+ All Categories
Home > Documents > BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory -...

BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory -...

Date post: 24-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
43
Collectivity from covariant transport Denes Molnar Ohio State University, Columbus, OH, USA Berkeley School May 19-27, 2005, LBNL, Berkeley, CA what is covariant transport theory what it tells us about collectivity at RHIC cooling, v 2 , heavy quarks, soft/hard physics boundary, HBT many puzzles, open questions
Transcript
Page 1: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Collectivity from covariant transport

Denes MolnarOhio State University, Columbus, OH, USA

Berkeley School

May 19-27, 2005, LBNL, Berkeley, CA

• what is covariant transport theory• what it tells us about collectivity at RHIC

cooling, v2, heavy quarks, soft/hard physics boundary, HBT

• many puzzles, open questions

Page 2: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Heavy-ion physics

• partonic condensed matter physics Kajantie ’96

many-body system À ∑constituents

• collision dynamics ( ∼ plasma physics, nonlinear systems)

evolving system À system in a box

initial nuclei parton plasma hadronization hadron gas

<—— ∼ 10−23 sec = 10 yocto(!)-secs ——>

↑∼ 10−14 m= 10 fermis

D. Molnar, Berkeley School, May 19-27, 2005 1

Page 3: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Exciting commonalities with

strongly-coupled cold atoms - E&M plasmas - supernovas

D. Molnar, Berkeley School, May 19-27, 2005 2

Page 4: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Dynamical frameworks

• hydrodynamics Csernai, Stocker, Rischke, Shuryak, Teaney, Heinz, Kolb, Huovinnen, Hirano, Muronga, ...

includes phase transitions

but limited to equilibrium, decoupling problem

Euler (ideal) hydro, Navier-Stokes (viscous hydro)

• covariant transport Elze, Gyulassy, Heinz, Pang, Zhang, Vance, DM, Csizmadia, Pratt, Cheng, Greiner, Xu

completely non-equilibrium, self-consistent freezeout

but no phase transitions, no coherence effects

parton cascade, hadron cascade

• classical field theory Venugopalan, McLerran, Rischke, Krasnitz, Nara, Lappi, ...

has all wave phenomena

but short-wavelength sector problematic

classical Yang-Mills (color glass)

D. Molnar, Berkeley School, May 19-27, 2005 3

Page 5: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Bigger picture

Classical Field TheoryHydrodynamics

Covariant Transport

color Boltzm.−Vlasov

Transp + Phase trans.

Nonequilibrium QFT

Hydro + Hadron Trans.

Lattice QCD

Euler (ideal) hydro 3+1D 2+1D Yang−Mills

Viscos hydro 2+1D, 3+1D 3+1D Yang−Mills

Boltzmann 1<−>2, 2−>2Inelastic 3<−>2Correlations

Equation of StateScreeningTransport coefficientsQuasi−particles

extend to 2+1D, 3+1D1+1D

gauge theories

Walecka?

Finite baryon density

φ4

D. Molnar, Berkeley School, May 19-27, 2005 4

Page 6: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Covariant transport theoryS. R. de Groot, Relativistic Kinetic Theory - Principles and Applications

R. L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic Descriptions

Elze, Gyulassy & Vasak, PLB 177 (’86) 402; Elze & Heinz, Phys. Rep. 183 (’89) 81 + Ph.D. theses

local scattering rate

dNsc

d3x dt= ntarget · jbeam · σ = ntarget(~x, t)nbeam(~x, t) vrel σ

consider also momenta: n(~x, t)→ f(~x, ~p, t) ≡ dN/d3xd3p

∂fb(~x, ~p, t)

∂t= −

ft(~x, ~p1, t) fb(~x, ~p, t) vrel(~p, ~p1)dσ(p, p1 → p′, p′1)

d3p′ d3p′1d3p′d3p′1d

3p1

+

ft(~x, ~p′, t) fb(~x, ~p1

′, t) vrel(~p

′, ~p1

′)dσ(p′, p′1 → p, p1)

d3p d3p1d3p1d

3p′1d

3p′

and free streaming: f(~x, ~p, t) = f(~x+~v∆t, ~p, t+∆t)

⇒ Boltzmann eq: pµ∂µf(x, ~p) = C[f ]

D. Molnar, Berkeley School, May 19-27, 2005 5

Page 7: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Example: Molnar’s Parton Cascade

Elementary processes: elastic 2→ 2 processes + gg ↔ qq, qq → q′q′ + ggg ↔ gg

Equation for f i(x, ~p): i = g, d, d, u, u, ...

pµ1∂µf

i(x, ~p1) =

π4

2

jkl

2

3

4

(

fk3f

l4 − f

i1f

j2

) ∣∣∣Mi+j→k+l

12→34

∣∣∣

2

δ4(12− 34)

+π4

12

2

3

4

5

(

f i3fi4f

i5

gi− f i1f

i2

)∣∣∣Mi+i→i+i+i

12→345

∣∣∣

2

δ4(12−345)

+π4

8

2

3

4

5

(

fi4f

i5 −

f i1fi2f

i3

gi

)∣∣∣Mi+i→i+i+i

45→123

∣∣∣

2

δ4(123−45)

+ Si(x, ~p1)

2→ 2

2↔ 3

3↔ 2

← initial conditions

with shorthands:

f qi ≡ (2π)3fq(x, ~pi),∫

i

≡∫ d3pi

(2π)3Ei, δ4(p1+p2−p3−p4) ≡ δ4(12− 34)

D. Molnar, Berkeley School, May 19-27, 2005 6

Page 8: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Nonlinear 6+1D transport eqn: solvable numerically

source 2→ 2 (ZPC,GCP, ...) 2↔ 3 (MPC)

pµ∂µf i(~x, ~p, t) =

︷ ︸︸ ︷

Si(~x, ~p, t) +︷ ︸︸ ︷

Cel.i [f ](~x, ~p, t) +

︷ ︸︸ ︷

Cinel.i [f ](~x, ~p, t) + ...

highly relativistic case→ few covariant/causal algorithms: ZPC, MPC, Bjorken-τ , ...

algorithms → cascade Pang, Zhang, Gyulassy, DM, Vance, Csizmadia, Pratt, Cheng, ...

→ recent attempt - spatial grid Greiner, Xu ...

code repository @ http://nt3.phys.columbia.edu/OSCAR

mean free path:

λ ≡ 1

cross section× density

λ = 0 − ideal hydrodynamicsλ =∞− free streaming

transport opacity: DM & Gyulassy NPA 697 (’02)

χ ≡〈ncoll〉〈sin2 θCM〉︸ ︷︷ ︸

∼ # of collisions× deflection weight

σ−1

∫dΩdσ

dΩ sin2 θ ≡ σtr/σ → 2/3 for isotropic

D. Molnar, Berkeley School, May 19-27, 2005 7

Page 9: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Nonlocal artifactsNaive 2→ 2 cascade nonlocal - action at distance d <

√σπ

subdivision: rescale f → f · `, σ → σ/` ⇒ d ∝ `−1/2 local as `→∞

DM & Gyulassy (’02): v2(pT ) spectra

!" #$% & '

( ) * +, - .

/0 1 2

3547698;

:=<?>A@CB

D

D D

D

EF G HI JKL MN

EF O O H JKL MN

EF H I J KL MN

EF H J KL MN

EF P J KL MN

QL Q R Q MN

ST UV W XV WY P Z I[ \] ^

_` ab _ cdef gh i j j j

k jl m no pqr s t uv h wx l

y z h j | ~ \ ] ^

=

5

HGZOPIPI I I

PI IPI

PI P

I I PI I I P

I I I I P

at RHIC: need subdivision ` ∼ 200 to eliminate large artifacts

→ computational challenge - CPU time scales as ` ∼3/2 per run → barely fits on PC

D. Molnar, Berkeley School, May 19-27, 2005 8

Page 10: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Connection to hydro• energy-momentum tensor: T µν(x) =

i

∫ d3pE p

µpνfi(x, ~p)

charge current: Nµc (x) =

i

∫ d3pE p

µcifi(x, ~p)

entropy current: Sµ(x) =∑

i

∫ d3pE p

µfi(x, ~p)1− ln[fi(x, ~p)h

3]

conservation laws: ∂µTµν = 0, ∂µNµ

c = 0

dissipation: ∂µSµ ≥ 0 ⇒ entropy production, in general

• Ideal fluid approximation λ→ 0: local equilibrium f = (2π)−3 exp[pµuµ(x)/T (x)]

T µνid = (e+ p)uµuν − p gµν

∂µSµ = 0 ⇒ entropy conserved

• Navier-Stokes approx. λ¿ length scales: near equilibrium - slowly varying

nB = 0 η ∝ T/σ

T µνNS = T µν

id +η(∇µuν +∇νuµ − 23∆

µν∇αuα) + ζ∆µν∇αu

α → shear & bulk viscosity

∂µSµNS = η

2T (∇µuν +∇νuµ − 23∆

µν∇αuα)2 + ζ

T (∇µuµ)2 → entropy production

D. Molnar, Berkeley School, May 19-27, 2005 9

Page 11: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Collective signatures at RHIC

• cooling, steepening of spectra

• large elliptic flow

• heavy quark elliptic flow and chemistry

• baryon vs meson observables (B/M ratios, v2 pattern)

• particle correlations - HBT

D. Molnar, Berkeley School, May 19-27, 2005 10

Page 12: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

CoolingExpanding systems cool due to p dV work

Gyulassy, Pang & Zhang (’97): 1+1D

0.0 2.0 4.0 6.0τ fm/c

0

100

200

300

400

500

600

dET/d

y G

eV

3 mb

8 mb

32 mb

Free Stream

Euler Hydro

Navier-Stokes

Kinetic

DM& Gyulassy (’00): 3+1D (dN/dη = 210)

! "$#&%('*) %,+-/.1032 46587:

9

;<

dissipation in transport slows cooling, especially in 3+1D

∼ Teff free streaming (σ = 0)

ideal hydro T ∼ t−1/3

time [fm/c]

3+1D, 20mb

3+1D, 80mb

1+1D, 20mb

3+1D, hydro

1+1D, hydro

D. Molnar, Berkeley School, May 19-27, 2005 11

Page 13: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Opacity at RHIC

pion RAA Au+Au @ 200 GeV, b = 8 fm (pQCD + saturation, τ0 = 0.1 fm/c, dNcent/dη = 2000)

DM, JPG (’04):

!"

$#&%('*

)+), -.-

/0123 1

3 2

3 3 /

3 1 3 2

significant cooling, at high pT large elastic parton energy loss

opaque system - σ × dN cent/dη ∼ 6000− 20000 mb χ(b = 0) ∼ 6− 20

D. Molnar, Berkeley School, May 19-27, 2005 12

Page 14: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Elliptic flow (v2)

spatial anisotropy → final azimuthal momentum anisotropy

ε ≡ 〈x2−y2〉〈x2+y2〉 → v2 ≡ 〈p2x−p2y〉〈p2x+p2y〉

- measures strength of interactions

- self-quenching, develops at early times

D. Molnar, Berkeley School, May 19-27, 2005 13

Page 15: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

What v2 measures

macroscopically: pressure gradients microscopically: transport opacity

∆~F/∆V = −~∇p

⇒ larger acceleration in impactparameter direction

⇐ ⇒

beam axis viewsmaller momenta

more deflection

φ

b

larger

momenta

less

deflection

variation in pathlength⇒ momentum anisotropy v2

D. Molnar, Berkeley School, May 19-27, 2005 14

Page 16: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

v2 builds up early

Zhang, Gyulassy & Ko (’99): anisotropy builds up during first ∼ 2 fm/c

0 1 2 3 4 5 6 7t (fm/c)

−0.05

0

0.05

0.1

0.15

0.2

v 2

σ = 10 mb

3 mb

1 mb

free streaming

sharp cylinder R = 5 fm, τ0 = 0.2 fm/c, b = 7.5 fm, dN cent/dy = 300

D. Molnar, Berkeley School, May 19-27, 2005 15

Page 17: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Strong interactions at RHICAu+Au @ 130 GeV, b = 8 fm

DM & Gyulassy, NPA 697 (’02): v2(pT , χ)

! " # $ % &

'( )* ' +,- ./ 0

1- 243 5 6 7

1- 2 3 8 7

1- 2 3 9 7

1- 2 0 : ; 7

<= > % & ?

@BADCFEHGJIK

CFEHLMEHAD

NJIMNOLPER

QSNOLMEHTSNO

UWVYX[Z]

\^_\a`cbSd

;65#8 8

6

6

6

nonlinear opacity dependence

v2(pT , χ) ≈ vmax2 (χ) tanh(pT/p0(χ))

ef gih j k l

mon pqr s tmFn pqr u vw vx y s z f |

ef u vw ~ h j k s z f

z v

t v v~ v vx vv

x tx

v tv

——————————perturbative value

need 15× perturbative opacities - σel × dNg/dη ≈ 45 mb ×1000 ⇒ sQGP

(saturated gluon dNcent

dη = 1000, Teff ≈ 0.7 GeV, τ0 = 0.1 fm, 1 parton→ 1 π hadronization)

even larger opacity than from RAA → PUZZLE #1 already DM ’99 (OSCAR-II workshop)

D. Molnar, Berkeley School, May 19-27, 2005 16

Page 18: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

ideal hydrodynamics covariant parton transport

[GeV/c]tp0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

) t(p 2v

0

0.05

0.1

0.15

0.2

0.25

0.3 Charged particlesHydro pionsHydro charged particlesHydro anti-protons

STAR Preliminary (Jan ’01)

! " # $ % &

'( )* ' +,- ./ 0

1- 23 4 5 6

1- 23 7 6

1- 23 8 6

1- 2 0 9 : 6

;< = % & >

?A@CBEDGFIHJBKDGLMDN@C

OIHMOILPDR

QNOSLMDGTUOI

VXWGY[Z]

\^_\U`baUc

:54#7 7

5

5

5

parton energy loss... classical Yang-Mills ...

0 1 2 3 4 5 6 pT [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v2(

pT)

Hydro+GLV quench., dNg/dy=1000 Hydro+GLV quench., dNg/dy=500 Hydro+GLV quench., dNg/dy=200 STAR data

Hydro v2(pT)=Tanh(pT/12)

Quenched pQCD

s0Λ/Tp0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(%

)2v

02468

10121416

b/2R=0.75

R=74s0Λ

Λ ≈ 1 GeV

Kolb, Heinz et al DM & Gyulassy

Gyulassy & Vitev Krashnitz, Nara, Venugopalan

↓ rapid drop

D. Molnar, Berkeley School, May 19-27, 2005 17

Page 19: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Radiative transport, 3 ↔ 2higher-order processes also contribute to thermalization

+ ...

but enhance effective opacity only 2− 3 times → still s-QGP

1+1D cooling (p dV work)

! " #$$$$ #&% ' )( *

+,-./0

/ 0

∼ TeffDM & Gyulassy, NPA 661, 236 (’99)

fixed transport cross sectionbut vary degree of inelasticity

100% elastic, 100% inelastic, 50-50%

2→ 2 3↔ 2 mixed

⇒ inelastic 3↔ 2 is roughly same as elastic with same transport cross section

D. Molnar, Berkeley School, May 19-27, 2005 18

Page 20: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Greiner & Xu ’04: claim thermalization time-scale τ ∼ 2− 3 fm/c

2→ 2, 2→ 3 transport cross sections spectra vs. time

← initial

inel. roughly doubles σtr← OK rapid cooling via 2→ 3, because assumedthere is nobody below 2 GeV(!)

⇒ driven mostly by phasespace, not collective “pressure” ⇒ little v2

in contrast DM & Gyulassy: low-pT region initially filled

D. Molnar, Berkeley School, May 19-27, 2005 19

Page 21: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

No, still not ideal fluid(!)

dissipation reduces v2 by 30− 50% even for σgg→gg ∼ 50 mb

DM & Huovinen, PRL94 (’05): final v2(pT ) v2(τ, pT )

"!$#&

%&'(*),

+

-. / . / . / . -

. .

0 1,2 345

67 8:9 ; < =

>@?BADC"

EGFHJIL

K

MNO PN5 O P53 O P33O M

3O N3O5

3

0 2 M0 2 N0 2 50 2 34 Q PR S TU

0 1,2 345

67 8:9 ; < =

>@?BADC"

EGFHJIL

K

MNO PN5 O P53 O P33O M

3O N3O5

3→ dense, strongly-interacting system, but still dissipative

D. Molnar, Berkeley School, May 19-27, 2005 20

Page 22: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Almost perfect fluidσgg ∼ 50 mb ↔ λMFP ∼ 0.08 fm - is likely the best one can get

quantum mechanics: ∆E ·∆t ≥ h/2

⇒ kinetic theory: T · λMFP ≥ h/3 Gyulassy & Danielewicz ’85

viscosity: η = sλT5 ⇒ minimal viscosity η/s ≥ 1/15

parton transport + large RHIC v2 indicate QGP is most ideal fluid possible

Nakamura & Sakai (’04): viscosity from lattice QCD

-0.5

0.0

0.5

1.0

1.5

2.0

1 1.5 2 2.5 3

243

8

163

8

s

KSS bound

PerturbativeTheory

T Tc

η

VERY difficult calculation - will take long to

converge with numerics

← string theory conjecture: η/s ≥ 1/4πSon et al (’02), (’04) - proof for N = 4 SYM

- RHIC can test this theory bound

D. Molnar, Berkeley School, May 19-27, 2005 21

Page 23: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Significant randomization

a) deflection angle ~pi 6 ~pf b) rapidity shift yf − yi

!"# $% &' & () * ' * * ( *

+-,/.10325

46.879:46;5<=

746,/>@?BACED:

AGFIHJ.KM

LON5P6QSR

T T T T UT UT UT UT U T

T T

T

T T

T

VW XYZ [\ ]^_ ` a

^cb def gh i

jk lm n om npq d gr s X t uv b wx Z

y z| z ~ z

3568

:65=6/

BE8

JMO5

6S

fdqgq dfq

qg w

g g f

g g

σel ≈ 7 mb σel ≈ 7 mb

- - - - - - - - - - - - - - - - - - - -

light parton momenta randomize to large degree, already for σ ∼ 7 mb(χ ∼ 7)

D. Molnar, Berkeley School, May 19-27, 2005 22

Page 24: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Cross-check: heavy quarks

∼ “Brownian motion” in plasma

mc ∼ 1.2 GeV À T

mg,mu,d,ms ∼ T

v ∼√

T/m

p ∼√m · T

Ncoll ∼ p/∆q∼√

m/T

charm quarks very heavy ⇒ need more collisions to randomize

⇒ at low momenta: expect reduced anisotropy v2

⇒ at high momenta: mass difference should not matter as m/p→ 0

D. Molnar, Berkeley School, May 19-27, 2005 23

Page 25: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

assume: all 2→ 2 processes are enhanced by same factor in opaque plasma

based on Combridge NPB 151 (’79) 429:

σgg→qq =2 r

27

1 + r

1 + 2rln(1 +

1

r)σgg→gg , σqiqi→qjqj

=16 r

243σgg→gg

σgg→cc =2 r

27Θ(1− 4R)

[

(1 + 4R + R2) ln

1 +√1− 4R

1−√1− 4R

− (7 + 3R)

√1− 4R

4

]

σgg→gg

σqq→cc =16 r

243Θ(1− 4R)(1 + 2R)

1− 4R σgg→gg

where r ≡ µ2D/s, R ≡M2c /s

take µD = 0.7 GeV, Mc = 1.2 GeV

D. Molnar, Berkeley School, May 19-27, 2005 24

Page 26: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Predicted charm flow(!)parton transport MPC 1.8.0 vs

DM, JPG (’04): parton v2

! " #

$% &(' ) * +

,.-0/214

3

56789:;9 ;

: 6: ;

6;

elastic & inel. 2→ 2

6× perturbative opacities

indirect D(qc) meson measurement:

PHENIX, STAR (’04): decay electron v2 ≈ vD2

uses decay electrons: D → K(∗) ν e

e’s from hadron decays and γ-conversion subtracted≡ “non-photonic”

qualitative agreement with data, detailed studies will follow - v2(b, χ,√s)

D. Molnar, Berkeley School, May 19-27, 2005 25

Page 27: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

also expect secondary charm production from opaque plasma

DM, JPG (’04):

initial vs. final rapidity distribution

!#"$ %'

&(*),+-

(/.

01234 24 14 04 52 3 3

6 7 36 3 3

7 33

89 :; <=;> <= >= ? < = @

? < @ABC DEF GF HI J K I JL H HMN OPQ GRS

T

UWV XZY'[

\*]_^-\a`

bcdef df cf bf gd e e

h i eh e e

i ee

• roughly half the glue fuse to qq• extra 40− 50% charm yield due to secondary production

• strangeness is up by much more, factor 5 or so

D. Molnar, Berkeley School, May 19-27, 2005 26

Page 28: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

PUZZLE #2 - data indicate no secondary charm (Ncoll scaled p+p)

PHENIX, PRL 94 (2005) 082301

collN0 200 400 600 800 1000 1200

Co

ll/d

y

/ N

ed

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4x10

(m

b)

AA

/dy

/ Te

dN

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35-2x10

centrality binned

min-bias

= 200 GeVsp + p at

<4.0

)T

(0.8

<p

<4.0

)T

(0.8

<p

D. Molnar, Berkeley School, May 19-27, 2005 27

Page 29: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Soft physics tails at high pT(!)

partons can end up with some final parton momentum (pT , y) in three ways:

• escape with no interaction - corona

• interact and lose energy - quench

• 3rd possibility: interact and gain energy - “push”

in opaque plasma, gain component can be relevant at surprisingly high pT ,pushing “pure” hard physics out to pT >∼ 10 GeV

study using MPC 1.8.0 w/ elastic and inelastic 2→ 2, dN cent/dη = 2000

D. Molnar, Berkeley School, May 19-27, 2005 28

Page 30: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

fractions from corona, quench, push vs pT, (|yf | < 1)

DM, nucl-th/0503051: σgg = 10 mb σgg = 5 mb

"!$#&%'

#("#)

*+

,-./012343

45 - /45 /

45 2 /4 0

0.25

0.5

0.75

1

0 1 2 3 4 5 6 7 8fr

actio

n of

tota

lpT_f [GeV]

coronaquench (pT_i > pT_f)push (pT_i < pT_f)

corona and “push” are significant even at pT,parton ∼ 8 GeV

fractions show surprisingly weak opacity dependence

D. Molnar, Berkeley School, May 19-27, 2005 29

Page 31: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

distribution of initial momenta for fixed final momentum bins, |yfin| < 1

(only quench + “push” plotted, normalized)

DM, nucl-th/0503051: σgg = 10 mb

! "# $! #

% $& %'

( &

)+*, - .

/103243562

07598;:=<?>A

@B/DCFEHGJ

ILK

MNMOM PQRNOPPS T

PS RPS U

PS NPS V

PS OPS M

P

“lucky” pT,i ∼ 1 GeV soft partons can end up at pT ∼ 5− 6− 7 GeV

D. Molnar, Berkeley School, May 19-27, 2005 30

Page 32: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

elliptic flow contributions vs pT

DM, nucl-th/0503051: σgg = 10 mb σgg = 5 mb

"

!

#$%&'()*+) +

* &* +

&+ 0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8

v2

pT_f [GeV]

coronaquenchpushtotal v2

rapid v2 drop from quench at high pT is compensated by large v2 of “pushed-up” partons

combined v2(pT ) decreases more slowly at high pT and can exceed“geometric” (extreme absorption) bounds Shuryak (’04), Voloshin (’04)

D. Molnar, Berkeley School, May 19-27, 2005 31

Page 33: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Where do the high opacities come from?

BIGGEST PUZZLE

• strong correlations? - critical scattering, (quasi)bound states Shuryak, Zahed et al (’04)

• plasma instabilities? - quark-gluon E & M Mrowczynski ’93, Arnold et al (’04)

• only apparent (hadronization effects)? - coalescence←

D. Molnar, Berkeley School, May 19-27, 2005 32

Page 34: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Quark coalescenceKo, Lin, Voloshin, DM, Greco, Levai, Mueller, Fries, Bass, Nonaka, Asakawa ...

coalescence of comoving quarks: qq M 3q B

DM & Voloshin, PRL91 (’03) analog of n+ p→ d

dNM(pT )dφ ∝

[dNq(pT/2)

]2

dNB(pT )dφ ∝

[dNq(pT/3)

]3=X

1+ε

1−ε 1−2ε+...

1+2ε+...

1+ε

squared/cubed probability→ amplified v2

vhadron2 (p⊥) ≈ n × vquark2 (p⊥/n)

3× for baryons2× for mesons 50% larger v2

for baryons

→ 5× for pentaquark, 6× for deuteron

! #"%$'

&)(*",+.-0

/212354

6789:;<<= :

<= ; 7<= ;

<= < 7<

amplification greatly reduces opacities needed to reproduce v2 data

D. Molnar, Berkeley School, May 19-27, 2005 33

Page 35: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

coalescence can help RAA vs v2 puzzle due to reversal in trends

effect of opacity increase: v2 up, RAA down

effect of coalescence: v2 up, RAA up at hadronization

picture hangs together nicely, if quark final state is a fit parameter

quark number scaling at RHIC pion/proton ratio

Castillo [STAR], HIC03: K0S,Λ,Ξ Greco, Ko, Levai, PRL90 (’03):

0 1 2 3 4 5 6 7 8

pT (GeV)

0

0.5

1.0

1.5

p− /π− r

atio

with s+hwithout s+h

Au+Au@200AGeV

(central)

D. Molnar, Berkeley School, May 19-27, 2005 34

Page 36: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

coalescence formuladNM(~p)

d3p= gM

(∏

i=1,2

d3xid

3pi)WM(x1−x2, ~p1 − ~p2)fα(~p1, x1)fβ(~p2, x2)δ

3(~p−~p1−~p2)

dNB(~p)

d3p= gB

(∏

i=1,2,3

d3xid

3pi)WB(x12, x13, ~p12, ~p13)fα(~p1, x1)fβ(~p2, x2)fγ(~p3, x3)δ

3(~p−

~pi)

hadron yield space-time hadron wave-fn. quark distributions

gives v2 scaling trivially if:

1. no other hadronization channels play a role

2. narrow wave functions W ∼ δ3(∆x)δ3(∆p)

3. only small local harmonic modulations |v2(x)| ¿ 1, |vn(x)| ¿ 1

vMeson2 (pT ) =

2 〈f2q(x, pT /2) v2,q(x, pT )〉x

〈f2q(x, pT /2)〉x

vBaryon2 (pT ) =

3 〈f3q(x, pT /3) v2,q(x, pT )〉x

〈f3q(x, pT /3)〉x

4. spatial dependence can be ignored (factorizes out)⇒ vhadron2 (pT ) = nvquark2 (pT/n)

- for example, global v2(x, pT ) ≡ v2(pT ), or constant FO density

none of these satisfied in transport or hydro, contrary to parameterizations

D. Molnar, Berkeley School, May 19-27, 2005 35

Page 37: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

1. Coal : Frag ≤ 3 : 1

coal+frag yield / frag only yield

DM (’04): dynamical calculation MPC + coal/JETSET

!

#"%$

&('*)",+-

/.0$21

34565

7 4

67 46

7 4

7 4

89: ;< =: > ?9@=BA CEDF G H

IKJMLONQPS

RTVUXW

YZ[\]] < [

] < \ ^] < \

] < ] ^]

v2 from ∼ 30% fragmentation contribution does not amplify → scaling spoiled

also, about same enhancement for protons and pions → p/π not enhanced

← quenching •∑pT →

←jetj T

v2amplification→

D. Molnar, Berkeley School, May 19-27, 2005 36

Page 38: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

2. Strong spatial variationsfinal transverse position distributions (|yrap| < 2)

! "#$ %

&'()*

+ ,-,. -. + ,+ ,

-,

. -. + ,

/ 0 12 03 45 67 89: ;

<=>?@

A BCBD CD A BA B

CB

D CD A B

0 123

k=3k=2k=1k=0

φ

dN/dφ

(arb

.units)

π0−π

5

4

3

2

1

0

← momentum dN/dφ in each spatial wedge

show surface emission at high pT ⇒ v2(x, pT )k = 0 region: v2 < 0; k = 3 region: v2 > 0

expect similar result from hydro

D. Molnar, Berkeley School, May 19-27, 2005 37

Page 39: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

3. Large |vn| ∼ O(1)DM, nucl-th/0408044

local cos(nφ) and sin(nφ) anisotropies → use vn ≡ 〈cos(nφ) + i sin(nφ)〉

averages over 4 spatial wedges

k=3k=2k=1k=0

φ

dN/dφ

(arb

.units)

π0−π

5

4

3

2

1

0

ImRe

pT [GeV]

〈vn〉

43210

0.8

0.6

0.4

0.2

0

v4

v3

pT [GeV]

〈vn〉

43210

0.8

0.6

0.4

0.2

0

v2

v1

pT [GeV]

〈vn〉

43210

0.8

0.6

0.4

0.2

0

narrow, almost Gaussian peaks - dN/dφ ∼ exp[−(φ− φ0)2/(2σ2)]

⇒ |vn| ∼ O(1), 〈cos(nφ)〉 ≡ Revn = cos(nφ0) · |v2| → varies with x(!)

new local scaling: |vk,had(pT , x)| ' |vk,q(pT/nq, x)|1/nq 6= nq|vk,q(pT/nq, x)|

D. Molnar, Berkeley School, May 19-27, 2005 38

Page 40: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Quark number scaling is truly remarkable → PUZZLE #3

• significant fragmentation contributions• strong space-momentum correlations (spatial anisotropies)• surface emission

parton transport + dynamical 4D coalescence - Gyulassy, Frankel, Remler ’83

and indep fragmentation -JETSET for partons without coal partner

DM (’04): v2(pT ) - π, p, q scaled v2

"!$# %'

&)(+*

,-./01

1 / ,1 /

1 0 ,1 0

1 1 ,1

pπparton coal + frag

pT/n [GeV]v 2/n

(%)

3210

15

10

5

0

flow amplification greatly reduced, baryon-meson splitting mostly gone

may still scale approximately ∼ 15% err but scaled v2 is NOT the quark v2

D. Molnar, Berkeley School, May 19-27, 2005 39

Page 41: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

HBT essentials

p2

p1

p1

p2q

K

Momentum correlations: reflect spacetime freezeout

C(~q, ~K) ≡ N(~p1, ~p2)

N(~p1)N(~p2)≈ 1 +

∣∣∣

∫d4x fFO(x, ~K) eiq

µxµ∣∣∣

2

[∫d4x fFO(x, ~K)

]2

[ e.g., Pratt, Csorgo & Zimanyi, PRC 42, 2646 (’90)]

fF O(x, ~p) ≡ dN/d4x d3p: 7D distribution of last interaction vertices

Out-side-long coordinates: special choice of frame

Kµ ≡ (K

0, K⊥, 0, 0), x

µ ≡ (t, xO, xS, xL) (K0 ≈

m2 +K2⊥)

HBT radii:R

2O = 〈∆x2O〉K + v

2⊥〈∆t

2〉K − 2v⊥〈∆xO∆t〉KR

2S = 〈∆x2S〉K, R

2L = 〈∆x2L〉K

exact for Gaussian source without final-state interactions

D. Molnar, Berkeley School, May 19-27, 2005 40

Page 42: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Small Rside → PUZZLE # 4

ideal hydro Heinz & Kolb (’02)

0

4

8

Rou

t(fm

)

0 0.2 0.4 0.6 0.80

4

8

Rsi

de(f

m)

K⊥(GeV)

hydro w/o FShydro with FShydro, τ

equ= τ

formSTAR π−, π+

0 0.2 0.4 0.6 0.80

4

8

12

K⊥ (GeV)

Rlo

ng (

fm)

hydro w/o FShydro with FShydro, τ

equ= τ

formSTAR π−, π+

overshoots RO & RL

while RS ≈ 4 fm only

cov. transport DM & Gyulassy (’02)

!" #$ % & '

(*),+-/.10

2 32 24253

4

5

! " #

(768+-/.90

3

45

!" #

(*:;+-/.90

3

4

5

RO & RL increase with opacitybut RS ≈ 3.5 fm stays flat

hydro+transportDumitru, Soff (’01)

—————– RHIC ——

Rout/Rside shoots abovedata

⇒ late-stage hadronicdecoupling not understood

wrong spacetime evolution,or too simple HBT formula?maybe resonances?

D. Molnar, Berkeley School, May 19-27, 2005 41

Page 43: BerkeleySchoolrnc.lbl.gov/TBS/Talks/MolnarD.pdf · S.R.deGroot,Relativistic Kinetic Theory - Principles and Applications R.L.Libofi,Kinetic Theory: Classical, Quantum, and Relativistic

Summary•Many indications of an opaque, largely randomized (but still dissipative)parton system at RHIC (at 10-100 times the densities of nuclei):- strong high-pT suppression of energetic particles

- large elliptic flow, even for D mesons (prelim.)

- large baryon/meson ratios, quark number scaling of v2

- large “out” and “long” HBT radii

• this matter seems to be the most ideal fluid ever observed→ experimental test of minimal viscosity derived from string theory.

• at such high opacities, soft physics tails can reach up to pT ∼ 10 GeV

•many puzzles and open questions:

- thermalization mechanism, origin of large opacities- RAA vs v2 opacity inconsistency- large charm v2 but no secondary charm- no quark scaling of v2 & B/M enhancement from dynamical coalescence approach- small Rside independent of dynamics- what will the plasma be like at the LHC (2007)?...

D. Molnar, Berkeley School, May 19-27, 2005 42


Recommended