 times
Share this document with a friend
Description:
Spread Foundation EC7-Ex1+2
28
Design approaches according to Eurocode 7 Structural Engineering Master program
Transcript
  • Design approaches according to Eurocode 7

    Structural Engineering Master program

  • Geotechnical restriction

    Ed

  • For the GEO and STR limit states, the three possible design

    approaches use different sets of partial safety factors:

    Design approach 1 with two combinations: Combination 1: A1 + M1 (= 1) + R1 (= 1) safety factors on loads Combination 2: A2 (= 1) + M2 + R1 (= 1) safety factors on materials

    (soil) for piles: Combination 1: A1 + M1 (= 1) + R1 (= 1) Combination 2: A2 (= 1) + (M1 (= 1) or M2) + R4 (M1 for pile resistance, M2 for unfavorable actions like negative skin friction or

    transversal loads)

    Design approach 2: A1 + M1 (= 1) + R2 safety factors on loads and resistances

    Design approach 3: A2 (= 1) + M2 + R3 (= 1) (A1 for loads from the structure without influence of soil material parameters)

  • Design example 1 spread foundation

    Stiff till

    Square pad foundation

  • GEO ultimate limit state bearing resistance failure

    Vd Rd

    Vd design vertical load

    Rd design bearing resistance

    Short term safety undrained conditions for soil

    Long term safety drained soil condition for soil

  • partial safety factors on Actions - A

    Actions A1 A2

    Permanent loads, unfavorable 1.35 1.00

    Permanent loads, favorable 1.00 1.00

    Variable loads, unfavorable 1.50 1.30

    Variable loads, favorable 0.00 0.00

  • partial safety factors on Materials - M

    Materials M1 M2

    Angle of internal friction tan() 1.00 1.25

    Cohesion c 1.00 1.25

    Undrained cohesion cu 1.00 1.40

    Unit weight 1.00 1.00

  • partial safety factors on Resistances - R

    Resistances R1 R2 R3 R4

    Sliding resictance 1.00 1.40 1.00

    Bearing capacity resistance 1.00 1.10 1.00

    Passive earth pressure 1.00 1.40 1.00

    End bearing for bore piles 1.25 1.10 1.00 1.60

    Skin friction for bore piles, compress. 1.00 1.10 1.00 1.30

    Skin friction for bore piles, tension 1.25 1.15 1.10 1.60

  • Vertical loads

    Vd = G (Gk + Gpad,k) + Q Qk= G (Gk + A c d) + Q Qk

    Vd = G (900 + B2 x 24 x 0.8) + Q x 600

  • Undrained condition short term safety

    Rd/A = Rd/A = pcr = (( + 2) cu,d bc sc ic + qd) /R = (( + 2) cu,d sc + qd) /R

    b base inclination factor, bc = 1.00

    i load inclination factor, ic = 1.00

    s shape factor, sc = 1.20

    A = A, centric loading case

    Rd = pcr x A = B2 x (( + 2) cu,d sc + qd)

    /R = B2 (( +2)(200/M)+22 x 0.8)/ R

  • DA1 combination 1

    A1 + M1 (= 1) + R1 (= 1) safety

    factors on loads

    Vd = 1.35 (900 + B2 x 24 x 0.8) + 1.5 x

    600

    Rd = B2 (( +2)(200/1.00)+22 x 0.8)/1.00

    B = ?

  • DA1 combination 2

    A2 (= 1) + M2 + R1 (= 1) safety

    factors on materials (soil)

    Vd = 1.0 (900 + B2 x 24 x 0.8) + 1.3 x 600

    Rd = B2 (( +2)(200/1.4)+22 x 0.8)/1.00

    B = ?

  • DA2

    A1 + M1 (= 1) + R2 safety factors on

    loads and resistances

    Vd = 1.35 (900 + B2 x 24 x 0.8) + 1.5 x 600

    Rd = B2 (( +2)(200/1.00)+22 x 0.8)/1.40

    B = ?

  • DA3

    A1 + M2 + R3 (= 1)

    A1 for loads from the structure without influence of soil material parameters

    Vd = 1.35 (900 + B2 x 24 x 0.8) + 1.5 x 600

    Rd = B2 (( +2)(200/1.40)+22 x 0.8)/1.00

    B = ?

  • Drained condition long term safety

    Rd/A = c Nc bc sc ic + q Nq bq sq iq + 0.5 B N b s i

    c = 0

    q = 0.8 x ( - w) = 0.8 x (22 9.81) = 9.75kPa

    A = A = B2; B = B

    i = all 1.00

    b = all 1.00

    s = 0.7; sq = 1 + sin

    Rd = A (q Nq sq + 0.5 B N 0.7) = B2 (9.75 x Nq x sq +

    0.5 x 12.19 x B x N x 0.7

  • DA1 combination 1 A1 + M1 (= 1) + R1 (= 1) safety factors on loads

    Vd = 1.35 (900 + B2 x (24 9.81) x 0.8) + 1.5 x 600

    Rd = B2 (9.75 x Nq x sq + 0.5 x 12.19 x B x N x 0.7

    Nq = e x tantan2(/4 + '/2) = etan35tan2(/4 + 35.0/2) =

    33.30 N = 2(Nq - 1) tan' = 2(33.3 1) tan35 = 45.23 sq = 1 + sin' = 1 + sin35 = 1.57 Rd = B

    2 (9.75 x 33.3 x 1.57 + 0.5 x 12.19 x B x 45.23 x 0.7)/1.00

    B = ?

  • DA1 combination 2 A2 (= 1) + M2 + R1 (= 1) safety factors on materials

    (soil)

    Vd = 1.0 (900 + B2 x (24 9.81) x 0.8) + 1.3 x 600

    Rd = B2 (9.75 x Nq x sq + 0.5 x 12.19 x B x N x 0.7

    'd = tan-1(tan 'k)/M = tan

    -1(tan35/1.25) = 29.30 Nq = e

    x tantan2(/4 + '/2) = etan29.3tan2(/4 + 29.3/2) = 16.92

    N = 2(Nq - 1) tan' = 2(16.92 1) tan29.3 = 17.84 sq = 1 + sin' = 1 + sin29.3 = 1.49

    Rd = B2 (9.75 x 16.92 x 1.49 + 0.5 x 12.19 x B x 17.84 x

    0.7)/1.00

    B = ?

  • DA2

    A1 + M1 (= 1) + R2 safety factors on loads and resistances

    Vd = 1.35 (900 + B2 x (24-9.81) x 0.8) + 1.5 x 600

    Rd = B2 (9.75 x Nq x sq + 0.5 x 12.19 x B x N x 0.7

    Nq = e x tantan2(/4 + '/2) = etan35tan2(/4 + 35.0/2) =

    33.30 N = 2(Nq - 1) tan' = 2(33.3 1) tan35 = 45.23 sq = 1 + sin' = 1 + sin35 = 1.57 Rd = B

    2 (9.75 x 33.3 x 1.57 + 0.5 x 12.19 x B x 45.23 x 0.7)/1.40

    B = ?

  • DA3A1 + M2 + R3 (= 1)

    A1 for loads from the structure without influence of soil material parameters

    Vd = 1.35 (900 + B2 x (24 - 9.81) x 0.8) + 1.5 x 600

    Rd = B2 (9.75 x Nq x sq + 0.5 x 12.19 x B x N x 0.7

    'd = tan-1(tan 'k)/M = tan

    -1(tan35/1.25) = 29.30 Nq = e

    x tantan2(/4 + '/2) = etan29.3tan2(/4 + 29.3/2) = 16.92 N = 2(Nq - 1) tan' = 2(16.92 1) tan29.3 = 17.84 sq = 1 + sin' = 1 + sin29.3 = 1.49

    Rd = B2 (9.75 x 16.92 x 1.49 + 0.5 x 12.19 x B x 17.84 x 0.7)/1.00

    B = ?

  • Design widths for different Design

    Approaches and Design conditions

    Design Approach Foundation width (m) OFS = Ruk/VkUndrained Drainedcondition condition

    DA1 (Combination 1)

    DA1 (Combination 2)

    DA2

    DA3

  • Design example 2

  • GEO ultimate limit state bearing resistance failure

    Vd RdVd design vertical load

    Rd design bearing resistance

    Short term safety undrained conditions for soil

    Long term safety drained soil condition for soil

  • partial safety factors on Actions - A

    Actions A1 A2

    Permanent loads, unfavorable 1.35 1.00

    Permanent loads, favorable 1.00 1.00

    Variable loads, unfavorable 1.50 1.30

    Variable loads, favorable 0.00 0.00

  • partial safety factors on Materials - MMaterials M1 M2

    Angle of internal friction tan() 1.00 1.25

    Cohesion c 1.00 1.25

    Undrained cohesion cu 1.00 1.40

    Unit weight 1.00 1.00

    partial safety factors on Resistances - R

    Resistances R1 R2 R3

    Sliding resictance 1.00 1.10 1.00

    Bearing capacity resistance 1.00 1.40 1.00

  • about vertical loads

  • Nq = etan ' tan2(45 + '/2)

    Nc = (Nq - 1) cot'

    N = 2 (Nq - 1) tan

    sq = 1 + sin' for a square or circular shape

    s = 1 - 0.3(B'/L') for a rectangular shape

    s = 0.7 for a square or circular shape

    sc = (sqNq - 1)/(Nq - 1)

    ic = iq (1 - iq)/N c tan'

    iq = [1 - H/(V + A c cot')]m

    i = [1 - H/(V + A c cot')]m + 1

    m = [2 + (B'/L')]/[1+(B'/L')] when H acts in the direction of B'

  • about resistances

    Values to determine, based on the B value


Recommended