+ All Categories
Home > Documents > Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic...

Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic...

Date post: 04-Aug-2018
Category:
Upload: vanhuong
View: 215 times
Download: 0 times
Share this document with a friend
21
Springer Series in Advanced Microelectronics 30
Transcript
Page 1: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Springer Series in Advanced Microelectronics 30

Page 2: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

TheSpringer Series in AdvancedMicroelectronics provides systematic information on

all the topics relevant for the design, processing, andmanufacturing ofmicroelectronic

devices. The books, each prepared by leading researchers or engineers in their fields,

cover the basic and advanced aspects of topics such as wafer processing, materials,

device design, device technologies, circuit design, VLSI implementation, and subsys-

tem technology. The series forms a bridge between physics and engineering and the

volumes will appeal to practicing engineers as well as research scientists.

Series Editors:Dr. Kiyoo Itoh

Hitachi Ltd., Central Research Laboratory, 1-280 Higashi-Koigakubo

Kokubunji-shi, Tokyo 185-8601, Japan

Professor Thomas Lee

Department of Electrical Engineering, Stanford University, 420 Via Palou Mall,

CIS-205 Stanford, CA 94305-4070, USA

Professor Takayasu Sakurai

Center for Collaborative Research, University of Tokyo, 7-22-1 Roppongi

Minato-ku, Tokyo 106-8558, Japan

Professor Willy M.C. Sansen

ESAT-MICAS, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10

3001 Leuven, Belgium

Professor Doris Schmitt-Landsiedel

Lehrstuhl fur Technische Elektronik, Technische Universitat Munchen

Theresienstrasse 90, Gebaude N3, 80290 Munchen, Germany

For other titles published in this series, go tohttp://www.springer.com/series/4076

Page 3: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Xingcun Colin Tong

Advanced Materials forThermal Managementof Electronic Packaging

Page 4: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Xingcun Colin TongLaird Technologies1751 Wilkening CourtSchaumburg, IL [email protected]

ISSN 1437-0387ISBN 978-1-4419-7758-8 e-ISBN 978-1-4419-7759-5DOI 10.1007/978-1-4419-7759-5Springer New York Heidelberg Dordrecht London

# Springer Science+Business Media, LLC 2011All rights reserved. This work may not be translated or copied in whole or in part without the writtenpermission of the publisher (Springer ScienceþBusiness Media, LLC, 233 Spring Street, New York,NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use inconnection with any form of information storage and retrieval, electronic adaptation, computer software,or by similar or dissimilar methodology now known or hereafter developed is forbidden.The use in this publication of trade names, trademarks, service marks, and similar terms, even if they arenot identified as such, is not to be taken as an expression of opinion as to whether or not they are subjectto proprietary rights.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Page 5: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

This book is dedicated to my wife Dali, our daughter Lingbo, and our sonsWilliam and Alan. Their love fully filled my heart during the long hours of workon this book

Page 6: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

.

Page 7: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Preface

The need for advanced thermal management materials in electronic packaging has

been widely recognized as thermal challenges became barriers to the electronic

industry’s ability to provide continued improvements in device and system perfor-

mance. With increased performance requirements for smaller, more capable, and

more efficient electronic power devices, systems ranging from active electronically

scanned radar arrays to web servers all require components that can dissipate heat

efficiently. This requires that the materials have a high capability for dissipating

heat and maintaining compatibility with the die and electronic packaging. In

response to these critical needs, revolutionary advances in thermal management

materials and technologies for active and passive cooling now promise integrable

and cost-effective thermal management solutions. As a result, a large number of

papers, articles, and presentations have been published on the development of high-

performance materials to solve the vexing problem of device and package-level

cooling and thermal management. However, no comprehensive and accessible book

has been available on this topic for students, materials scientists, and electronics

engineers.

To meet this need, Advanced Materials for Thermal Management of ElectronicsPackaging takes a systems approach ranging from thermal management fundamentals

to a balance between cost and performance in materials selection and assessment.

Chapter 1 begins with an outline of heat transfer theory and discusses thermal

management solutions, materials selection, and component design guidelines.

Chapter 2 provides an extensive review of assessment techniques and characteriza-

tion methodologies for advanced thermal management materials and components.

Chapter 3 provides an overview of the state of the art of high-performance

advanced electronic packaging materials and their thermal management functions,

including properties of key materials, state of maturity, applications, processing,

and future directions. Chapters 4 through 8 provide an in-depth introduction to the

large and increasing number of advanced thermal management materials, including

carbonaceous materials and carbon matrix materials, thermally conductive polymer

matrix composites, high thermal conductivity metal matrix composites, ceramic

composites, and emerging thermal interface materials. Chapters 9 through 11 discuss

advanced materials and design for heat spreaders, air cooling heat sinks, liquid

vii

Page 8: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

cooling, and thermoelectric cooling devices. Finally, Chapter 12 presents a devel-

opment roadmap with applications, trends, and perspectives on the future.

It is a great pleasure to acknowledge the help and support I have received from

my colleagues who have provided me with various supports and contributed to my

understanding of thermal management materials and approaches in electronic

packaging. I would like to express my sincere gratitude to my editors, Dr. David

Packer and all other editing staff who worked very hard to give the text its final

polish.

Schaumburg, IL Xingcun Colin Tong

viii Preface

Page 9: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Contents

1 Thermal Management Fundamentals and Design Guides

in Electronic Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Rationale of Thermal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Heat Sources and Thermal Effects on Integrated

Circuit Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Thermal Failure Induced by Different Coefficient

of Thermal Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Thermal Failure Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Thermal Management Challenges

and Common Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Overall Picture of Thermal Management in Different

Packaging Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chip Level Packaging Thermal Management . . . . . . . . . . . . . . . . . . . 11

Board Level Packaging Thermal Management . . . . . . . . . . . . . . . . . . 12

System-Level Packaging Thermal Management . . . . . . . . . . . . . . . . 15

Thermal Management Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Hardware Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Software Solutions and Software-Based Dynamic

Thermal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Optimal Thermal Design of a Package . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Fundamentals of Heat Transfer and Thermal Calculation

in Electronic Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Multimode Heat Transfer in Electronic Packaging . . . . . . . . . . . . . . 34

Microscale Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Design for Advanced Thermal Management

of Electronic Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Thermal Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Thermal Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix

Page 10: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Materials Selection for Advanced Thermal Management . . . . . . . . . . . . 47

Interface Joining Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bulk Materials for Heat Spreading and Dissipating . . . . . . . . . . . . . 49

Materials and Components Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Environmental Compliance of Thermal Management Materials . . . . . 52

RoHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

WEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2 Characterization Methodologies of Thermal

Management Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Thermal Properties and Measurement Techniques . . . . . . . . . . . . . . . . . . . 59

Thermal Conductivity and Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Coefficient of Thermal Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Specific Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Thermal Shock Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Thermal Characterization of Micro/Nanomaterials . . . . . . . . . . . . . 72

Electrical Properties and Measurement Techniques . . . . . . . . . . . . . . . . . . 80

Electrical Conductivity and Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Permittivity and Its Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Thermomechanical Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Characterization Techniques of Thermally Induced

Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Fundamental Equations of Deformable Bodies . . . . . . . . . . . . . . . . . . 90

Constitutive Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Thermomechanical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Thermomechanical Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Analytical Techniques for Materials Characterization . . . . . . . . . . . . . . 104

Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Scanning Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Transmission Electron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Scanning Acoustic Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Surface Finish Requirement and Contact Interface

Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Corrosion and Oxidation Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Solderability of Surface Finishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Effects of Mating Cycles and Operating Environments

on Contact Surface Finishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Galvanic Corrosion and Contact Interface

Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

x Contents

Page 11: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Reliability Analysis and Environmental

Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Failure Modes and Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Reliability Qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3 Electronic Packaging Materials and Their Functions

in Thermal Managements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Materials Selection for Electronic Packaging . . . . . . . . . . . . . . . . . . . . . . . 131

Metallic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Monolithic Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Metallic Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Ceramics and Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Electronic Glasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Thermosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Multimaterial Laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Multilayer Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Metallic Laminate Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Printed Circuit Board Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Interface Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Low Thermal Conductivity Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Advanced Thermally Conductive Materials . . . . . . . . . . . . . . . . . . . . . . . . . 164

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4 Monolithic Carbonaceous Materials and Carbon

Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Natural and Industrial Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Pyrolytic Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Carbon–Graphite Foams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Fabrication Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Thermal Conductivity and Heat Transformation . . . . . . . . . . . . . . 181

Thermally Conductive Carbon Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Carbon–Carbon Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Contents xi

Page 12: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

5 Thermally Conductive Polymer Matrix Composites . . . . . . . . . . . . . . . . . . 201

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Polymer Matrix Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Reinforcements of Conductive Polymer Composites . . . . . . . . . . . . . . . 207

Design and Modeling of Conductive Polymer Composites . . . . . . . . . 209

Theoretical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Computational Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Percolation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

General Fabrication and Manufacturing Processes

of Polymer Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Typical Applications for Thermal Management . . . . . . . . . . . . . . . . . . . . . 222

Polymer–Carbon Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Polymer–Metal Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Polymer–Ceramic Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Polymer Matrix Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6 High Thermal Conductivity Metal Matrix Composites . . . . . . . . . . . . . . . 233

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Processing of Metal Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Solid State Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Liquid State Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

In Situ Fabrication Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Codeposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Aluminum Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Aluminum–Boron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Aluminum–Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Aluminum–Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Aluminum–Silicon Carbide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Aluminum–Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Copper Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Copper–Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Copper–Carbon Nanofiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Copper–Silicon Carbide and Copper–Diamond . . . . . . . . . . . . . . . 258

Other Metal Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Beryllium Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Silver–Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Low-CTE Composite Solder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

xii Contents

Page 13: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

7 Thermally Conductive Ceramic Matrix Composites . . . . . . . . . . . . . . . . . . 277

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

State of the Art in Processing of SiC Matrix Ceramic

Matrix Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

SiC–Diamond Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

SiC–Carbon Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Reaction-Bonded SiC Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Aluminum-Toughened SiC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Ceramic Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Ceramic Matrix Composite Thermal Protection System . . . . . . . . . . . . 299

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8 Thermal Interface Materials in Electronic Packaging . . . . . . . . . . . . . . . . 305

Thermal Joint Conductance and Selection of Thermal

Interface Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Thermal Joint Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Criteria for Selection of Thermal Interface Materials . . . . . . . . . 309

Metallic Thermal Interface Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Reflow Solders and Active Bond Process . . . . . . . . . . . . . . . . . . . . . 315

Nonreflow Solders and LMAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Composite Solders and Hybrid Metallic Thermal

Interface Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Gold–Gold Interconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Organic Thermal Interface Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Thermally Conductive Elastomer Materials . . . . . . . . . . . . . . . . . . . 339

Thermal Grease and Compound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Phase Change Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Polymer Solder Hybrid Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Graphite‐Based Thermal Interface Material . . . . . . . . . . . . . . . . . . . . . . . . . 351

Advanced Thermal Interface Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Gelvet and Fiber-Reinforced Thermal Interface Materials . . . . 352

Nanotechnology Based Thermal Interface Materials . . . . . . . . . . 358

Thermal Interface Materials Selection and Application . . . . . . . . . . . . . 362

Commercial TIMs Selection and Application . . . . . . . . . . . . . . . . . 363

Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

9 Materials and Design for Advanced Heat Spreader

and Air Cooling Heat Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Overview of Air Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Passive Air Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Active Air Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Contents xiii

Page 14: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Spreading and Constriction Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Type of Heat Spreaders and Their Materials Selection . . . . . . . . . . . . . 384

Dielectric Heat Spreader Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Metallic and Composite Heat Spreader Materials . . . . . . . . . . . . . 388

Graphite Heat Spreader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Advanced Heat Spreaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Air Cooling Heat Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Type of Air Flow Heat Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Heat Sink Design Constraints and Design Parameters . . . . . . . . 396

Heat Sink Materials Selection and Fabrication Process . . . . . . . 404

Nanostructure Enhanced Heat Sink and Complex

Spreader Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

10 Liquid Cooling Devices and Their Materials Selection . . . . . . . . . . . . . . 421

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Direct Liquid Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Immersion Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Liquid Jet Impingement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Spray Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Indirect Liquid Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Heat Pipe Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Fundamental Principles of Heat Pipe Cooling . . . . . . . . . . . . . . . . 444

Heat Pipe Design and Type of Heat Pipes . . . . . . . . . . . . . . . . . . . . 445

Limitations on Heat Transport Capacity . . . . . . . . . . . . . . . . . . . . . . 450

Applications of Heat Pipe for Electronic Cooling . . . . . . . . . . . . 452

Refrigeration Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

High-Flux Cooling with Phase-Change Heat Transfer . . . . . . . . . . . . 462

Enhancement of Pool Boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Enhancement of Forced-Convection . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Embedded Droplet Impingement for Integrated

Cooling of Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

11 Thermoelectric Cooling Through Thermoelectric Materials . . . . . . . . 477

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Thermoelectric Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Seebeck Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Peltier Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Thomson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Application of Thermoelectric Effects

to Thermoelectric Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

xiv Contents

Page 15: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Design and Architecture of Thermoelectric

Cooling Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Multistage Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Thermoelectric Materials and Future Development Trends . . . . . . . 495

Fermi Energy in Thermoelectric Materials . . . . . . . . . . . . . . . . . . . 496

Optimization Criteria of the Thermoelectric

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Bulk Thermoelectric Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Low-Dimensional Thermoelectric Materials . . . . . . . . . . . . . . . . . 512

Thermoelectric Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

12 Development and Application of Advanced Thermal

Management Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Materials Development Routine and Methodology . . . . . . . . . . . . . . . 527

Establishing Application Target and

Materials Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Materials Selection with Optimal Balance

of Cost and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

Thermal Modeling and Design-In Methodology . . . . . . . . . . . . . 533

Prototype Fabrication and Experimental Validation . . . . . . . . . 538

Production Layout and Quality Assurance . . . . . . . . . . . . . . . . . . . 540

Smart Composites and Multifunctional Materials

for Thermal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Thermal Management Materials with Enhanced

Electromagnetic Interference Shielding and Absorbing

Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

Minimizing EMI from Heat Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

Combination of Board Level Shielding

and Heat Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Thermally Conductive EMI Absorbing Materials . . . . . . . . . . . . 549

Thermally Conductive Metalized Plastic Housing

for EMI Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

Thermal Management Application in Computer Design . . . . . . . . . . 552

Design Baseline for Power Management

and Performance Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Packaging-Level Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

System-Level Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

Thermal Management Application in Photonic

LED Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Thermal Characterization of LED Systems . . . . . . . . . . . . . . . . . . 562

Design Guideline for LEDs with Efficient

Thermal Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Contents xv

Page 16: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Thermal Management Solutions and Challenges

of LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

Thermal Management Application in Sustainable Energy

Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Thermal Management of Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Thermal Management of Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 574

Thermal Management of Solar Cell Packaging . . . . . . . . . . . . . . 576

Perspective and Future Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Electrothermal and Multiphysics Codesign

and Software Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Progress and Future Trends of High Heat Flux

Thermal Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

Thermal Challenges for Next-Generation Military,

Automotive, and Harsh-Environment

Electronic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

Appendix: Standards and Specifications for Evaluation of Thermal

Management in Electronic Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

A. Standards for Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

B. Standards for Life and Reliability Evaluation . . . . . . . . . . . . . . . . . . . . . 598

C. Standards for Flammability and Toxicity Testing . . . . . . . . . . . . . . . . . 603

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

xvi Contents

Page 17: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

Abbreviations

ABGA Advanced ball grid array

ABS Acrylonitrile-butadiene-styrene

ACPI Advanced configuration and power interface

AES Auger electron spectroscope

AFM Atomic force microscopy

AMC Aluminum matrix composite, or airborne molecular contamination

APG Annealed pyrolytic graphite

ASTM American Society for Testing and Materials

BGA Ball grid array

BIOS Basic input/output system

BIST Built-in self-test

BLT Bond line thickness

BSE Back scattered electrons

BTE Boltzmann particle transport equation

CAD Computer aided design

CBGA Ceramic ball grid array

CCC Carbon/carbon composite

CCD Charge coupled device

CCFL Cold cathode fluorescent lamp

CFCC Continuous fiber ceramic composite

CFD Computational fluid dynamics

CHF Critical heat flux

CMC Ceramic matrix composite

CMOS Complementary metal oxide semiconductor

CNF Carbon nanofiber

CNT Carbon nanotube

COB Chip on board

COP Coefficient of performance

CPU Central processing unit

C-SAM C-mode scanning acoustic microscope

CSF Combination of solar and fuel cells

CTE Coefficient of thermal expansion

CTI Computer telephony integration

xvii

Page 18: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

CVD Chemical vapor deposition

CVI Chemical vapor infiltration

CW Continuous wave

dB Decibel

DCB/DAB Direct copper/aluminum bonded ceramic substrate

DF Density factor

DFT Density functional theory, or discrete Fourier transform

DIP Dual-in-line package

DLC Diamond like carbon

DNA Deoxyribonucleic acid

DS Decision support

DSP Digital signal processing

DTM Dynamic thermal management

ECU Electronics cooling unit

EDA Electronic design automation, or electronic document access

EDIFICE Embedded droplet impingement for integrated cooling of electronics

EDM Electrodischarge machining

EDS Energy dispersive spectroscopy of X-rays

EELS Electron energy loss spectrum

EG Electron gas

EIA Environmental impact assessment

EMA Effective medium approximation

EMC Electromagnetic compatibility

EMI Electromagnetic interference

EMS Electronic music studios

EPDM Ethylenepropylene diene monomer

ESD Electromagnetic discharge

ESPI Electronic speckle pattern interferometry

EV Electric vehicle

FCBGA Flip chip ball grid array

FEA Finite element analysis

FET Field effect transistors

FIT Failure in time

FLG Few layer graphene

FMEA Failure mode and effect analysis

FPBGA Flip chip plastic ball grid array

GAEC Gas-assisted evaporative cooling

GGI Gold–gold interconnection

GLP Graphite loaded polymer

HAST Highly accelerated stress test

HEV Hybrid electric vehicle

HFE Hydroflouroether

HIP Hot isostatic press

HOPG Highly oriented pyrolytic graphite

xviii Abbreviations

Page 19: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

HPHT High pressure and high temperature

HRTEM High resolution transmission electron microscopy

HVAC Heating, ventilating, and air conditioning

HVOS High-velocity oxyfuel spraying

Hz Hertz

IACS International annealed copper standard

IC Integrated circuit

ICA Isotropic conductive adhesive

ID Inside diameter

IGBT Insulated-gate bipolar transistor

IMS Insulated metal substrate, metal core board

IPEM Integrated power electronics module

IR Infrared

JCPDS Joint committee on powder diffraction standards

JTRS Joint tactical system

LCD Liquid crystal display

LCP Liquid crystal polymer

LD Laser diode

LDA Laser diode array

LED Light-emitting diode

LEM Lunar excursion module

LMA Low melting alloy

LRU Line replaceable unit

MBLT Minimum bond line thickness

MCAD Mechanical computer-aided design

MEMS microelectromechanical system

MH Metal hydride

MIL Military

MLC Multilayer ceramic

MMC Metal matrix composite

MPU Memory protection unit

MRU Modular refrigeration unit

MSRS Miniature scale refrigeration system

MTBF Mean time between failure

MTTF Mean time to failure

MWNT Multi-walled carbon nanotube

NEMS Nanoelectromechanical systems

NMP Net material product, or N-methylpyrrolidone

OD Outside diameter

OEE Overall equipment effectiveness

OEM Original equipment manufacturer

OPC Object linking and embedding for process control

OTD On time delivery

PAA Polyacrylic acid

PAI Polyamideimide

Abbreviations xix

Page 20: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

PAN Polyacrylonitrile

PBGA Plastic ball grid array

PC Polycarbonate, or personal computer

PCB Printed-circuit board

PCD Polycrystalline diamond

PCF Phase change film

PCM Phase change material

PCMA Phase change metal alloy

PDE Partial differential equation

PDP Program data processor

PE Polyethylene, or postal explorer

PEDOT:PSS Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)

PEEK Polyaryletherketones

PEI Polyetherimides

PEK Polyaryletherketones

PEM Proton exchange membrane

PES Polyethersulfone

PET Polyethylene terephthalate, or positron emission tomography

PFC Perfluorinated chemicals or perfluorochemicals, or power factor

correction

PG Pyrolytic graphite

PGA Pin grid array

PI Polyimides

PIP Polymer infiltration and pyrolysis

PLD Pulsed laser deposition

PM Preventive maintenance

PMC Polymer matrix composite

PMMA Poly(methyl methacrylate)

POM Polyoxymethylene

PPO Polyphenylene

PPS Polyphenylene sulfide

PSA Pressure sensitive adhesive

PSH Polymer solder hybrid

PSS Plasma sound source or polystyrene sulfonic acid

PSul Polysulfone

PTC Positive temperature coefficient

PTFE Polytetrafluoroethylene

PV Photovoltaic

PVA Polyvinyl alcohol

PWB Printed-wire board

PyC Pyrocarbon

QDSL Quantum dot superlattice

QFP Quad flat package

RIM Reaction injection molding

xx Abbreviations

Page 21: Springer Series in Advanced Microelectronics 30978-1-4419-7759-5... · 2017-08-27 · in Electronic Packaging ... 5 Thermally Conductive Polymer Matrix Composites ... Reinforcements

RMI Reactive melt infiltration

RoHS Restriction of hazardous substances

RTM Resin transfer molding

SAM Scanning acoustic microscopy

SEM Scanning electron microscope

SFF Small form factor

SiC Silicon carbide

SiP System in package

SIP Slurry infiltration process

SLS Reaction-bonded SiC with laser sintered process

SMA Shape memory alloy

SMT Surface mount technology

SOC System on a chip

SOI Silicon on insulator

SPM Scanning probe microscopy

STD Standard

SUB Single vacuum bag

SWNT Single walled carbon nanotube

TAB Tape-automated bonding

TBGA Tape ball grid array

TE Thermoelectric

TEC Thermoelectric cooler

TEM Transmission electron microscopy

TGF Thermal gap filler

TIM Thermal interface material

TML Total mass loss

TPE Thermoplastic elastomer

TPS Thermal protection system

TPU Thermoplastic polyurethane

TQFP Tape-bonded quad flat package

TTR Transient thermal reflectance

ULSI Ultra large scale integration

UV Ultraviolet light

VCC Vapor compression cooling

VCM Volatile condensable material

VGCF Vapor grown carbon fiber

VGCNF Vapor grown carbon nanofiber

VPE Vapor phase epitaxy

VR Virtual reality

VRLA Valve regulated lead acid

WBG Wide band gap

WEEE Waste electrical and electronic equipment

WIP Work in progress

ZT Dimensionless thermoelectric figure of merit

Abbreviations xxi


Recommended