+ All Categories
Home > Documents > St. PETER’S ENGINEERING COLLEGE

St. PETER’S ENGINEERING COLLEGE

Date post: 05-Oct-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
110
St. PETER’S ENGINEERING COLLEGE (Approved by AICTE, Affiliated to JNTUH Hyderabad) Opp: AP Forest Academy, Dhullapally, Near Kompally, Secunderabad - 500010 DEPARTMENT OF MECHANICAL ENGINEERING Name of the course : THERMODYNAMICS Name of the Faculty : S MADHU Class : II Year B.Tech. MECH I Sem R18 B.TECH MECHANICAL ENGG. ME305PC: THERMODYNAMICS
Transcript
Page 1: St. PETER’S ENGINEERING COLLEGE

St. PETER’S ENGINEERING

COLLEGE (Approved by AICTE, Affiliated to JNTUH Hyderabad)

Opp: AP Forest Academy, Dhullapally, Near Kompally, Secunderabad - 500010

DEPARTMENT

OF

MECHANICAL ENGINEERING

Name of the course : THERMODYNAMICS

Name of the Faculty : S MADHU

Class : II Year B.Tech. MECH I – Sem

R18 B.TECH MECHANICAL ENGG.

ME305PC: THERMODYNAMICS

Page 2: St. PETER’S ENGINEERING COLLEGE

B.Tech. II Year I Sem. L T/P/D C

3 1/0/0 4

Pre-requisite: Engineering Chemistry and Physics

Course Objective: To understand the treatment of classical Thermodynamics and to apply the First and Second laws of Thermodynamics to engineering applications

Course Outcomes: At the end of the course, the student should be able to Understand and differentiate

between different thermodynamic systems and processes. Understand and apply the laws of Thermodynamics to different types of systems undergoing various processes and to perform

thermodynamic analysis. Understand and analyze the Thermodynamic cycles and evaluate

performance parameters.

Tables/Codes: Steam Tables and Mollier Chart, Refrigeration Tables

UNIT – I

Introduction: Basic Concepts: System, Control Volume, Surrounding, Boundaries, Universe, Types

of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic

Equilibrium, State, Property, Process, Exact & Inexact Differentials, Cycle – Reversibility – Quasi – static Process, Irreversible Process, Causes of Irreversibility – Energy in State and in Transition, Types,

Displacement & Other forms of Work, Heat, Point and Path functions, Zeroth Law of Thermodynamics

– Concept of Temperature – Principles of Thermometry – Reference Points – Const. Volume gas Thermometer – Scales of Temperature, Ideal Gas Scale

UNIT - II

PMM I - Joule’s Experiments – First law of Thermodynamics – Corollaries – First law applied to a Process – applied to a flow system – Steady Flow Energy Equation.

Limitations of the First Law – Thermal Reservoir, Heat Engine, Heat pump , Parameters of performance,

Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements and their Equivalence / Corollaries, PMM of Second kind, Carnot’s principle, Carnot cycle and its specialties, Thermodynamic

scale of Temperature, Clausius Inequality, Entropy, Principle of Entropy Increase – Energy Equation,

Availability and Irreversibility – Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations – Elementary Treatment of the Third Law of Thermodynamics

UNIT – III

Pure Substances, p-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point at critical state properties during change of phase, Dryness Fraction – Clausius – Clapeyron

Equation Property tables. Mollier charts – Various Thermodynamic processes and energy Transfer –

Steam Calorimetry. Perfect Gas Laws – Equation of State, specific and Universal Gas constants – various Non-flow

processes, properties, end states, Heat and Work Transfer, changes in Internal Energy – Throttling and

Free Expansion Processes – Flow processes

UNIT - IV

Deviations from perfect Gas Model – Vader Waals Equation of State – Compressibility charts – variable

specific Heats – Gas Tables Mixtures of perfect Gases – Mole Fraction, Mass friction Gravimetric and volumetric Analysis – Dalton’s

Law of partial pressure, Avogadro’s Laws of additive volumes – Mole fraction, Volume fraction and

partial pressure, Equivalent Gas const. And Molecular Internal Energy, Enthalpy, sp. Heats and Entropy of Mixture of perfect Gases and Vapour, Atmospheric air - Psychrometric Properties – Dry bulb

Temperature, Wet Bulb Temperature, Dew point Temperature, Thermodynamic Wet Bulb Temperature,

Specific Humidity, Relative Humidity, saturated Air, Vapour pressure, Degree of saturation – Adiabatic

Saturation, Carrier’s Equation – Psychrometric chart.

UNIT - V

Page 3: St. PETER’S ENGINEERING COLLEGE

Power Cycles: Otto, Diesel, Dual Combustion cycles, Sterling Cycle, Atkinson Cycle, Ericsson Cycle,

Lenoir Cycle – Description and representation on P–V and T-S diagram, Thermal Efficiency, Mean

Effective Pressures on Air standard basis – comparison of Cycles.

Refrigeration Cycles:

Brayton and Rankine cycles – Performance Evaluation – combined cycles, Bell-Coleman cycle, Vapour

compression cycle-performance Evaluation.

TEXT BOOKS:

1. Engineering Thermodynamics / PK Nag / Mc Graw Hill

2. Thermodynamics for Engineers / Kenneth A. Kroos ; Merle C. Potter/ Cengage

REFERENCE BOOKS:

1. Engineering Thermodynamics / Chattopadhyay/ Oxford 2. Engineering Thermodynamics / Rogers / Pearson

UNIT I

INTRODUCTION

THERMODYNAMICS

Thermodynamics is the science that deals with heat and work and those properties of substance

that bear a relation to heat and work.

Page 4: St. PETER’S ENGINEERING COLLEGE

Thermodynamics is the study of the patterns of energy change. Most of this course will be

concerned with understanding the patterns of energy change.

More specifically, thermodynamics deals with (a) energy conversion and (b) the direction of change.

Basis of thermodynamics is experimental observation. In that sense it is an empirical science. The

principles of thermodynamics are summarized in the form of four laws known as zeroth, first, second, and the third laws of thermodynamics.

The zeroth law of thermodynamics deals with thermal equilibrium and provides a means of

measuring temperature.

The first law of thermodynamics deals with the conservation of energy and introduces the concept of internal energy.

The second law of thermodynamics dictates the limits on the conversion of heat into work and

provides the yard stick to measure the performance of various processes. It also tells whether a particular process is feasible or not and specifies the direction in which a process will proceed. As

a consequence it also introduces the concept of entropy.

The third law defines the absolute zero of entropy.

Macroscopic and Microscopic Approaches:

Microscopic approach uses the statistical considerations and probability theory, where we deal

with “average” for all particles under consideration. This is the approach used in the disciplines known as kinetic theory and statistical mechanics.

In the macroscopic point of view, of classical thermodynamics, one is concerned with the time-

averaged influence of many molecules that can be perceived by the senses and measured by the instruments.

The pressure exerted by a gas is an example of this. It results from the change in momentum of

the molecules, as they collide with the wall. Here we are not concerned with the actions of

individual molecules but with the time-averaged force on a given area that can be measured by a pressure gage.

From the macroscopic point of view, we are always concerned with volumes that are very large

compared to molecular dimensions, and therefore a system (to be defined next) contains many molecules, and this is called continuum.

The concept of continuum loses validity when the mean free path of molecules approaches the

order of typical system dimensions.

System:

We introduce boundaries in our study called the system and surroundings.

The boundaries are set up in a way most conducive to understanding the energetics of what we're

studying.

Page 5: St. PETER’S ENGINEERING COLLEGE

Defining the system and surroundings is arbitrary, but it becomes important when we consider

the exchange of energy between the system and surroundings.

Two types of exchange can occur between system and surroundings: (1) energy exchange (heat,

work, friction, radiation, etc.) and (2) matter exchange (movement of molecules across the boundary of the system and surroundings).

Based on the types of exchange which take place or don't take place, we will define three types

of systems:

isolated systems: no exchange of matter or energy

closed systems: no exchange of matter but some exchange of energy open systems: exchange of both matter and energy

Control Volume

Control volume is defined as a volume which encloses the matter and the device inside a

control surface.

Everything external to the control volume is the surroundings with the separation given

by the control surface.

The surface may be open or closed to mass flows and it may have flows from energy in

terms of heat transfer and work across it.

The boundaries may be moveable or stationary.

In the case of a control surface that is closed to the mass flow, so that no mass can enter or escape the control volume, it is called a control mass containing same amount of

matter at all times.

Property

In thermodynamics a property is any characteristic of a system that is associated with the

energy and can be quantitatively evaluated.

The property of a system should have a definite value when the system is in a particular state.

Thermodynamic property is a point function.

Properties like volume of a system that depend on the mass of a system are called

extensive properties.

Properties like pressure or temperature which do not depend on the system mass are called intensive properties.

The ratio of extensive property to the mass of the system are called specific properties

and therefore become intensive properties.

Substance can be found in three states of physical aggregation namely, solid, liquid and

vapor which are called its phases.

If the system consists of mixture of different phases, the phases are separated from each other by phase boundary.

The thermodynamic properties change abruptly at the phase boundary, even though the

intensive properties like temperature and pressure are identical.

Page 6: St. PETER’S ENGINEERING COLLEGE

Equilibrium

When the property of a system is defined, it is understood that the system is in

equilibrium.

If a system is in thermal equilibrium, the temperature will be same throughout the system.

If a system is in mechanical equilibrium, there is no tendency for the pressure to change. In a single phase system, if the concentration is uniform and there is no tendency for

mass transfer or diffusion, the system is said to be in chemical equilibrium.

A system which is simultaneously in thermal, mechanical, and chemical equilibrium is

said to be in thermal equilibrium.

Process

A process is path followed by a system in reaching a given final state of equilibrium state starting

from a specified initial state.

An actual process occurs only when the equilibrium state does not exist.

An ideal process can be defined in which the deviation from thermodynamic equilibrium is infinitesimal.

All the states the system passes through during a quasi-equilibrium process may be considered

equilibrium states.

For non-equilibrium processes, we are limited to a description of the system before the process

occurs and after the equilibrium is restored.

Several processes are described by the fact that one property remains constant.

The prefix iso- is used to describe such processes.

A process is said to be reversible if both the system and its surroundings can be restored to their

respective initial states by reversing the direction of the process.

Reversible: if the process happens slow enough to be reversed.

Irreversible: if the process cannot be reversed (like most processes).

The main processes are

Isobaric: process done at constant pressure

Isochoric: process done at constant volume

Isothermal: process done at constant temperature

Adiabatic: process where q=0

Cyclic: process where initial state = final state

Page 7: St. PETER’S ENGINEERING COLLEGE

Internal Energy

The molecule as a whole can move in x, y and z directions with respective components

of velocities and hence possesses kinetic energy.

There can be rotation of molecule about its center of mass and than the kinetic energy associated with rotation is called rotational energy.

In addition the bond length undergoes change and the energy associated with it is called

vibrational energy.

The electron move around the nucleus and they possess a certain energy that is called

electron energy.

The microscopic modes of energy are due to the internal structure of the matter and hence sum of all microscopic modes of energy is called the internal energy.

Bulk kinetic energy (KE) and potential energy (PE) are considered separately and the other

energy of control mass as a single property (U). The total energy possessed by the body is given by:

E = KE + PE + U

Work

Whenever a system interacts with its surroundings, it can exchange energy in two ways- work

and heat. In mechanics, work is defined as the product of the force and the displacement in the direction of

the force.Work done when a spring is compressed or extended: According to Hooke's law

Spring force = - k (x – x0) Where k is the spring constant, x0 is the equilibrium position, and x is the final position. The

negative sign shows that the direction of the spring force is opposite the direction of the

displacement from x0. The external force is equal in magnitude but opposite in sign to the spring force, so External force (force of your hands) = k (x –x0).

Now, we want to calculate the work done when we stretch the spring from position 1 to position

2.

W = F dx = k (x – x0) d(x-x0) = 1/2 k [(x2-x0)2 - (x1-x0)

2]

Work done when a volume is increased or decreased

Consider a gas in a container with a movable piston on top. If the gas expands, the piston moves out and work is done by the system on the surroundings. Alternatively, if the gas inside contracts,

the piston moves in and work is done by the surroundings on the system. Why would the gas

inside contract or expand?

It would if the external pressure, Pex, and the internal pressure, Pin, were different. To calculate

the work done in moving the piston, we know that the force = pressure times area and then work

equals pressure times area times distance or work equals pressure times the change in volume. So, W = the integral of (Pex) dV

The differential work done (dW) associated with a differential displacement (dl) is given by dW = F dl

For a piston cylinder assembly, dW = F dl = PA (dl) = P dV

Page 8: St. PETER’S ENGINEERING COLLEGE

If the gas is allowed to expand reversibly from the initial pressure P to final pressure P, then the

work done is given by W = ∫ p dV

The integral represents the area under the curve on a pressure versus volume diagram.

Therefore the work depends on the path followed and work is a path function and hence not a property of the system.

The above expression does not represent work in the case of an irreversible process.

The thermodynamic definition of work is “ Work is said to be done by a system on the

surrounding if the sole effect external to the system could be reduced to the raising of a

mass through a distance”.

Heat

Heat like work, is a form of energy.

The energy transfer between a system and its surroundings is called heat if it occurs by virtue of

the temperature difference across the boundary.

The two modes of energy transfer – work and heat- depend on the choice of the system.

Heat energy moves from a hotter body to a colder body upon contact of the two bodies.

If two bodies at different temperatures are allowed to remain in contact, the system of two bodies

will eventually reach a thermal equilibrium (they will have the same temperature).

A body never contains heat. Rather heat is a transient phenomenon and can be identified as it

crosses the boundary.

The State Postulate

The state of the system is described by its properties.

Once a sufficient number of properties are specified, the rest of the properties assume some

values automatically.

The number of properties required to fix a state of a system is given by the state postulate:

The state of a simple compressible system is completely specified by two independent, intensive

properties.

The system is called a simple compressible system in the absence of electrical, magnetic,

gravitational, motion, and surface tension effects.

The state postulate requires that the two properties specified be independent to fix the state.

Two properties are independent if one property can be varied while the other one is held constant.

Temperature and specific volume, for example, are always independent properties, and together

they can fix the state of a simple compressible system.

Page 9: St. PETER’S ENGINEERING COLLEGE

Thus, temperature and pressure are not sufficient to fix the state of a two-phase system.

Otherwise an additional property needs to be specified for each effect that is significant.

An additional property needs to be specified for each other effect that is significant.

Zeroth Law of Thermodynamics

We cannot assign numerical values to temperatures based on our sensations alone. Furthermore,

our senses may be misleading. Several properties of material changes with temperature in a repeatable and predictable way, and

this forms the basis of accurate temperature measurement.

The commonly used mercury-in-glass thermometer for example, is based on the expansion of

mercury with temperature.

Temperature is also measured by using several other temperature dependant properties.

Two bodies (eg. Two copper blocks) in contact attain thermal equilibrium when the heat transfer

between them stops. The equality of temperature is the only requirement for thermal equilibrium.

The Zeroth Law of Thermodynamics

If two bodies are in thermal equilibrium with a third body, they are also in thermal

equilibrium with each other.

This obvious fact cannot be concluded from the other laws of thermodynamics, and it serves as a

basis of temperature measurement. By replacing the third body with a thermometer, the zeroth law can be restated two bodies are in

thermal equilibrium if both have the same temperature reading even if they are not in contact

The zeroth law was first formulated and labeled by R.H. Fowler in 1931.

Temperature Scales

All temperature scales are based on some easily reproducible states such as the freezing and

boiling point of water, which are also called the ice-point and the steam-point respectively.

A mixture of ice and water that is in equilibrium with air saturated with water vapour at 1atm

pressure is said to be at the ice-point, and a mixture of liquid water and water vapour (with no air)

in equilibrium at 1atm is said to be at the steam-point.

Celsius and Fahrenheit scales are based on these two points (although the value assigned to these two values is different) and are referred as two-point scales.

In thermodynamics, it is very desirable to have a temperature scale that is independent of the properties of the substance or substances.

Such a temperature scale is called a thermodynamic temperature scale.(Kelvin in SI)

Page 10: St. PETER’S ENGINEERING COLLEGE

Ideal gas temperature scale

The temperatures on this scale are measured using a constant volume thermometer.

Based on the principle that at low pressure, the temperature of the gas is proportional to its

pressure at constant volume.

The relationship between the temperature and pressure of the gas in the vessel can be expressed

as T = a + b.P

Where the values of the constants a and b for a gas thermometer are determined experimentally.

Once a and b are known, the temperature of a medium can be calculated from the relation above

by immersing the rigid vessel of the gas thermometer into the medium and measuring the gas

pressure.

Ideal gas temperature scale can be developed by measuring the pressures of the gas in the vessel at two reproducible points (such as the ice and steam points) and assigning suitable values to

temperatures those two points.

Considering that only one straight line passes through two fixed points on a plane, these two measurements are sufficient to determine the constants a and b in the above equation.

If the ice and the steam points are assigned the values 0 and 100 respectively, then the gas temperature scale will be identical to the Celsius scale.

In this case, the value of the constant a (that corresponds to an absolute pressure of zero) is determined to be –273.150C when extrapolated.

The equation reduces to T = bP, and thus we need to specify the temperature at only one point to

define an absolute gas temperature scale.

Absolute gas temperature is identical to thermodynamic temperature in the temperature range in

which the gas thermometer can be used.

We can view that thermodynamic temperature scale at this point as an absolute gas temperature

scale that utilizes an ideal gas that always acts as a low-pressure gas regardless of the

temperature.

At the Tenth international conference on weights and measures in 1954, the Celsius scale has

been redefined in terms of a single fixed point and the absolute temperature scale.

The triple point occurs at a fixed temperature and pressure for a specified substance.

The selected single point is the triple point of water (the state in which all three phases of water coexist in equilibrium), which is assigned the value 0.01 C. As before the boiling point of water at

1 atm. Pressure is 100.0 C. Thus the new Celsius scale is essentially the same as the old one.

On the Kelvin scale, the size of Kelvin unit is defined as “ the fraction of 1/273.16 of the thermodynamic temperature of the triple point of water, which is assigned a value of 273.16K”.

The ice point on Celsius and Kelvin are respectively 0 and 273.15 K.

Page 11: St. PETER’S ENGINEERING COLLEGE

GRAPHICAL REPRESENTATION OF DATA

1. Pressure versus temperature (P-T)

2. Pressure vs. volume (P-v)

3. Temperature vs. volume (T-v)

4. Temperature vs. entropy (T-s)

5. Enthalpy vs. entropy (h-s)

6. Pressure vs. enthalpy (P-h)

First Law Analysis to Non-flow Processes

Constant Volume process:

1. Heating of gas enclosed in a rigid vessel:

dU = dQ or U2- U1 , Q = m Cv (T2 – T1)

2. Shaft work done on a system at constant volume dU = dQ- dW = dQ – (dWpdv + dWs)

or dU = - dWs or -Ws = U2- U1

3. Constant volume process involving electrical work:

- Ws = U2- U1

For an adiabatic process the work is done is independent of path.

Constant Pressure Process

1. Reversible heating of a gas

2. Phase Change at constant pressure(Rev.)

3. Shaft work at constant pressure

4. Electrical work at constant pressure

W = P (V2 –V1)

dU = dQ-dW = dQ- PdV = dQ- d(PV)

or, dQ = dU + d(PV) = d(U+ PV) = dH

Page 12: St. PETER’S ENGINEERING COLLEGE

Q = H the heat interaction is equal to increase in enthalpy

Constant Temperature Process

dU = dQ-dW = dQ- PdV

for an ideal gas u= u(T) then dU = 0

dQ = PdV = RT (dv/v)

Q = W = RT ln (v2/ v1)

Reversible Adiabatic Process

dU = -dW or W = -U

This equation is true for reversible as well as irreversible process.

Cv dT = -Pdv = -RT/v dv

dT/T = -R/Cv dv/v

R/Cv = - 1

dT/T = -(-1) dv/v

T2/T1 = (v1/v2) (-1) Tv(-1) = constant

Also Pv = Constant using perfect gas relation

FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics is the thermodynamic expression of the conservation of energy.

This law most simply stated by saying that “energy can not be created or destroyed” or that “the

energy of the universe is constant”.

This law can be stated for a system (control mass) undergoing a cycle or for a change of state of a

system.

Stated for a system undergoing a cycle, the cyclic integral of the work is proportional to the cyclic integral of the heat.

Mathematically stated, for a control mass undergoing a cyclic process such as in Joule’s

experiment and for consistent set of units

∫dQfrom system= ∫dWon system

or ∫dQfrom system- ∫dWon system = 0

The important thing to remember is that the first law states that the energy is conserved always.

Sign convention The work done by a system on the surroundings is treated as a positive quantity.

Page 13: St. PETER’S ENGINEERING COLLEGE

Similarly, energy transfer as heat to the system from the surroundings is assigned a positive sign.

With the sign convention one can write,

∫dQ = ∫dW

Consequences of the first law: Suppose a system is taken from state 1 to state 2 by the path 1-a-2

and is restored to the initial state by the path 2-b-1, then the system has undergone a cyclic

process 1-a-2-b-1. If the system is restored to the initial state by path 2-c-1, then the system has undergone the cyclic change 1-a-2-c-1. Let us apply the first law of thermodynamics to the cyclic

processes 1-a-2-b-1 and 1-a-2-c-1 to obtain

∫1-a-2dQ+ ∫2-b-1dQ - ∫1-a-2dW - ∫2-b-1dW =0

∫1-a-2dQ+ ∫2-c-1dQ - ∫1-a-2dW - ∫2-c-1dW=0

Subtracting, we get

∫2b1dQ- ∫2c1dQ –( ∫2b1dW - ∫2c1dW) =0

We know that the work is a path function and hence the term in the bracket is non-zero. Hence we

find ∫2b1dQ = ∫2c1dQ

That is heat is also a path function.

Energy is a property of the system: By rearranging we can have

∫2b1 (dQ - dW) = ∫2c1 (dQ - dW)

It shows that the integral is the same for the paths 2-b-1 and 2-c-1, connecting the states 2 and 1. That is, the quantity ∫ (dQ - dW) does not depend on the path followed by a system, but depends

only on the initial and the final states of the system. That is ∫ (dQ - dW) is an exact differential of

a property. This property is called energy (E). It is given by

dE = dQ-dW

E = KE + PE +U

where U is the internal energy. Therefore,

dE = d(KE) + d(PE) + dU = dQ-dW

Quit often in many situations the KE or PE changes are negligible.

dU = dQ – dW

An isolated system does not exchange energy with the surroundings in the form of work as well

as heat. Hence dQ = 0 and dW = 0. Then the first law of thermodynamics reduces to dE = 0 or E2

= E1 that is energy of an isolated system remains constant.

Page 14: St. PETER’S ENGINEERING COLLEGE

Perpetual Motion Machine of the first kind: An imaginary device which delivers work

continuously without absorbing energy from the surroundings is called a Perpetual Motion

machine of the first kind. Since the device has to deliver work continuously, it has to operate on a

cycle. If such a device does not absorb energy from its surroundings ∫dQ =0. From the first law, it can be observed that ∫dW =0, if ∫ dQ = 0. Therefore such a device is impossible from first

law of thermodynamics.

First law analysis of non-flow processes: The first law of thermodynamics can be applied to a

system to evaluate the changes in its energy when it undergoes a change of state while interacting

with its surroundings. The processes that are usually encountered in thermodynamic analysis of systems can be identified as any one or a combination of the following elementary processes:

Constant volume (isochoric) process

Constant pressure (isobaric) process

Constant temperature (isothermal) process.

Adiabatic process.

Constant volume process: Suppose a gas enclosed in a rigid vessel is interacting with the

surroundings and absorbs energy Q as heat. Since the vessel is rigid, the work done W due to expansion or compression is zero. Applying the first law, we get

dU = dQ or Q = U2 –U1

That is, heat interaction is equal to the change in internal energy of the gas. If the system contains

a mass m equal of an ideal gas, then

Q = ΔU = mCv (T2 –T1)

The path followed by the gas is shown on a P-V diagram. Now consider the fluid contained in a rigid vessel as shown. The vessel is rigid and insulated. Shaft work is done on the system by a

paddle wheel as shown in Fig. a. In Fig. b electric work is done on the system. Since the vessel is

rigid, the PdV work is zero. Moreover, the vessel is insulated and hence dQ = 0. Application of the first law of thermodynamics gives

dU = dQ – dW = dQ – (dWpdv + dWs)

or dU = -dWs or – Ws = ΔU = U2 –U1

Where dWpdv is the compression /expansion work and dWs is the shaft work. That is increase in

internal energy of a system at a constant volume, which is enclosed by an adiabatic wall, is equal

to the shaft work done on the system.

Constant pressure process: Several industrial processes are carried out at constant pressure. A few

examples of constant pressure processes are: (a) reversible heating/cooling of a gas (b) phase change (c) paddle wheel work (d) electrical work. For a constant pressure process, the work done

W is given by

W = ∫PdV = P (V2-V1)

Application of the first law of thermodynamics gives

Page 15: St. PETER’S ENGINEERING COLLEGE

dU = dQ – dW = dQ – PdV = dQ – d(PV)

or dQ = dU + d(PV) = d(U + PV) = dH

or Q = ΔH

That is in a constant pressure process, the heat interaction is equal to the increase in the enthalpy

of the system. Now consider the constant pressure processes in which the system is enclosed by

an adiabatic boundary. Application of the first law gives:

dU = dQ – dW = dQ – (PdV + dWs)

Here, the net work done (dW) consists of two parts – the PdV work associated with the motion of

the boundary and (-dWs), the shaft work (or electrical work) done by the surroundings. Since the

system is enclosed by an adiabatic boundary, dQ = 0 the equation can be written as

-dWs = dU + d(PV) = dH

That is, the increase in the enthalpy of the system is equal to the shaft work done on the system.

Constant temperature process: Suppose a gas enclosed in the piston cylinder assembly is allowed

to expand from P1 to P2 while the temperature is held constant. Then application of the first law

gives:

dU = dQ – dW = dQ –PdV

It is not possible to calculate work and heat interactions unless the relationships between the

thermodynamic properties of the gas are known. Suppose the gas under consideration is an ideal

gas (which follows the relation Pv = RT and u = u(T) only) then for an isothermal process,

dU = 0 and dQ = PdV = RTdv/v or Q =W = RTln(v2/v1)

Reversible adiabatic (Isentropic process):

Polytropic Process

W = cdv/ vn

w = (P1v1- P2v2)/(n-1)

du = dq – dw

u2 – u1 = q - (P1v1- P2v2)/(n-1)

u2 – u1 = Cv (T2 – T1) = q – w

q = R(T2 – T1)/(-1) + (P1v1- P2v2)/(n-1)

= R (T1 – T2){1/(n-1) – 1/(-1)}

Page 16: St. PETER’S ENGINEERING COLLEGE

1 1 2 2

=(P1v1- P2v2)/(n-1) {( -n)/(-1)}

=w.{ ( -n)/(-1)}

Problem: Air (ideal gas with = 1.4) at 1 bar and 300K is compressed till the final volume is one-

sixteenth of the original volume, following a polytropic process Pv1.25 = const. Calculate (a) the

final pressure and temperature of the air, (b) the work done and (c) the energy transferred as heat

per mole of the air.

Solution: (a) P v 1.25 = P v 1.25

P2 = P1(v1/v2)1.25 = 1(16)1.25 = 32 bar

T2 = (T1P2v2)/(P1v1) = (300 x 32 x 1)/(1x16) = 600K

(b) w = (P1v1- P2v2)/(n-1)

= Ru(T1 – T2)/(n-1)

= 8.314 (300 – 600)/(1.25-1) = -9.977 kJ/mol

(c) q = w.{ ( -n)/(-1)}

= -9.977 (1.4 – 1.25)/(1.4-1) = -3.742 kJ/mol

Unresisted or Free expansion

In an irreversible process, w Pdv

Vessel A: Filled with fluid at pressure

Vessel B: Evacuated/low pressure fluid

Valve is opened: Fluid in A expands and fills both vessels A and B. This is known as unresisted expansion or free expansion.

No work is done on or by the fluid.

No heat flows (Joule’s experiment) from the boundaries as they are insulated.

U2 = U1 (U = UA + UB)

Page 17: St. PETER’S ENGINEERING COLLEGE

Problem: A rigid and insulated container of 2m3 capacity is divided into two equal compartments

by a membrane. One compartment contains helium at 200kPa and 127oC while the second compartment contains nitrogen at 400kPa and 227oC. The membrane is punctured and the gases

are allowed to mix. Determine the temperature and pressure after equilibrium has been

established. Consider helium and nitrogen as perfect gases with their Cv as 3R/2 and 5R/2 respectively.

Solution: Considering the gases contained in both the compartments as the system, W= 0 and Q

= 0. Therefore, U = 0 (U2 = U1)

Amount of helium = NHe = PAVA/RuTA

= 200 x 103 x 1/(8.314 x400) = 60.14 mol.

Amount of nitrogen = NN2 = PBVB/RuTB

= 400 x 103 x 1/(8.314x500)

= 96.22 mol.

Let Tf be the final temperature after equilibrium has been established. Then,

[NCv(Tf-400)]He + [NCv(Tf-500)]N2 = 0

Ru[60.14(Tf-400)3 + 96.22(Tf-500)5 ] /2 = 0

Or, Tf = 472.73 K

The final pressure of the mixture can be obtained by applying the equation of state:

PfVf = (NHe + NN2)Ru Tf

2Pf = (60.14 + 96.22) 8.314 (472.73)

or, Pf = 307.27 kPa

Page 18: St. PETER’S ENGINEERING COLLEGE

V

m

Control-Volume Analysis

Control volume is a volume in space of special interest for particular analysis.

The surface of the control volume is referred as a control surface and is a closed surface.

The surface is defined with relative to a coordinate system that may be fixed, moving or rotating.

Mass, heat and work can cross the control surface and mass and properties can change with time

within the control volume.

Examples: turbines, compressors, nozzle, diffuser, pumps, heat exchanger, reactors, a thrust-

producing device, and combinations of these.

First law of thermodynamics for a continuous system

Let the continuous system be in state 1 at time t and after a differential time dt, let it be in the

state 2. The change in the energy of the continuous system is,

d[ edV ] Now,

dE = dQ – dW

or,

dE dt dt

dE

d dt

QW

dt edV QW

First law of thermodynamics to a control volume

dm

dt

i

Or

me

[Rate of accumulation of mass inside the control volume] = [Rate of mass entering the control

volume at inlet] – [Rate of mass leaving the control volume at exit]

The above is commonly known as continuity equation.

We should identify a definite quantity of matter which remains constant as the matter flows. For

this purpose, let the boundary of the system include all matter inside the control volume and that

which is about to enter the control volume during the differential time interval dt.

Page 19: St. PETER’S ENGINEERING COLLEGE

me

At time t, the system is defined as the mass contained in the control volume and the mass in

region A which is about to enter the control volume in a differential time dt.

At time t+dt, the system is defined as the mass contained in the control volume and the mass in

region B.

Therefore, during the differential time dt, the system configuration undergoes a change.

Mass contained in region A = mi dt

Mass contained in region B = me dt

From mass balance,

The work done as the

volume = -Pivi mi dt

m(t)

mi dt m(tdt)

me dt

mass enters the control

The work done by mass exiting the control volume =

Peve me dt

Energy of the system at time t = E(t) + mi eidt

Energy of the system at time (t+dt) =

E(t+dt) + ee me dt

Energy transferred as heat to the system = Qdt

Shaft work done by the system = Wsh dt

From the first law,

[E(t+dt) + ee

)dt

me dt] – [E(t) + mi

eidt ] = Qdt - Wsh dt – ( Peve me

-Pivi mi

E(t dt) E(t)

me ( ee + Peve)- mi

(ei + Pivi)= Q - Wsh -

or, dt

me (he+Ve

2/2 + gZe) - mi (hi+Vi

2/2 + gZi) = Q - Wsh - dE/dt

where, he = ue + Peve, hi = ui + Pivi

Or, Rate of energy accumulation = rate of energy inflow – rate of energy outflow

Page 20: St. PETER’S ENGINEERING COLLEGE

i

i

Steady state flow process

Assumptions:

=

m m The

=

m state

of matter at the inlet, exit and at any given point inside the

control volume does not change with respect to time.

dE / dt = 0

The rate of energy transfers across the control surface is constant.

(he+Ve2/2

m

+ gZe) - (hi+Vi2/2 + gZi) =( Q - Wsh

)/

Steady state steady flow process

q w h Ke Pe he

hi

2 V 2

2

g(Ze

Zi )

where, q Q / m and w Wsh / m

For negligible change in kinetic and potential energies through the control volume,

q w h (kJ / kg) If the control volume is well insulated (i.e. adiabatic), then, q = 0.

V

e

e

Page 21: St. PETER’S ENGINEERING COLLEGE

For steady flow devices, such as turbines, compressors and pumps, Wsh

through a shaft.

is power transmitted

Ke (V 2 V 2 ) / 2 e i

The unit of ke is m2/s2 which is equivalent to Joule/kg. The enthalpy is usually given in kJ/kg. So kinetic energy should be expressed in kJ/kg. This is accomplished by dividing it by

1000.

Kinetic energy term at low velocities is negligible, but should be accounted for at high velocities.

By similar argument, the elevation difference between inlet and exit of most industrial devices

such as compressors and turbines is small and potential energy term is negligible (particularly for gases). The only time the potential energy term is significant is when a process involves pumping

a fluid to high elevations.

Turbine

A turbine is a rotary steady state steady flow machine whose purpose is the production of shaft power at the expense of the pressure of the working fluid.

Two general classes of turbines are steam and gas turbines depending on the working substance

used.

Usually, changes in potential energy are negligible, as is the inlet kinetic energy. Often the exit kinetic energy is neglected (if in a problem, the flow velocities are specified, the kinetic energy

term should be included).

Normally, the process in the turbine is adiabatic and the work output reduces to decrease in enthalpy from the inlet to exit states.

Wsh

m(hi he )

Compressor / pump

The purpose of a compressor (gas) or pump (liquid) is the same, to increase the pressure of a fluid by putting in shaft work (power). There are two fundamentally different types of compressors:

1. The rotary type (either axial or centrifugal flow) 2. A piston/cylinder type compressor.

The first type is analyzed using control volume approach (steady state steady flow process). The

working fluid enters the compressor at low pressure and exits at high pressure.

Usually, changes in potential energy are negligible as is the inlet kinetic energy. Often, exit

kinetic energy is neglected as well (wherever, in a problem, velocities are specified, ke term

should not be neglected).

The compression process is usually adiabatic.

W [(h h ) (V 2 V

2 ) / 2]

sh m i e i e

Page 22: St. PETER’S ENGINEERING COLLEGE

e i

Nozzle

A nozzle is a steady state steady flow device to create a high velocity fluid stream at the expense

of its pressure. It is contoured in an appropriate manner to expand the fluid to a lower pressure.

Since the objective of the device is to increase the flow velocity, hence kinetic energy, the kinetic

energy term cannot be ignored. Usually, the process through the nozzle is treated as adiabatic.

Since there are no moving parts, shaft work is zero. The potential energy term (for gases) is

negligible and hence omitted.

(hi he) (V 2 V 2 ) / 2

Diffuser

A steady state steady flow device meant to decelerate high velocity fluid resulting in increased

pressure of the fluid. It is the opposite of a nozzle as far as the purpose is concerned. The assumptions are similar to those for a nozzle.

Page 23: St. PETER’S ENGINEERING COLLEGE

UNIT II

LIMITATIONS OF FIRST LAW

First law is a statement of conservation of energy principle. Satisfaction of first law alone does

not ensure that the process will actually take place.

Examples:

1. A cup of hot coffee left in a cooler room eventually cools off. The reverse of this

process- coffee getting hotter as a result of heat transfer from a cooler room does not

take place. 2. Consider heating of a room by passage of electric current through an electric resistor.

Transferring of heat from room will not cause electrical energy to be generated through

the wire. 3. Consider a paddle-wheel mechanism operated by fall of mass. Potential energy of mass

decreases and internal energy of the fluid increases. Reverse process does not happen,

although this would not violate first law.

4. Water flows down hill where by potential energy is converted into K.E. Reverse of this process does not occur in nature.

Conclusion:

Processes proceed in a certain direction and not in the reverse direction. The first law places no restriction on direction.

A process will not occur unless it satisfies both the first and second laws of thermodynamics.

Second law not only identifies the direction of process, it also asserts that energy has quality as

well as quantity.

Thermal Reservoir

A thermal reservoir is a large system (very high mass x specific heat value) from which a quantity

of energy can be absorbed or added as heat without changing its temperature. The atmosphere and

sea are examples of thermal reservoirs.

Any physical body whose thermal energy capacity is large relative to the amount of energy it supplies or absorbs can be modeled as a thermal reservoir.

A reservoir that supplies energy in the form of heat is called a source and one that absorbs energy

in the form of heat is called a sink.

Heat Engine

It is a cyclically operating device which absorbs energy as heat from a high temperature reservoir,

converts part of the energy into work and rejects the rest of the energy as heat to a thermal reservoir at low temperature.

The working fluid is a substance, which absorbs energy as heat from a source, and rejects energy

as heat to a sink.

Thermal Power Plant

Page 24: St. PETER’S ENGINEERING COLLEGE

Working Fluid --------- Water

Q1 – Heat received from hot gases

WT – Shaft work by turbine

Q2 – Heat rejected to cooling water in condenser

WP – Work done on the pump

Wnet=WT-WP

W = Q1 – Q2

Thermal Efficiency,

Wnet

Q1

W

Q1

Q1 Q2

Q1

Schematic representation of Heat Engine

Schematic representation of Refrigerator and Heat pump.

Page 25: St. PETER’S ENGINEERING COLLEGE

QL – Heat absorbed from low temperature thermal reservoir

QH – Heat rejected to a high temperature thermal reservoir when work (W) is done on it.

(COP) R QL

W

QL

QH QL

(COP) HP QH

W

QH

QH QL

In a reversible, isothermal expansion of an ideal gas, all the energy absorbed as heat by the

system is converted completely into work. However this cannot produce work continuously (not a

cycle).

Single reservoir heat engine (1 T engine) is not possible.

Second Law of Thermodynamics

Kelvin-Planck Statement: - It is impossible to devise a cyclically operating device, which

produces no other effect than the extraction of heat from a single thermal reservoir and delivers

an equivalent amount of work.

Heat engine with single thermal reservoir is not possible.

For a 1-T engine the thermal efficiency =W/Q=1. No heat engine can have efficiency equal to

unity.

Clausius Statement: - It is impossible to construct a device that operates in a cycle and produces

no effect other than the transfer of heat from a lower-temperature body to higher-temperature

body.

Equivalence of the two statements

Page 26: St. PETER’S ENGINEERING COLLEGE

To prove that violation of the Kelvin-Planck Statement leads to a violation of the Clausius

Statement, let us assume that Kelvin-Planck statement is incorrect.

Consider a cyclically working device 1, which absorbs energy Q1 as heat from a thermal reservoir

at TH. Equivalent amount of work W(W=Q1) is performed.

Consider another device 2 operating as a cycle, which absorbs energy QL as heat from a low

temperature thermal reservoir at TL and rejects energy QH (QH=QL+W). Such a device does not violate Clausius statement.

If the two devices are now combined, the combined device (enclosed by the dotted boundary) transfers heat QL from the low temperature reservoir at TL to a high temperature reservoir at TH

with out receiving any aid from an external agent, which is the violation of the Clausius

statement.

Likewise let us assume that the Clausius statement is incorrect. So we have a device 1, cyclically

working transferring heat Q from a low temperature reservoir at TL to a high temperature thermal

reservoir at TH . Consider another device 2, which absorbs heat Q1 from a high temperature reservoir at TH does work W and rejects energy Q as heat tot the low temperature reservoir at TL

as shown in figure.

If the two devices are combined (shown in figure by a dotted enclosure), then the combined device receives energy (Q1-Q) as heat from a thermal reservoir and delivers equivalent work

(W=Q1-Q) in violation of the Kelvin-Planck statement.

Therefore violation of Clausius statement leads to the violation of the Kelvin-Planck statement. Hence, these two statements are equivalent.

Perpetual Motion Machines

A device that violates the First law of thermodynamics (by creating energy) is called a Perpetual

Motion Machine of the first kind.

A device that violates the Second law of thermodynamics is called a Perpetual Motion Machine

of the Second kind.

Page 27: St. PETER’S ENGINEERING COLLEGE

The first device supplies continuously energy with out receiving it. So this is a system creating

energy and therefore violating the first law.

The second device exchanges heat with a single reservoir and thus a net amount of work. This need not violate the first law, but violates the second law and therefore will not work.

Reversible and Irreversible Processes

A process is said to be reversible if both the system and the surroundings can be restored to their

respective initial states, by reversing the direction of the process. A reversible process is a process that can be reversed without leaving a trace on the surroundings. Processes that are not reversible

are called Irreversible processes.

Irreversibilities

The factors that cause a process to be irreversible are called irreversibilities. Examples:

1. Friction 2. Unrestrained expansion

3. Mixing of two gases

4. Heat transfer across a finite temperature difference 5. Spontaneous chemical reactions

6. Expansion or Compression with finite pressure difference 7. Mixing of matter at different states

Carnot Cycle

The Carnot cycle uses only two thermal reservoirs – one at high temperature T1 and the other at

two temperature T2. If the process undergone by the working fluid during the cycle is to be reversible, the heat transfer

must take place with no temperature difference, i.e. it should be isothermal.

Page 28: St. PETER’S ENGINEERING COLLEGE

The Carnot cycle consists of a reversible isothermal expansion from state 1 to 2, reversible

adiabatic expansion from state 2 to 3, a reversible isothermal compression from state 3 to 4

followed by a reversible adiabatic compression to state 1.

The thermal efficiency, is given by

= Net work done / Energy absorbed as heat

During processes 2-3 and 4-1, there is no heat interaction as they are adiabatic. 2 2

dv

Q12 Pdv RT1 v RT1 ln(v2 / v1 )

1 1

Similarly for the process 3-4, 4 4

dv

Q34 Pdv RT2 v RT2 ln(v4 / v3 )

3 3

Net heat interaction = Net work done

= RT1ln(v2/v1) + RT2ln(v4/v3)

= RT1ln(v2/v1) - RT2ln(v3/v4)

The processes 2-3 and 4-1 are reversible, adiabatic and hence

T v -1 = T v -1 1 2 2 3

Or, v2/v3 = (T2/T1)1/(-1)

And T v -1

= T v -1

2 4 1 1

Or, v1/v4 = (T2/T1)1/(-1)

v2/v3 = v1/v4 or v2/v1 = v3/v4

= {RT1ln(v2/v1) - RT2ln(v3/v4)} / RT1ln(v2/v1)

= (T1 – T2)/T1

= 1- T2/T1

The Carnot Principles

1. The efficiency of an irreversible heat engine is always less than the efficiency of a

reversible one operating between same two thermal reservoirs. 2. The efficiencies of all reversible heat engines operating between the same two thermal

reservoirs are the same.

Page 29: St. PETER’S ENGINEERING COLLEGE

Lets us assume it is possible for an engine I to have an efficiency greater than the efficiency of a

reversible heat engine R.

I > R

Let both the engines absorb same quantity of energy Q1. Let Q and Q2 represent the energy

rejected as heat by the engines R, and I respectively.

WI = Q1 - Q

WR= Q1 – Q2

I = WI / Q1 = (Q1 - Q)/Q1 = 1-Q/Q1

R = WR/Q1 = (Q1 - Q2)/Q1 = 1-Q2/Q1

Since I > R,

1-Q/Q1 > 1-Q2/Q1

or, Q < Q2

Therefore, WI (= Q1-Q) > WR (=Q1 – Q2)

Since the engine R is reversible, it can be made to execute in the reverse order. Then, it will

absorb energy Q2 from the reservoir at T2 and reject energy Q1 to the reservoir at T1 when work WR is done on it.

If now engines I and R are combined, the net work delivered by the combined device is given by

WI – WR = Q1 – Q – (Q1 – Q2) = Q2 – Q

The combined device absorbs energy (Q2 – Q) as heat from a single thermal reservoir and

delivers an equivalent amount of work, which violates the second law of thermodynamics.

Hence, R I

Page 30: St. PETER’S ENGINEERING COLLEGE

Carnot principle 2

Consider two reversible heat engines R1 and R2, operating between the two given thermal

reservoirs at temperatures T1 and T2.

Let R1 > R2

Q1= energy absorbed as heat from the reservoir at T1 by the engines R1 and R2, separately.

Q = energy rejected by reversible engine R1 to the reservoir at T2

Q2 = energy rejected by reversible engine R2 to the reservoir at T2.

WR1 = Q1 - Q = work done by a reversible engine R1.

WR2 = Q1 –Q2 = work done by a reversible engine R2

According to assumption,

R1 > R2

Or, 1 – Q/Q1 > 1- Q2/Q1

Q1 –Q >Q1-Q2 or WR1 >WR2

WR1 – WR2 = (Q1 –Q) – (Q1- Q2) = Q2 – Q

Since the engine R2 is reversible, it can be made to execute the cycle in the reverse by supplying WR2.

Since WR1 > WR2 the reversible engine R2 can be run as a heat pump by utilizing part of the work delivered by R1.

For the combined device,

WR1 – WR2 = Q2 – Q, by absorbing energy Q2 – Q from a single thermal reservoir which violates the second law of thermodynamics.

Hence R1 > R2 is incorrect.

By similar arguments, if we assume that R2 > R1 then,

R1 R2

Therefore, based on these two equations,

R1 = R2

The efficiency of a reversible heat engine is also independent of the working fluid and depends

only on the temperatures of the reservoirs between which it operates.

Thermodynamic Temperature Scale

To define a temperature scale that does not depend on the thermometric property of a substance,

Carnot principle can be used since the Carnot engine efficiency does not depend on the working fluid. It depends on the temperatures of the reservoirs between which it operates.

Page 31: St. PETER’S ENGINEERING COLLEGE

Consider the operation of three reversible engines 1, 2 and 3. The engine 1 absorbs energy Q1 as

heat from the reservoir at T1, does work W1 and rejects energy Q2 as heat to the reservoir at T2.

Let the engine 2 absorb energy Q2 as heat from the reservoir at T2 and does work W2 and rejects energy Q3 as heat to the reservoir at T3.

The third reversible engine 3, absorbs energy Q1as heat from the reservoir at T1, does work W3

and rejects energy Q3 as heat to the reservoir at T3.

1 = W1 / Q1 = 1- Q2/Q1 = f(T1,T2)

or, Q1/Q2 = F(T1,T2)

2 = 1- Q3/Q2 = f(T2,T3)

or, T2/T3 = F(T2,T3)

3 = 1- Q3/Q1 = f(T1,T3)

T1/T3 = F(T1,T3)

Then , Q1/Q2 = (Q1/Q3)/(Q2/Q3)

Or, F(T1,T2) = F(T1,T3) /F(T2,T3)

Since T3 does not appear on the left side, on the RHS also T3 should cancel out. This is possible if

the function F can be written as

F(T1, T2) = (T1) (T2)

(T1) (T2) = {(T1) (T3)} / {(T2) (T3)}

= (T1) (T2)

Therefore, (T2) = 1 / (T2)

Hence, Q1 / Q2 = F(T1,T2) = (T1)/ (T2)

Page 32: St. PETER’S ENGINEERING COLLEGE

2

2 1 2 1

2 1 2 1

2 2 1 1

Now, there are several functional relations that will satisfy this equation. For the thermodynamic

scale of temperature, Kelvin selected the relation

Q1/Q2 = T1/T2

That is, the ratio of energy absorbed to the energy rejected as heat by a reversible engine is equal

to the ratio of the temperatures of the source and the sink. The equation can be used to determine the temperature of any reservoir by operating a reversible

engine between that reservoir and another easily reproducible reservoir and by measuring

efficiency (heat interactions). The temperature of easily reproducible thermal reservoir can be

arbitrarily assigned a numerical value (the reproducible reservoir can be at triple point of water and the temperature value assigned 273.16 K).

The efficiency of a Carnot engine operating between two thermal reservoirs the temperatures of

which are measured on the thermodynamic temperature scale, is given by

1 = 1- Q2/Q1 = 1 – T2/T1

The efficiency of a Carnot engine, using an ideal gas as the working medium and the temperature

measured on the ideal gas temperature scale is also given by a similar expression.

(COP)R = QL / (QH – QL) = TL / (TH – TL)

(COP)HP= QH / (QH – QL) = TH / (TH – TL)

Clausius Inequality

For a Carnot cycle

Q1/Q2=T1/T2

Or Q1/T1-Q2/T2=0 for a reversible engine.

With the usual sign convention, that is, heat flow into a system taken as positive and heat outflow

of the system taken as negative

Q1/T1+Q2/T2=0 or Qi/Ti=0

For an irreversible engine absorbing Q1 amount of heat from a reservoir at T1 and rejecting Q 1 to

a reservoir at T2, then 1-Q 1/Q 1-Q /Q

2 1 2 1

or 1-Q 1/Q 1-T /T

or Q 1/Q T /T

or Q 1/T Q /T

Making use of the sign convention, we get

Page 33: St. PETER’S ENGINEERING COLLEGE

2 2 1 1 Q 1/T +Q /T 0

Or Q/T0 for an irreversible engine

Replacement of a Reversible process by an equivalent process

Let us consider cyclic changes in a system other than heat engines. If the cycle can be split up

into a large number of heat engine cycles then the above observation can be made use of in

relating the heat interactions with the absolute temperatures.

Any reversible process can be approximated by a series of reversible, isothermal and reversible,

adiabatic processes.

Consider a reversible process 1-2. The same change of a state can be achieved by process 1-a (reversible adiabatic process), isothermal process a-b-c and a reversible adiabatic process c-2. The

areas 1-a-b and b-c-2 are equal. From the first law

U2-U1=Q1-a-b-c-2-W1-a-b-c-2

Consider the cycle 1-a-b-c-2-b-1. The net work of the cycle is zero. Then

dW W1a bc 2 W2b1 0

or

W1a b c 2

W2b 1

W1b 2

The heat interaction along the path 1-a-b-c-2 is

Q1-a-b-c-2=Q1-a+Qa-b-c+Qc-2=Qa-b-c

Since 1-a and c-2 are reversible adiabatic paths. Hence

U2-U1=Qa-b-c-W1-b-2

Application of the first law of the thermodynamics to the process 1-b-2 gives

Page 34: St. PETER’S ENGINEERING COLLEGE

U2-U1=Q1-b-2-W1-b-2

Comparing the two equations

Qi-b-c=Q1-b-2

The heat interaction along the reversible path 1-b-2 is equal to that along the isothermal path a-b- c. Therefore a reversible process can be replaced by a series of reversible adiabatic and reversible

isothermal processes.

Clausius Inequality

A given cycle may be subdivided by drawing a family of reversible, adiabatic lines. Every two adjacent adiabatic lines may be joined by two reversible isotherms.

The heat interaction along the reversible path is equal to the heat interaction along the reversible

isothermal path.

The work interaction along the reversible path is equal to the work interaction along the

reversible adiabatic and the reversible isothermal path.

That is,

Qa-b=Qa1-b1 and Qc-d=Qc1-d1

a1-b1-d1-c1 is a Carnot cycle.

The original reversible cycle thus is a split into a family of Carnot cycles. For every Carnot cycle

dQ / T 0 . Therefore for the given reversible cycle,

dQ / T 0

Page 35: St. PETER’S ENGINEERING COLLEGE

If the original cycle is irreversible

dQ / T 0

so the generalized observation is

dQ / T 0 Whenever a system undergoes a cyclic change, however complex the cycle may be( as long as it

involves heat and work interactions), the algebraic sum of all the heat interactions divided by the

absolute temperature at which heat interactions are taking place considered over the entire cycle is less than or equal to zero (for a reversible cycle).

Entropy

dQ

1. T has the same value irrespective of path as long as path is reversible

dQ

2. T

R is an exact differential of some function which is identical as entropy

2 2

dQ S 2 S1 S dS T

3. 1 1 R

dS dQ

4. T R for reversible process only

Calculation of Entropy change

1. Entropy is a state function. The entropy change is determined by its initial and final

states only

2. In analyzing irreversible process, it is not necessary to make a direct analysis of actual

reversible process.

Substitute actual process by an imaginary reversible process. The entropy change for imaginary

reversible process is same as that of an irreversible process between given final and initial states.

(a) Absorption of energy by a constant temperature reservoir

Energy can be added reversibly or irreversibly as heat or by performing work.

S dQ T R

Page 36: St. PETER’S ENGINEERING COLLEGE

Example:-

The contents of a large constant-temperature reservoir maintained at 500 K are continuously

stirred by a paddle wheel driven by an electric motor. Estimate the entropy change of the

reservoir if the paddle wheel is operated for two hours by a 250W motor.

Paddle wheel work converted into internal energy- an irreversible process. Imagine a reversible

process with identical energy addition

S dQ

Q

0.25 2(3600) 0.6kJ

T R T 500

(b) Heating or cooling of matter

Q U

Q H for constant volume heating

for constant pressure heating

dQ T2

dT T

S T m Cp

T1

mC p ln 2 T1

for constant pressure

dQ T2

dT T

S T m Cv

T1

mCv ln 2 T1

, for constant volume process

Example: -

Calculate entropy change if 1kg of water at 300 C is heated to 800C at 1 bar pressure. The specific heat of water is 4.2kJ/kg-K

T2 3 273 80

S Cp ln T

4.2 10

ln 273 30 1

kJ 0.6415

kg.K

(c) Phase change at constant temperature and pressure

Ssf

dQ

T

hsf

Tsf

S fg

dQ

T

hfg

T

T

T

Page 37: St. PETER’S ENGINEERING COLLEGE

T1

Example:-

Ice melts at 00C with latent heat of fusion= 339.92 kJ/kg. Water boils at atmospheric pressure at

1000C with hfg= 2257 kJ/kg.

Ssf

334.92 1.2261

273.15

kJ

kg.K

S fg

2257 6.0485

373.15

kJ

kg.K

(d) Adiabatic mixing

Example:-

A lump of steel of mass 30kg at 4270 C is dropped in 100kg oil at 270C.The specific heats of steel and oil is 0.5kJ/kg-K and 3.0 kJ/kg-K respectively. Calculate entropy change of steel, oil and

universe.

T= final equilibrium temperature.

mC T steel

mC T oil

300 0.5 (700 T ) 100 3 (T 300)

or T=319K 2

dQ

2 mCpdT

T 2 (S )steel T

T mCp ln

T1

1 1 steel

30 0.5ln 319

11.7883kJ / K 700

(S )

oil mC

p ln

T 2

oil

100 3 ln 319

18.4226kJ / K 300

(S)universe 11.788318.4226 6.6343kJ / K

Tds relations

From the definition of entropy,

dQ = Tds

p p

Page 38: St. PETER’S ENGINEERING COLLEGE

From the first law of thermodynamics,

dW = PdV

Therefore,

TdS = dU + PdV

Or, Tds = du + Pdv

This is known as the first Tds or, Gibbs equation.

The second Tds equation is obtained by eliminating du from the above equation using the

definition of enthalpy.

h = u + Pv dh = du + vdP

Therefore, Tds = dh – vdP

The two equations can be rearranged as

ds = (du/T) + (Pdv/T)

ds = (dh/T) – (vdP/T)

Change of state for an ideal gas

If an ideal gas undergoes a change from P1, v1, T1 to P2, v2, T2 the change in entropy can be calculated by devising a reversible path connecting the two given states.

Let us consider two paths by which a gas can be taken from the initial state, 1 to the final state, 2.

The gas in state 1 is heated at constant pressure till the temperature T2 is attained and then it is

brought reversibly and isothermally to the final pressure P2.

Path 1-a: reversible, constant-pressure process.

Path a-2: reversible, isothermal path

s1-a = dq/T = Cp dT/T = Cp ln(T2/T1)

sa-2 = dq/T = (du+Pdv)/T = (Pdv)/T = Rln(v2/va)

(Since du = 0 for an isothermal process)

Since P2v2 = Pava = P1va

Or, v2/va = P1/P2

Or, sa-2 = -Rln(P2/P1)

Page 39: St. PETER’S ENGINEERING COLLEGE

Therefore, s = s1-a + sa-2

= Cp ln(T2/T1) – Rln(P2/P1)

Path 1-b-2: The gas initially in state 1 is heated at constant volume to the final temperature T2 and

then it is reversibly and isothermally changed to the final pressure P2.

1-b: reversible, constant volume process

b-2: reversible, isothermal process

s1-b = Cv ln(T2/T1)

sb-2 =Rln(v2/v1)

or, s = Cv ln(T2/T1)+ Rln(v2/v1)

The above equation for s can also be deduced in the following manner:

ds = (dq/T)R = (du + Pdv)/T = (dh – vdP)/T

or, 2 (du pdv)

2 C dT Rdv

s v

1

C ln T

2

T 1 T v

R ln v

2

T1 v1

Similarly,

s

2 (dh vdp)

Cp ln T 2 R ln

P2

1 T T1 P1

Principle of increase of entropy

Let a system change from state 1 to state 2 by a reversible process A and return to state 1 by another reversible process B. Then 1A2B1 is a reversible cycle. Therefore, the Clausius

inequality gives:

1A2B1

dQ / T 1A2

dQ / T dQ / t o 2B1

If the system is restored to the initial state from 1 to state 2 by an irreversible process C, then 1A2C1 is an irreversible cycle. Then the

Clausius inequality gives:

1A2C1

dQ / T 1A2

dQ / T dQ / t o 2C1

Subtracting the above equation from the first one,

2 B1

dQ / T dQ / T 2C1

v

Page 40: St. PETER’S ENGINEERING COLLEGE

Since the process 2B1 is reversible,

2 B1

2

dQ / T dQ / T 1

Where the equality sign holds good for a reversible process and the inequality sign holds good for an irreversible process.

Now let us apply the above result to evaluate the entropy change of the universe when a system

interacts with its surroundings and exchanges energy as heat with the surroundings.

Let Tsur and Tsys be the temperatures of the surroundings and the system such that Tsur >Tsys. Let

dQ represent the energy transfer as heat from t he surroundings to the system during the given

irreversible process.

dSsys = dQ/Tsys

dSsur = -dQ/Tsur

dSuni = dSsys + dSsur = (dQ/T)sys – (dQ/T)sur >0

Suni >0 (since Tsur>Tsys)

If the system is isolated, there is no change in the entropy of the surroundings and

S 0, for an isolated system

Therefore the entropy of an isolated system either increases or, in the limit, remains constant.

The equality sign holds good when the process undergone by the system is reversible, the

inequality sign holds good if there is any irreversibility present in the process. This statement is

usually called the principle of entropy increase.

Irreversible or spontaneous processes can occur only in that direction for which the

entropy of the universe or that of an isolated system, increases. These processes cannot

occur in the direction of decreasing entropy.

For an isolated system,

S > 0, for irreversible processes

S = 0, for reversible processes

S < 0, the process is impossible

Page 41: St. PETER’S ENGINEERING COLLEGE

Example:

One kg of superheated steam at 0.2MPa and 2000C contained in a piston cylinder assembly is

kept at ambient conditions of 300K till the steam is condensed to saturated liquid at constant pressure. Calculate the change in the entropy of the universe with this process.

Solution:

Initial state of the steam: superheated at 0.2 MPa and 200oC

h1= 2870.4 kJ/kg; and s1 = 7.5033 kJ/kgK

Final state: saturated liquid at 0.2 MPa.

h2 = 504.52 kJ/kg and s2 = 1.5295 kJ/kgK

Hence Ssteam = s2 – s1 = 1.5295 – 7.5033 =

-5.9738 kJ/kgK

For a constant pressure process: q = h

Therefore, q = h2 – h1 = 504.52 – 2870.4 =

-2365.68 kJ

Entropy change of the surroundings = Ssur = Q/Tsur = 2365.88/300 = 7.886 kJ/K

Hence, Suni = Ssys + Ssur = -5.9738 +7.886 = 1.9122 kJ/K

Suni > 0 and hence the process is irreversible and feasible.

Temperature-Entropy diagram

Entropy change of a system is given by dS = (dQ/T)R. during energy transfer as heat to the

system from the surroundings is given by dQ = TdS. Hence if T and S are chosen as

independent variables, then the integral TdS

is

the area under the curve.

Page 42: St. PETER’S ENGINEERING COLLEGE

The first law of thermodynamics gives

dU = dQ - dW

also for a reversible process,

Page 43: St. PETER’S ENGINEERING COLLEGE
Page 44: St. PETER’S ENGINEERING COLLEGE
Page 45: St. PETER’S ENGINEERING COLLEGE
Page 46: St. PETER’S ENGINEERING COLLEGE
Page 47: St. PETER’S ENGINEERING COLLEGE

Thermodynamic relations

Gibbs Function and Helmoltz Function

Gibbs equation is

du = Tds – Pdv

The enthalpy h can be differentiated,

dh = du + pdv + vdP

Combining the two results in

dh = Tds + vdP

The coefficients T and v are partial derivative of h(s,P),

h s

T P

h P

v s

Since v > 0, an isentropic increase in pressure will result in an increase in enthalpy.

We introduce Helmholtz function

a = u – Ts

Combine Gibbs equation with the differential of a,

da = -Pdv – sdT

The coefficient –P and –s are the partial derivatives of f(v,T), so

a v P

T

a T

s

v

Similarly, using the Gibbs function

g = h – Ts

dg = vdP – sdT

Consequently,

Page 48: St. PETER’S ENGINEERING COLLEGE

Z

g P

T

g T

s

P

Note: 1. The decrease in Helmholtz function of a system sets an upper limit to the work done in any

process between two equilibrium states at the same temperature during which the system

exchanges heat only with a single reservoir at this temperature. Since the decrease in the

Helmholtz potential represents the potential to do work by the system, it is also a thermodynamic potential.

2. The decrease in Gibbs function of a system sets an upper limit to the work, exclusive of “pdv”

work in any process between two states at the same temperature and pressure, provided the system exchanges heat only with a single reservoir at this temperature and that the surroundings

are at a constant pressure equal to that in the end states of the pressure.

The maximum work is done when the process is isothermal isobaric. Gibbs function is also called

Chemical Potential.

Some important property relations

dz(x,y) = Mdx + Ndy

z x

y

where, M = y N = x

Mathematically, we would say that dz is an exact differential, which simply means that z is a

continuous function of the two independent variables x and y. Since the order in which a second partial derivative is taken is unimportant, it follows that,

M y

P x

x y

Maxwell’s relations:

T v

P s

[From equation du Tds Pdv]

s v

T P

v s [From equation dh Tds vdP]

s P

P T

s v [From equation da Pdv sdT ]

v T

v T

s P

[From equation dg vdP sdT ]

P T

v

Page 49: St. PETER’S ENGINEERING COLLEGE

Mnemonic Diagram

The differential expressions for the thermodynamic potentials and Maxwell relations can be

remembered conveniently in terms of a thermodynamic Mnemonic diagram.

The diagram consists of a square with two diagonal arrows pointing upwards and the

thermodynamic potentials in alphabetical order clockwise on the sides as shown in figure. The natural variables associated with each potential are placed in the corners.

Diagonal arrows indicate the coefficients associated with the natural variables in the differential expression of the potential. The sign of the coefficient depends on whether the arrow is pointing

towards (- ve) or away from the natural variable (+ ve).

For example,

du = (sign)(coeff.) ds + (sign)(coeff.) dv

du = (sign)Tds + (sign)Pdv

du = +Tds - Pdv

To write the Maxwell relations we need to concentrate on the direction of the arrows and the

natural variables only.

If both the arrows pointing in the same direction, there is no need to change the sign, otherwise

the equation should carry a negative sign.

The internal energy

u = u(T,v)

For a simple compressible substance,

Page 50: St. PETER’S ENGINEERING COLLEGE

T

v

T

T

du C dT u

dv

v v

T

ds Cv dT

1 u

T T v

Pdv

T

Taking entropy as a function of temperature and volume,

s

Cv

v T

Using thrid Maxwell's relation,

s

P

1 u

P

v

T

T v

T v T

From this we obtain

u

T P

P

v

T

T v

This important equation expresses the dependence of the internal energy on the volume at fixed temperature solely in terms of measurable T, P and v. This is helpful in construction of tables for

u in terms of measured T, P and v.

For a perfect gas,

Pv = RT

P

R

T

v

v

u T

T

R P P P 0

v This implies that, for a perfect gas, internal energy is independent of density and depends only on

T.

ds Cv dT

P dv

T v

Similarly it can be shown using Fourth Maxwell’s relation that ds

CP dT v

dP T P

Using the above two equations and solving for dP,

dP CP Cv

T (v / T )P dT

(P / T )v dv

u / T P

Page 51: St. PETER’S ENGINEERING COLLEGE

T

v

T

v

P

T v P

T

Considering P as a function of T and v, we see that

CP Cv

T (v / T )P

P

v

Two thermodynamic properties can be defined at this stage,

1 v

P

1 v

T

is called the isobaric compressibility and is called the isothermal compressibility.

From calculus, it can be shown that,

P T v 1

v P T

or,

P

(v / T )P T v

v

P T

Therefore,

CP Cv

T v / P P

v / PT

Since v / P

T is always negative for all stable substances, CP is always greater that Cv

Available and Unavailable Energy

The second law of thermodynamics tells us that it is not possible to convert all the heat absorbed

by a system into work.

Suppose a certain quantity of energy Q as heat can be received from a body at temperature T.

The maximum work can be obtained by operating a Carnot engine (reversible engine) using the body at T as the source and the ambient atmosphere at T0 as the sink.

W Q

T0 Q T

| s | Q1 0

Where s is the entropy of the body supplying the energy as heat.

The Carnot cycle and the available energy is shown in figure.

2

Page 52: St. PETER’S ENGINEERING COLLEGE

T

T

T

The area 1-2-3-4 represents the available energy.

The shaded area 4-3-B-A represents the energy, which is discarded to the ambient atmosphere,

and this quantity of energy cannot be converted into work and is called Unavailable energy.

Suppose a finite body is used as a source. Let a large number of differential Carnot engines be

used with the given body as the source.

dW dQ dQ1

T0

If the initial and final temperatures of the source are T1 and T2 respectively, the total work done or

the available energy is given by T2

T T2 dQ

W dQ dQ1 0 Q T0

T1 T

1 T

orW Q T0 | s |

Loss in Available Energy

Suppose a certain quantity of energy Q is transferred from a body at constant temperature T1 to

another body at constant temperature T2 (T2<T1).

Initial available energy, with the body at T1, Q

1

T0

Final available energy, with the body at T2,

T0

Q1 T 2

Loss in available energy

T0

T0

Q Q

Q1 T Q1 T T0

T

T T0suni 1 2 2 1

Page 53: St. PETER’S ENGINEERING COLLEGE

where suni is the change in the entropy of the universe.

Availability Function

The availability of a given system is defined as the maximum useful work that can be obtained in

a process in which the system comes to equilibrium with the surroundings or attains the dead state.

(a) Availability Function for Non-Flow process:- Let P0 be the ambient pressure, V1 and V0 be the initial and final volumes of the system respectively.

If in a process, the system comes into equilibrium with the surroundings, the work done in

pushing back the ambient atmosphere is P0(V0-V1). Availability= Wuseful=Wmax-P0(V0-V1)

Consider a system which interacts with the ambient at T0. Then,

Wmax=(U1-U0)-T0(S1-S0)

Availability= Wuseful=Wmax-P0(V0-V1) = ( U1-T0 S1)- ( U0-T0 S0)- P0(V0-V1) = ( U1+ P0V1-T0 S1)- ( U0+P0V0-T0 S0)

= 1-0

where =U+P0V-T0S is called the availability function for the non-flow process. Thus, the

availability: 1-0

If a system undergoes a change of state from the initial state 1 (where the availability is (1-0) to

the final state 2 (where the availability is (2-0), the change in the availability or the change in

maximum useful work associated with the process, is 1-2.

(b) Availability Function for Flow process:-

The maximum power that can be obtained in a steady flow process while the control volume

exchanges energy as heat with the ambient at T0, is given by:

Wsh(max)

Wsh(max)

(H1 H0 ) T0 (S1S0 )

(H1 T0 S1 ) (H1 T0 S0 )

Sometimes the availability for a flow process is written as:

Wuseful B1 B

0

where, B H T 0S

which is called the Darrieus Function.

Work Potential Associated with Internal Energy

The total useful work delivered as the system undergoes a reversible process from the given state

to the dead state (that is when a system is in thermodynamic equilibrium with the environment),

which is Work potential by definition.

Work Potential = Wuseful= Wmax- P0(V0-V1)

Page 54: St. PETER’S ENGINEERING COLLEGE

= ( U1-T0 S1)- ( U0-T0 S0)- P0(V0-V1)

= ( U1+ P0V1-T0 S1)- ( U0+P0V0-T0 S0)

= 1-0

The work potential of internal energy (or a closed system) is either positive or zero. It is never

negative.

Work Potential Associated with Enthalpy,h

The work potential associated with enthalpy is simply the sum of the energies of its components.

Wsh(max)

Wsh(max)

(H1 H0 ) T0 (S1S0 )

(H1 T0 S1 ) (H1 T0 S0 )

The useful work potential of Enthalpy can be expressed on a unit mass basis as:

wsh (h1 h0 ) T0 (s1 s0 )

here h0 and s0 are the enthalpy and entropy of the fluid at the dead state. The work potential of enthalpy can be negative at sub atmospheric pressures.

Page 55: St. PETER’S ENGINEERING COLLEGE

UNIT-III

PURE SUBSTANCES AND GAS LAWS

The term saturation temperature designates the temperature at which vaporization takes place.

For water at 99.6 C the saturation pressure is 0.1 M Pa, and for water at 0.1 Mpa, the saturation

temperature is 99.6 C.

If a substance exists as liquid at the saturation temperature and pressure it is called saturated liquid.

If the temperature is of the liquid is lower than saturation temperature at the existing pressure it is called sub-cooled liquid or compressed liquid.

1. When a substance exists as part liquid and part vapor at the saturation temperature, its

quality is defined as the ratio of the mass of vapor to the total mass.

2. If a substance exists as vapor at the saturation temperature, it is called a saturated vapor.

3. When the vapor is at a temperature greater than the saturation temperature, it is said to exist as superheated vapor.

4. At the critical point, the saturated liquid and saturated vapor state are identical.

5. At supercritical pressures, the substance is simply termed fluid rather than liquid or vapor.

6. If the initial pressure at –200C is 0.260 kPa, heat transfer results in increase of

temperature to –100C. Ice passes directly from the solid phase to vapor phase.

7. At the triple point (0.6113 kPa) and a temperature of –200C, let heat transfer increase the temperature until it reaches 0.010C. At this point, further heat transfer may cause some

ice to become vapor and some to become liquid. The three phases may be present

simultaneously in equilibrium.

Tables of Thermodynamic Properties

Tables of thermodynamic properties of many substances are available, and in general, all these

have same form.

Steam tables are selected because steam is used extensively in power plants and industrial

processes.

The steam tables provide the data of useful thermodynamic properties like T, P, v, u, h and s for

saturated liquid, saturated vapor and superheated vapor.

Since the properties like internal energy, enthalpy and entropy of a system cannot be directly

measured; they are related to change in the energy of the system. Hence one can determine Δu, Δh, Δs, but not the absolute values of these properties. Therefore it

is necessary to choose a reference state to which these properties are arbitrarily assigned some

numerical values.

Page 56: St. PETER’S ENGINEERING COLLEGE

For water, the triple point (T = 0.01o C and P = 0.6113 kPa) is selected as the reference state,

where the internal energy and entropy of saturated liquid are assigned a zero value.

In the saturated steam tables, the properties of saturated liquid that is in equilibrium with

saturated vapor are presented.

During phase transition, the pressure and temperature are not independent of each other. If the

temperature is specified, the pressure at which both phases coexist in equilibrium is equal to the saturation pressure.

Hence, it is possible to choose either temperature or pressure as the independent variable, to

specify the state of two-phase system. Depending on whether the temperature or pressure is used as the independent variable, the tables

are called temperature or pressure tables.

The two phases- liquid and vapor can coexist in a state of equilibrium only up to the critical

point.

Therefore the listing of the thermodynamic properties of steam in the saturated steam tables ends at the critical point (374.15o C and 212.2 bar).

If the steam exists in only one phase (superheated steam), it is necessary to specify two independent variables, pressure and temperature, for the complete specification of the state. In the

superheated steam tables, the properties- v, u, h, and s- are tabulated from the saturation

temperature to some temperature for a given pressure.

The thermodynamic properties of a liquid and vapor mixture can be evaluated in terms of its

quality. In particular, the specific volume, specific internal energy, specific enthalpy and specific entropy of a mixture of quality X are given by

v = (1-X)vf + Xvg, u = (1-X)uf + Xug, h = (1-X)hf + Xhg = hf + Xhfg, s = (1-X)sf + Xhg

where hfg = hg - hf = latent hat of vaporization.

Temperature-volume diagram

The locus of all the saturated states gives the saturated liquid curve AC and the locus of all the saturated vapor states gives the saturated vapor states gives the saturated vapor states gives the

saturated vapor curve BC.

The point C represents the critical point. The difference between vg and vf reduces as the

pressure is increased, and at the critical point vg = vf .

At the critical point, the two phases-liquid and vapor- are indistinguishable.

Pressure-volume diagram

The pressure-volume (P-V) diagram for a pure substance is shown in Figure. The curves AC and

BC represent the saturated liquid curve and saturated vapor curve, respectively, and C is critical

point.

The area under the curve represents the two-phase region. Any point M in this region is a

mixture of saturated liquid (shown as f) and saturated vapor (g).

Mollier (h-s) Diagram

Page 57: St. PETER’S ENGINEERING COLLEGE

The h-s diagram was introduced by Richard Mollier and was named after him. It consists of a family of constant pressure lines, constant temperature lines and constant volume

lines plotted on enthalpy versus entropy coordinates.

In the two-phase region, the constant pressure and constant temperature lines coincide.

Problems on Mollier chart and steam tables

Determine the enthalpy of water at 100o C and 15 MPa (a) by using compressed liquid tables, (b)

by approximating it as a saturated liquid, and (c) by using the correction factor.

At 100oC, the saturation pressure of water is 101.35 kPa, and since P>Psat, the water exists as a

compressed liquid at the specified state.

(a) from the compressed liquid tables, P = 15 Mpa, T = 100oC, h = 430.28 kJ/kg

This is the exact value. (b) Approximating the compresses liquid as a saturated liquid at 100oC, as is commonly

done, we obtain

h = hf@100 C = 419.04 kJ/kg

This value is in error by about 2.6 percent. (c) From equation

h@ P,T = hf@T + vf@T (P – Psat)

= 419.04 + 0.001(15000 – 101.35) kJ/kg

= 434.60 kJ/kg

Problem # 1 (Nozzle)

Nitrogen gas flows into a convergent nozzle at 200 kPa, 400 K and very low velocity. It flows out of the nozzle at 100 kPa, 330 K. If the nozzle is insulated, find the exit velocity.

Vi = 0 Adiabatic nozzle

The SSSF equation: Ve

2/2 = (hi – he) = Cp(Ti – Te)

= {Ru/M(-1)} (Ti – Te)

= {1.4 * 8314/(28*0.4)}(400-330)

= 72747.5 m2/s2

We get, Ve = 381.44 m/s

Problem # 2 (Diffuser)

Air at 10o C and 80 kPa enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m2. The air leaves the diffuser with a velocity that is very small

compared with the inlet velocity. Determine (a) the mass flow rate of the air and (b) the

temperature of the air leaving the diffuser.

Page 58: St. PETER’S ENGINEERING COLLEGE

1 2

1

1

2 1

Solution: Assumptions: This is a steady flow

process. Air is an ideal gas. The

potential energy change is zero. Kinetic energy at diffuser exit is negligible.

There are no work interactions. Heat transfer is

negligible.

To determine the mass flow rate, we need the specific volume of air. v1 = RT1/ P1 = 0.287 * 283 / 80 = 1.015 m3/kg

m = 1/v1(V1A1) = (200 * 0.4)/ 1.015 = 78.8 kg/s

For steady flow, mass flow through the diffuser is constant.

(b) (h1 + V 2/2) = (h2 + V 2/2) (since Q = 0, W = 0, and PE = 0)

h2 = h1 – (V 2- V 2)/2

The exit velocity of a diffuser is very small and therefore neglected.

h2 = h1 + V 2/2 T2

= T1 + V 2/2Cp

T2 = 283 + 2002/(2*1004)

= 302.92 K

Compressing air by a compressor

Air at 100 kPa and 280 K is compressed steadily to 600 kPa and 400 K. The mass flow rate of air

is 0.02 kg/s and a heat loss of 16 kJ/kg occurs during the process. Assuming the changes in KE

and PE are negligible, determine the necessary power input to the compressor.

Page 59: St. PETER’S ENGINEERING COLLEGE

We take the compressor as the system. This is a control volume since the mass crosses the system

boundary during the process. Heat is lost from the system and work is supplied to the system.

With similar assumptions as in the diffuser problem, w = q + (h2 – h1)

The input power = m (q + (h2 – h1))

= 0.02 (16 + (1.004*(400 – 280)))

= 2.73 kW

Power generation by a steam turbine

The power output of an adiabatic steam turbine is 5 MW, and the inlet and exit conditions of the

steam are as indicated in the figure.

(a) Compare the magnitude of h, KE, and PE

(b) Determine the work done per unit mass of the steam flowing through the turbine (c) Calculate the mass flow rate of the steam.

We take the turbine as a system. The control volume is shown in the figure. The system, the inlet

and exit velocities do work and elevations are given and thus the kinetic and potential energies

are to be considered.

At the inlet, the steam is in superheated vapor state.

h1 = 3247.6 kJ/kg. At the turbine exit, we have a saturated liquid-vapor mixture at 15 kPa pressure. The enthalpy at

this state is

h2 = hf + x2hfg

= 225.94 + 0.9 * 2373.1

= 2361.73 kJ/kg

h = h2 – h1

= 2361.73 – 3247.6 = -885.87 kJ/kg

Page 60: St. PETER’S ENGINEERING COLLEGE

^

2 1

ke = (V 2- V 2)/2 = (1802-502)/2*1000 2 1

= 14.95 kJ/kg

Pe = g(Z2-Z1) = 9.807 * (6 –10)/1000

= -0.04 kJ/kg

wout = -[( h2 – h1) +(V 2- V 2)/2 + g(Z2-Z1)]

= -[-885.87 + 14.95 – 0.04]

= 870.96 kJ/kg

(d) The required mass flow rate for a 5MW power output is 5000/870.96 = 5.74 kg/s

Clapeyron Equation

To find out the dependence of pressure on equilibrium temperature when two phases coexist.

Along a phase transition line, the pressure and temperature are not independent of each other, since the system is univariant, that is, only one intensive parameter can be varied independently.

When the system is in a state of equilibrium, i.e., thermal, mechanical and chemical equilibrium,

the temperature of the two phases has to be identical, the pressure of the two phases has to be

equal and the chemical potential also should be the same in both the phases. Representing in terms of Gibbs free energy, the criterion of equilibrium is:

d g 0 at constant T and P ^ ^ ^

or, d g sdT vdP 0

Consider a system consisting of a liquid phase at state 1 and a vapour phase at state 1’ in a state

of equilibrium. Let the temperature of the system is changed from T1 to T2 along the vaporization

curve.

For the phase transition for 1 to 1’:

^ ^ ^

d g sdT vdP 0

^

or g liquidphase

^

g vaporphase

^ ^

or g 1 g 2

In reaching state 2 from state 1, the change in the Gibbs free energy of the liquid phase is given

by:

Page 61: St. PETER’S ENGINEERING COLLEGE

^ ^ ^ ^

g 2 g1 s f dT v f dP

Similarly, the change in the Gibbs free energy of the vapour phase in reaching the state 2’ from

state 1’ is given by: ^ ^ ^ ^

g 2' g

1'

^ ^

sg dT ^

vg dP^

Therefore, s f dT v f dP s g dT vg dP ^ ^

Or P

sg s f

T

^ ^ sat vg v f

Where the subscript sat implies that the derivative is along the saturation curve.

The entropy change associated with the phase transition: ^ ^ ^ ^ ^ hg h f h fg

s g s f T T

^ ^

Hence, P T

h fg h

^ ^

sat T v fg T v

Which is known as the Clapeyron equation ^

Since h is always positive during the phase transition, P sat will be positive or negative T

^

depending upon whether the transition is accompanied by expansion ( v >0) or contraction ^

( v <0).

Consider the liquid-vapour phase transition at low pressures. The vapour phase may be

approximated as an ideal gas. The volume of the liquid phase is negligible compared to the ^ ^ ^ ^

volume of the vapour phase( v >> v )and hence v^

= v = v =RT/P. g f fg g

The Clapeyron equation becomes:

P T

^

h fg P RT 2

sat

or d ln P

dT

^

h fg

RT 2

which is known as the Clausius-Clapeyron equation.

Assum that ^

h fg is constant over a small temperature range, the above equation can be integrated ^

^ P h fg to get, ln

2

h fg 1

1 or ln P +constant RT

P1 R T1 T2

Page 62: St. PETER’S ENGINEERING COLLEGE

Hence, a plot of lnP versus 1/T yields a straight line the slope of which is equal to –(hfg/R).

For a solid-to-liquid transition, it is a reasonably good approximation to assume that the molar

heat capacity and the molar volume are constant in each phase and the coefficient of volume

expansion is negligible for each phase. Then, ^ ^ ^

(hsf / T )

C pf C ps

^

where hsf

T T

is the latent heat of fusion.

For the transition from liquid phase to vapour phase, the molar volume of the liquid phase can be

neglected compared to the molar volume of the gas phase, and g>>f. The vapour phase may be

approximated as an ideal gas. Then g=1/T. It is clear that vgg> vff. Hence, ^ hfg

^ ^

T (C pg C pf )

Phase Equilibrium- Gibbs Phase Rule

The number of independent variables associated with a multi component, multiphase system is

given by the Gibbs Phase Rule, expressed as,

F=C+2-P

Where,

F= The number of independent variables

C= The number of components P= The number of phases present in the equilibrium

For a single component (C=1) two phase (P=2) system, one independent intensive

property needs to be specified (F=1).

At the triple point, for C=1, P=3 and thus F=0. None of the properties of a pure substance

at the triple point can be varied.

Two independent intensive properties need to be specified to fix the equilibrium state of a

pure substance in a single phase.

Phase diagram for a single component system is given in figure.

Page 63: St. PETER’S ENGINEERING COLLEGE

Problems on steam tables

A systematic approach to problem solving

Step 1. Identify the system and draw a sketch of it. The system that is about to be analyzed should be identified on the sketch by drawing its boundaries using the dashed lines.

Step 2. List the given information on the sketch. Heat and work interactions if any should also be indicated on the sketch with proper directions.

Step 3. State any assumptions: The simplifying assumptions that are made to solve a problem should be stated and fully justified.

Commonly made assumptions:

(a) Assuming process to be quasi-equilibrium

(b) Neglecting PE and KE

(c) Treating gas as ideal (d) Neglecting heat transfer from insulated systems.

Step 5. Apply the conservation equations.

Step 6. Draw a process diagram.

Determine the required properties and unknowns.

Problem # 1 A 0.1 m3 rigid tank contains steam initially at 500 kPa and 200oC. The steam is

now allowed to cool until the temperature drops to 50oC. Determine the amount of heat transfer

during this process and the final pressure in the tank.

State 1: P1 = 500kPa, T1 = 200oC

v1 = 0.4249 m3/kg, u1 = 2642.9 kJ/kg

State 2: v2 = v1 = 0.4269 m3/kg

T2 = 50oC vf = 0.001m3/kg vg= 12.03 m3/kg uf = 209.32 kJ/kg

ug = 2443.5 kJ/kg

P2 = Psat @50oc = 12.349 kPa

v2 = vf + x2vfg 0.4249 = 0.001 + x2(12.03 = 0.001)

x2 = 0.0352

Page 64: St. PETER’S ENGINEERING COLLEGE

u2 = uf +x2ug

= 209.32 +(0.0352)(2443.5 – 209.32) = 288.0 kJ/kg

m = V/u = (0.1 m3/kg)/(0.4249 m3/kg) = 0.235 kg

-Qout = U = m(u2 – u1) Qout = m(u1 – u2)

= (0.235)(2642.9 – 288) = 553.4 kg Problem # 2 A piston/cylinder contains 50 kg of water at 200 kPa with a volume of 0.1 m3 . Stop

in the cylinder is placed to restrict the enclosed volume to 0.5 m3. The water is now heated until

the piston reaches the stops. Find the necessary heat transfer.

At 200 kPa, vf = 0.001061 m3/kg vfg = 0.88467 m3/kg

hf = 504.68 kJ/kg

hfg = 2201.96 kJ/kg This is a constant pressure process. Hence,

Q = H

The specific volume initially,

vi = 0.1 /50 = 0.002 m3/kg

v = vf + x vfg = 0.001061 + x (0.88467)

Therefore, x = (0.002 – 0.001061) / 0.88467 = 0.001061

h = hf + x hfg

= 504.68 + 0.001061(2201.96) = 507.017 kJ/kg

vfinal = 0.5 /50 = 0.01 m3/kg

v = vf + x vfg

Therefore, x = (0.01 – 0.001061) / 0.88467

= 0.01

hfinal = 504.68 + 0.01(2201.96)

= 526.69 kJ/kg

Q = H = 50 (526.69 - 507.017)

= 983.65 kJ/kg

Problem # 3 A rigid insulated tank is separated into two rooms by a stiff plate. Room A of 0.5 m3

contains air at 250 kPa, 300 K and room B of 1 m3 has air at 150 kPa, 1000 K. The plate is removed and the air comes to a uniform state without any heat transfer. Find the final pressure

and temperature.

Page 65: St. PETER’S ENGINEERING COLLEGE

The system comprises of room A and B together. This is a constant internal energy process as

there is no heat and work exchange with the surroundings.

mA = PAVA / RTA

= (250 x 1000 x 0.5) / (287 x 300)

= 1.452 kg mB = PBVB / RTB

= (150 x 1000 x 1.0) / (287 x 1000)

= 0.523 kg

UA + UB = 0

Let Tf be the final temperature at equilibrium

mA (Tf – 300) + mB (Tf – 1000) = 0

1.452 (Tf – 300) + 0.523 (Tf – 1000) = 0

Tf = 485.37 K

Pf = (1.452 + 0.523) x 287 x 485.37 / 1.5

= 183.41 kPa

Problem # 4 A piston / cylinder assembly contains 0.1m3 of superheated steam at 10 bar and 400oC. If the steam is allowed to expand reversibly and adiabatically to a pressure of 3 bar,

calculate the work done by the steam.

At 10 bar and 400oC, v = 0.3065 m3/kg

h = 3264.4 kJ/kg s = 7.4665 kJ/kg K

At 3 bar,

sg = 6.9909 kJ/kg K This is an isentropic process as initial entropy value is greater than sg at 3 bar, the steam is

superheated at the end of the process.

At 3 bar and 200oC,

s = 7.3119 kJ/kg K and

at 300oC, s = 7.7034 kJ/kg K therefore, the final state is having a temperature between 200oC and 300oC.

Equating si = sfinal,

Find the enthalpy and specific volume by interpolation. Then calculate ui and ufinal.

The work done = U = m(ui – ufinal)

GASLAWS

Ideal and Real Gases

Page 66: St. PETER’S ENGINEERING COLLEGE

Pure Substance: A pure substance is one that has a homogeneous and invariable chemical

composition. It may exist in more than one phase but chemical composition is the same in all

phases.

Some times the mixture of gases, such as air is considered a pure substance as long as there is no change of phase. Further our emphasis will be on simple compressible substances

Early experiments on the variables of state (such as T, P, V, and n) showed that only two of

these variables of state need to be known to know the state of a sample of matter. Extensive variables: depend on the amount of substance present. Examples include the volume,

energy, enthalpy, and heat capacity.

Intensive variables: do not depend on the amount of substance present. Examples include the

temperature and pressure.

Equations of State

An equation of state is an equation which relates the variables of state (T, P, V, and n). It's

particularly useful when you want to know the effect of a change in one of the variables of state Solids and Liquids: If the pressure on a solid or liquid is increased, the volume does not change

much. If the temperature is increased, the volume doesn't change much either. Therefore, an

appropriate equation of state describing such systems would be: V(T,P) = constant.

Gases: In contrast, changing the pressure or temperature of a gas will have an easily observable effect on the volume of that gas. For an ideal gas (no intermolecular interactions and no

molecular volume) n appropriate equation of state would be: V(T,P,n) = (nRT)/P.

There are many equations of state describing real gases. These equations take in consideration molecular volume and interactions. The most well-known such equations is probably the Van der

Waals equation.

Ideal and real gases

An ideal gas is one which follows the ideal gas equation of state, namely PV = (m/M) (MR) T = n Ru T

The universal gas constant has a value of 8.314 J/mol K or kJ/kmol K and is related to the specific gas constant by the relation Ru = (R /M)

The ideal gas equation of state can be derived from the kinetic theory of gases where the following assumptions are made:

The molecules are independent of each other. In other words, there are no attractive forces

between the molecules.

The molecules do not occupy any volume. That is the volume occupied by the molecules is quite negligible compared to the volume available for motion of the molecules.

The internal energy of an ideal gas is a function of temperature only and is independent of

pressure and volume. That is, u= u(T)

(∂u/∂P)T =0, (∂u /∂v)T = 0

Enthalpy and specific heat

h = u+ Pv

For an ideal gas u = u(T) only and PV = mRT and hence h = h(T) only.

Page 67: St. PETER’S ENGINEERING COLLEGE

The specific heat at constant volume is defined as the amount of energy transferred as heat at

constant volume, per unit mass of a system to raise its temperature by one degree. That is,

Cv = (dq/dT)v

The specific heat at constant pressure is defined as the energy transferred as heat at constant

pressure, per unit mass of a substance to raise its temperature by one degree. That is Cp = (dq/dT)P

For a constant pressure process dq = du + dw = du + Pdv = du+ Pdv +vdP(since dP=0 for a

constant pressure process) Or dq= du+d(Pv) = d(U+ Pv) = dh

or dq=dh

CP = (∂h/∂T)P

The ratio of specific heat (γ) is given by

γ= C P/Cv

For mono-atomic ideal gases γ = 1.67 and for diatomic gases γ= 1.4.

Relation between two specific heats:

The two specific heats are related to each other. h= u + Pv or dh = du + d(Pv)

For an ideal gas, the above equation reduces to

dh = du + d(RT) = du + RdT or dh/dT = du/dT+R or CP = Cv+ R

or CP –Cv =R for an ideal gas.

γ= CP /Cv or CP = R/(γ-1) and Cv = Rγ/(γ-1)

Real gases:

The ideal gas law is only an approximation to the actual behavior of gases.

At high densities, that is at high pressures and low temperatures, the behavior of actual or real gases deviate from that predicted by the ideal gas law. In general, at sufficiently low pressures or

at low densities all gases behave like ideal gases.

Van der Waals Equation of State

An equation of state taking account the volume occupied by the molecules and the attractive

forces between them. (P+a/v2 )(v-b) = RT

where a and b are van der Waals constants.

The equation is cubic in volume and in general there will be three values of v for given values of

T and P.

However in some range of values of P and T there is only one real value v.

Page 68: St. PETER’S ENGINEERING COLLEGE

For T >Tc (critical temperature) there will be only one real value of v and for T< Tc there will be

three real values.

In Figure, the solid curve represents the value predicted by the van der Waals equation of state

and the points represent the experimentally determined values. It can be observed that at temperatures greater than critical, there is only one real value of

volume for a given P and T.

However at temperatures less than the critical, there are three real values of volume for a given

value of P and T.

The experimental values differ from those predicted by van der Waals equation of state in region

2345 if T<Tc.

One can use the criterion that the critical isotherm (isotherm passing through the critical point)

shows a point of inflexion. Stated mathematically

(∂P/∂v)T=Tc= 0 and (∂2P/∂v2)T=Tc = 0

(∂P/∂v)T=Tc = -RTc/(vc –b)2 + 2a/vc3 = 0

or RTc/(vc –b)2 = 2a/vc

3 (∂2P/∂v2)T=Tc = 2RTc/(vc-b)3 -6a/vc

4 = 0

or

Therefore

2RTc/(vc-b)3 = 6a/vc4

2/(vc –b) = 3/vc or vc = 3b

At the critical point, the van der Waal’s equation is given by

Pc = RTc/(vc – b) – a/vc2

From these equations,

a = 27R2Tc2/64 Pc and b = RTc/8Pc

Compressibility Factor:

The deviation from ideal behavior of a gas is expressed in terms of the compressibility factor Z,

which is defined as the ratio of the actual volume to the volume predicted by the ideal gas law.

Z = Actual volume/volume predicted by ideal gas law = v/RT/P = Pv/RT

For an ideal gas Pv = RT and hence Z = 1 at all temperatures and pressures. The experimental P-v-T data is used to prepare the compressibility chart.

Reduced pressure, PR = P/Pc,

Reduced temperature, TR = T/Tc Reduced volume, vR = v/vc

Where Pc, Tc and vc denote the critical pressure, temperature and volume respectively.

These equations state that the reduced property for a given state is the value of this property in this state divided by the value of this same property by at the critical point.

Page 69: St. PETER’S ENGINEERING COLLEGE

The striking fact is that when such Z versus Pr diagrams are prepared for a number of different

substances, all of them very nearly coincide, especially when the substances have simple,

essentially spherical molecules.

We need to know only critical temperature and critical pressure to use this basic generalized chart.

In general it can be noted that idealized gas behavior for very low pressures as compared to

critical) regardless of temperature. Furthermore, at high temperatures (greater than twice Tc), the

ideal-gas model can be assumed to good accuracy to pressures as high as 4-5 times Pc.

UNIT IV

GASMIXTURES AND PSYCHROMETRY

The properties of a gas mixture obviously depend on the properties of the individual gases (called components or constituents) as well as on the amount of each gas in the mixture.

COMPOSITION OF A GAS MIXTURE MASS AND MOLE FRACTIONS To determine the properties of a mixture, we need to know the composition of the mixture as well as the properties

of the individual components. There are two ways to describe the composition of a mixture: either

by specifying the number of moles of each component, called molar analysis, or by specifying the

mass of each component, called gravimetric analysis.

mixture of ideal gases

Basic assumption is that the gases in the mixture do not interact with each other.

Consider a mixture with components l = 1,2,3... with masses m1, m2, m3 ...mi and

with number of moles.

The total mixture occupies a volume V, has a total pressure P and temperature T (which is also

the temperature of each of the component species) The total mass

Total number of mole N

Mass fraction of species i

Mole fraction of species i

The mass and number of moles of species i are related by

Page 70: St. PETER’S ENGINEERING COLLEGE

is the number of moles of species i and is the molar mass of species i Also to be noted

and We can also define a molar mass of the mixture as

or,

or,

Dalton 's Law of partial pressure

Total pressure of an ideal gas mixture is equal to the sum of the partial pressures of the

constituent components, That is

P is the total pressure of the mixture Pi is the partial pressure of species i

= pressure of the species if it existed alone in the given temperature T and volume V

is the universal gas constant = 8.314 kJ/k mol K

Dalton 's Law

or

The pressure function of species i

Therefore,

Pressure fraction = Mole fraction

Amagat's Law:

Volume of an ideal gas mixture is equal to the sum of the partial volumes

V = total volume of the mixture

Vi = partial volume of the species i = volume of the species if it existed alone in the given temperature T and pressure P

For an ideal gas

Page 71: St. PETER’S ENGINEERING COLLEGE

Amagat's Law

or

The volume fraction of species i

or,

Volume fraction = Mole fraction Mass based analysis is known as gravimetric analysis

Mole based analysis is known as molar analysis

Therdynamic Properties of Mixtures

Internal Energy

mass of species i

specific internal energy of species i

number of moles of species i

molar internal energy

Similarly we can write about Enthalpy

Entropy

Specific internal energy of the mixture

or

mass fraction of species i

specific internal energy of species i

Molar internal energy of mixture

Page 72: St. PETER’S ENGINEERING COLLEGE

mole fraction of species i

molar internal energy of species i

Similarly we can write for specific enthalpy and molar enthalpy

and

We can also write for specific entropy and molar entropy

and

Change in u, h and s

Assume remains unchanged

For ideal gas mixture

as is the same for all species as a result of thermodynamics equilibrium

or

Where definition of mixture

Similarly it can be shown that

Where

mixture (molar basis)

Let us also recall that and

We can also write similar relations for mixture enthalpy

Where

and

definition of mixture

Where

definition of mixture (molar basis)

Therefore, and . The equations are similar to the equations for a single

(ideal gas) species.

roperties of Atmospheric Air

Page 73: St. PETER’S ENGINEERING COLLEGE

Dry air is a mechanical mixture of the following gases: Oxygen, nitrogen, carbon dioxide,

hydrogen, argon, neon, krypton, helium, ozone, and xenon. Dry air is considered to consist of

21% oxygen and 79% nitrogen by volume. It consists of 23% oxygen, and 77% nitrogen by

mass. Completely dry air does not exist in nature. Water vapour in varying amount is diffused through it. If Pa and Pware the partial pressures of dry air and water vapour respectively, then

by Dalton's law of partial pressure

Where P is the atmospheric pressure

Mole – fraction of dry air,

Pm is considered to be 1 atm

Mole – fraction of water vapour,

Since is very small, the saturation temperature of water vapour at is less than the

atmospheric temperature . So the water vapour in air exists in the superheated state, and the

air is said to be unsaturated.

If the air- water vapour mixture which is initially not saturated, is cooled at constant pressure, the

partial pressure of water vapour in the mixture remains constant till it is equal to the saturation

pressure of water. Further cooling result in condensation of water vapour. The temperature at which the vapour condenses when the air-water vapour mixture is cooled at constant pressure, is

called Dew Point (

Relative Humidity (RH)

Relative humidity is defined as the ratio of partial pressure of water vapour, , in a mixture to

the saturation pressure, of pure water at the temperature of the mixture

If water is injected into unsaturated air in a container, water will evaporate, which will increase

the moisture content of the air. and will increase. This will continue till the air becomes

Page 74: St. PETER’S ENGINEERING COLLEGE

saturated at that temperature and there will be no more evaporation of water. For saturated air,

relative humidity is 100%. Assuming water vapour as an ideal gas,

And V is the volume and T the temperature of air, the subscripts W and s indicating the

unsaturated and saturated states of air respectively.

RH= mass of water vapour in a given volume of air at temperature T / mass of water vapour when

the same volume of air is saturated at temperature T

Specific Humidity or Humidity Ratio

SH is defined as the mass of water vapour per unit mass of dry air in a mixture of air and water

vapour. If ma = mass of dry air, mw = mass of water vapour

Also we know that

and

or,

or

Where P is the atmospheric pressure

Relative humidity,

or

or

Page 75: St. PETER’S ENGINEERING COLLEGE

If a mixture of air and superheated (or unsaturated) water vapour is cooled at constant pressure,

the partial pressure of each constituent remains constant until the water vapour reaches its saturated state. Further cooling causes condensation. The temperature at which water vapour

starts condensing is called the dew point temperature of the mixture. it is equal to the

saturation temperature at the partial pressure, of the water vapour in mixture. ADIABATIC SATURATION Specific humidity or the relative humidity of an air – water vapour mixture can be measured in

principle with the help of a device called the adiabatic saturator

The air – water vapour mixture flows steadily into the device. The or of the incoming

mixture has to be determined.

The air – water vapour mixture leaves the adiabatic saturator as saturated mixture. Let the device

be insulated so that there is no energy loss. Since the unsaturated air – water vapour mixture is sweeping over a layer of liquid water, some

water evaporates. The energy needed for the evaporation comes from the air mixture. Hence, the

air – water vapour mixture leaves the adiabatic saturator at a temperature lower than that of the entering air. As the air leaving the adiabatic saturator is in equilibrium with the liquid water, the

temperature of the liquid water is equal to the temperature of the saturated air – water vapour

mixture.

Mass balance for air

Mass balance for water

Energy balance

Dividing (35.17) by

Page 76: St. PETER’S ENGINEERING COLLEGE

Dividing (35.18) by

or

The quantity

Another term, has to be estimated properly.

Here refer to the enthalpy of saturated water vapour at temperature and refers to the

enthalpy of the saturated liquid at temperature or ) water pool temperature at

steady state is same as )

Therefore

enthalpy of the saturated water vapour at state 1

enthalpy of the saturated liquid water at temperature or ,

does not depend on the temp at which the liquid water enters the device (make-up water

temperature)

The adiabatic saturation temperature depends only on the conditions of the entering

fluid.

Finally

Psychrometer

Psychrometer is an instrument to measure the wet-bulb and dry-bulb temperature of an air-water

vapour mixture. This instrument uses the principle of adiabatic saturation. The specific

humidity and relative humidity of air-water vapour mixture can be determined with knowledge of dry-bulb and wet-bulb temperatures figure 36.1

Page 77: St. PETER’S ENGINEERING COLLEGE

The dry-bulb temperature is the temperature of the incoming mixture.

The wet-bulb temperature is the temperature of the saturated air-water vapour mixture. For air-water vapour mixtures, the wet- bulb temperature is found to be approximately

equal to the adiabatic Saturation temperature (AST).

If and are known, & can be found out.

The enthalpy of air-water vapour mixture is expressed as

where is the enthalpy of the accompanying water vapour, and

Refer to figure 36.2

We can write

In the above equation, is vapour enthalpy, is also enthalpy of vapour. The term is

meant for enthalpy of liquid water

Also

For the above reasons, we can rewrite (36.2) as

Invoking (36.1), the above equation becomes

is the conserved property in an adiabatic saturation process. (Remember that state 2 need not

be saturated). We can further write

Page 78: St. PETER’S ENGINEERING COLLEGE

Where

and

If is small constant and we get

A long an adiabatic miniaturization process will remain constant

or

PSYCHROMETRIC CHART

Abscissa is the dry bulb temperature. The right hand side ordinate provides humidity

ratio. The equation shows a direct relationship between w and Pw

According, the vapour pressure can also be shown as the ordinate . The curves of

constant relative humidity are also drawn on the Psychometric Chart. On figure 36.3,

the curves are labeled as Φ = 100%, 60% etc. Psychometric Charts also gives values of

the mixture enthalpy per unit mass of dry air in the mixture. The constant wet bulb

Page 79: St. PETER’S ENGINEERING COLLEGE

temperature TWB lines run from the upper left to lower right of the chart. The relationship between the wet bulb temperature and other chart quantities are provided

by using Eqn

The lines of wet bulb temperature are approximately the lines of constant mixture

enthalpy per unit mass of dry air.

Dehumidification:

When a moist air steam is cooled at constant mixture pressure to a temperature below

its dew point temperature, some condensation of water vapour would occur. Refer to fugure 36.4 for understanding the process.

Dehumidification of air-water vapour mixture can be achieved by cooling the mixture

below its dew point temperature (path i-A-B) allowing some water to condense, and

then heating the mixture (path B-f) to the desired temperature.

Dehumidification and Cooling

For cooling the mixture, the mixture can be made to pass over the cooling coils through

which a cold refrigerant is circulated

Page 80: St. PETER’S ENGINEERING COLLEGE

the mixture) is sprayed into the air to be dehumidified. Then the air leaves with less

humidity at the temperature of the chilled water. Next the air is heated to the desired temperature

These two cooling and heating processes constitute an air conditioning plant.

Humidification with Cooling

The process is same as the Adiabatic saturation except that the air may leaves

unsaturated.

Extensively used in desert coolers which is used for cooling homes in not & dry

climates. An unsaturated air-water vapour mixture is made to flow through porous pads soaked in water (figure 36.8)

Page 81: St. PETER’S ENGINEERING COLLEGE

denotes the rate at which water is evaporated. and are the specific humidity of air-water vapour mixture at the inlet and outlet respectively.

Page 82: St. PETER’S ENGINEERING COLLEGE

UNIT V

POWER CYCLES

Air standard Otto Cycle

Air standard Otto cycle on (a) P-v diagram (b) T-s diagram

Processes: -

0-1: a fresh mixture of fuel-air is drawn into the cylinder at constant pressure

1-2: isentropic compression

2-3: energy addition at constant volume

3-4: isentropic expansion

4-1: combustion products leave the cylinder

1-0: the piston pushes out the remaining combustion products at constant pressure

Since the net work done in processes 0-1 and 1-0 is zero, for thermodynamic analysis, we

consider the 1-2-3-4 only.

The thermal efficiency of the cycle is given by

Wnet

Q1 Q2

Q1 Q1

where Q1 and Q2 denote the energy absorbed and rejected as heat respectively.

Page 83: St. PETER’S ENGINEERING COLLEGE

For a constant volume process Q=U. If ‘m’ is the mass of the air which is undergoing the cyclic

process,

U mCv T

Energy is absorbed during the process 2-3

Energy is rejected during the process 4-1

Hence,

Q1 U3 U 2 mCv (T3 T2 )

Q2 U 4 U1 mCv T4 T1

1 T4 T1

T3 T2

For an ideal gas undergoing an isentropic process (process 1-2 and 3-4),

Tv 1

= constant

Hence,

T v 1

1 2

T2 v1

T v 1

4 3

and T3 v4

But v1=v4 and v2=v3. Hence we get,

T1 T4

T2 T3

T1

or T4

T2

T3

1 T1 1

T2

T T

T T

T4

T4 T1

T3 T2

T3

T4

T3

or

T1

T2

4 1

T4

3 2

T3

T v 1

1 1

1 1 1 2 1

Hence, T2 v1 r0

Where the compression ratio r0 is defined as

Page 84: St. PETER’S ENGINEERING COLLEGE

r v1

0

v 2

Sometimes it is convenient to express the performance of an engine in terms of Mean effective

Pressure, Pm, defined as the ratio of Net work done” to “Displacement volume”

Pm W

v1 v2

W Pm (v1 v2 )

Thermal efficiency of the ideal Otto cycle as a function of compression ratio (=1.4)

The thermal efficiency of the Otto cycle increases with the specific heat ratio, of the working fluid.

Air standard Diesel cycle

Page 85: St. PETER’S ENGINEERING COLLEGE

Diesel cycle on (a) P-v diagram (b) T-s diagram

Processes: -

0-1: fresh air is drawn into the cylinder

1-2: isentropic compression

2-3: constant pressure energy addition

3-4: isentropic expansion

4-1: combustion products leave the cylinder

1-0: remaining combustion products are exhausted at constant pressure

Defining cutoff ratio, rc as,

r v

3

c v 2

For a constant pressure process (2-3),

Q=H.

Hence, the energy addition during process 2-3,

Q1 H 3 H 2 m(h3 h2 ) mCp (T3 T2 )

where ‘m’ is the mass of gas undergoing the cyclic change.

The energy rejection during the process 4-1,

Q2 U 4 U1 m(u4 u1 ) mCv (T4 T1 )

The thermal efficiency, is given by

Page 86: St. PETER’S ENGINEERING COLLEGE

T4

T3

v P

Q1 Q2

mC p (T3 T2 ) mCv (T4 T1 )

Q1 mC p (T3 T2 )

T T

T1

T

1

14 1 1 1

(T3 T2 ) T2

T

1

2

Since the process 1-2 is isentropic,

T v 1

1 1

1 2 T2 v1 r0

Since the process 4-1 is a constant volume process,

T4 P4 P4 P3 P4 P2 T P

1 1 P

3 P1 P3 P1

since P2=P3

The processes 1-2 and 3-4 are isentropic. Hence,

P v

4 3 P2

v1

P3 v4 1

2

and

Hence we get,

T v v

v

4 3 1 3 r T

1 v4 v2 v2

For the constant pressure process,

T3

v3

T2 v2

rc

Hence the efficiency becomes,

1 r 1 1

c

r0 rc 1

The mean effective pressure of an air standard diesel cycle is given by,

1

c

Page 87: St. PETER’S ENGINEERING COLLEGE

r r 1) r (r 1

Pm P1 0 c 0 c

( 1)(r0 1)

Thermal efficiency of the ideal diesel cycle as a function of compression and cutoff ratios (=1.4)

Air standard Dual cycle

Dual cycle on (a) P-v diagram (b) T-s diagram

Energy addition is in two stages: Part of energy is added at constant volume and part of the

energy is added at constant pressure Energy added, q1

q1 Cv (T3 T2 ) Cp (T4 T3 )

Energy rejected, q2

q2 Cv (T5 T1)

Thermal efficiency,

1 q2

q1

1Cv (T5 T1 )

Cv (T3 T2 ) Cp (T4 T3 )

1(T5 T1 )

(T3 T2 ) (T4 T3 )

The efficiency can be expressed also in terms of,

Page 88: St. PETER’S ENGINEERING COLLEGE

Compression ratio, r0 = V1/V2

Cut-off ratio, rc = V4/V3

Constant volume pressure ratio, rvp= P3/P2

Carnot Vapour compression Refrigeration cycle

(a) Schematic representation (b) T-s diagram Processes: - 1-2: Isentropic compression from state 1 (wet vapour) to state 2 (saturated vapour)

2-3: Heat rejection (QH) in the condenser

3-4: Isentropic expansion from state 3 (saturated liquid) 4-1: Heat absorption ( QL) in the evaporator

The COP of the refrigerator,

(COP) R QL

W

QL

QH QL

TL

TH TL

Practical Vapour compression refrigeration cycle

(a) schematic diagram (b) T-s diagram

Application of the first law of thermodynamics to the control volume compressor, condenser, throttle and evaporator gives

(Ws)compressor=h2-h1

Page 89: St. PETER’S ENGINEERING COLLEGE

QH=h2-h3

h3=h4

and QL=h1-h4

The COP of the refrigerator is given by,

(COP)

QL h1 h4

R W h h

2 1

In the ideal refrigeration cycle, the refrigerant leaves the evaporator as wet vapour. In some cases the refrigerant leaves the evaporator as either saturated vapour or superheated vapour.

T-s diagram for a vapour compression refrigeration cycle when the refrigerant leaves the evaporator as (a) saturated vapour (b) superheated vapour

Gas refrigeration cycle

(a) Schematic diagram (b) T-s diagram

The simplest gas refrigeration cycle is the reversed Brayton cycle Processes: - 1-2: isentropic compression for state 1 (atmospheric air) to state 2

2-3: energy exchange with the surrounding, air is cooled

3-4: isentropic expansion to state 4 Work obtained during the expansion process can be used to run the compressor

Work done on the compressor,

Wc h2 h1 Cp (T2 T1 )

Work delivered by the expander,

We h3 h4 Cp (T3 T4 )

Page 90: St. PETER’S ENGINEERING COLLEGE

The net work required= CP (T2-T1-T3+T4)

The COP of this refrigeration system is given by,

COP QL

W

T1 T4

T2 T1 T3 T4

Air standard Brayton cycle

Schematic representation of an air standard Brayton cycle

Brayton cycle on (a) P-v diagram (b) T-s diagram

Processes: -

1-2: isentropic compression

2-3: constant pressure energy addition

3-4: isentropic expansion

4-1: constant pressure energy rejection

Energy added, Q1= mCp (T3-T2)

Energy rejected, Q2= mCp (T4-T1)

Page 91: St. PETER’S ENGINEERING COLLEGE

1 T

P3

P1

1

p

Q1 Q2

1 T4 T1

Q1 T3 T2

T4 T 1

1 1 T3

T2 T 1

Thermal efficiency, 2

The pressure ratio of the Brayton cycle, rp is defined as,

r P2

P1

P3

P2

Then P4

P1

The processes 1-2 and 3-4 are isentropic. Hence,

1T2 P2

T P 1 1

1

3 T P 4 4

We get,

T T T4

T3

2 3

T T

T1

T4 or 1 2

1 T

1 T

1

1 P

2 2 1

1 r

p

Work delivered by the cycle is given by W=Q1

Increasing Q1 can increase work done by the cycle

Since the Turbine blade material cannot withstand very high temperature, T3 and hence Q1 is

limited

The optimum pressure ratio for fixed values of T1 and T3, for which work is maximum, is

obtained by,

T

Page 92: St. PETER’S ENGINEERING COLLEGE

1

T3

12

p

Wnet Q1 Q2 mCp (T3 T2 ) mCp (T4 T1)

Wnet mCp [(T3 T4 ) (T2 T1 )]

T4 T2 Wnet mCp T3 1

T T1

T 1

3 1

1

1 1

W mC T 1 T r 1net p 3 r 1

p

For optimum pressure ratio, dWnet

1

12

mC T r drp

p 3

1 1

p

mC T r 0 p 1 p

T r 3 p

1

or T rp

T3 (r )

2( 1)

or T1

2( 1)

rp T

or 1

COMPARISON OF OTTO, DIESEL AND DUAL CYCLE

• Following are the important variablefactors which are used for comparison of these cycles:

1. Compression ratio

2. Maximum pressure 3. Heat supplied

4. Heat rejected and Net work

Efficiency versus compression ratio

For a given compression ratio, Otto cycle is the most efficient while the diesel cycle is

the least efficient

For the same compression ratio and the same heat input

p

Page 93: St. PETER’S ENGINEERING COLLEGE

For constant maximum pressure and heat supplied

Page 94: St. PETER’S ENGINEERING COLLEGE

T-S diagram

P-V DIAGRAM

Page 95: St. PETER’S ENGINEERING COLLEGE

OBJECTIVE QUESTIONS

UNIT – I 1. A definite area or space where some thermodynamic process takes place is known as [A]

(a) Thermodynamic system (b) thermodynamic cycle (c) thermodynamic process (d) thermodynamic law. 2. An open system is one in which [C]

(a) heat and work cross the boundary of the system, but the mass of the working substance does not

(b) mass of working substance crosses the boundary of the system but the heat and work do not

(c) both the heat and work as well as mass of the working substances cross the boundary of the system (d) neither the heat and work nor the mass of the working substances cross the boundary of the system.

3. An isolated system [C]

(a) is a specified region where transfer of energy and/or mass take place (b) is a region of constant mass and only energy is allowed to cross the boundaries

(c) cannot transfer either energy or mass to or from the surroundings

(d) is one in which mass within the system is not necessarily constant 4. In an extensive property of a thermodynamic system [D]

(a) extensive heat is transferred

(b) extensive work is done

(c) extensive energy is utilized (d) none of the above.

5. Which of the following is an intensive property of a thermodynamic system ? [B]

(a) Volume (b) Temperature (c) Mass (d) Energy. 6. Which of the following is the extensive property of a thermodynamic system ? [B]

(a) Pressure (b) Volume (c) Temperature (d) Density.

7. When two bodies are in thermal equilibrium with a third body they are also in thermal equilibrium with each

other. This statement is called [A] (a) Zeroth law of thermodyamics (b) First law of thermodynamics (c) Second law of thermodynamics (d) Kelvin

Planck’s law.

8. The temperature at which the volume of a gas becomes zero is called [B] (a) absolute scale of temperature (b) absolute zero temperature (c) absolute temperature (d) none of the above.

9. The value of one bar (in SI units) is equal to [D] (a) 100 N/m2 (b) 1000 N/m2 (c) 1 × 104 N/m2 (d) 1 × 105 N/m2

10. The absolute zero pressure will be [A]

(a) when molecular momentum of the system becomes zero (b) at sea level (c) at the temperature of – 273 K (d)

under vacuum conditions 11. Absolute zero temperature is taken as [A]

(a) – 273°C (b) 273°C (c) 237°C (d) – 373°C.

12. Which of the following is correct ? [A] (a) Absolute pressure = gauge pressure + atmospheric pressure

(b) Gauge pressure = absolute pressure + atmospheric pressure

(c) Atmospheric pressure = absolute pressure + gauge pressure (d) Absolute pressure = gauge pressure – atmospheric pressure.

13. The unit of energy in SI units is [A]

(a) Joule (J) (b) Joule metre (Jm) (c) Watt (W) (d) Joule/metre (J/m).

14. One watt is equal to [A] (a) 1 Nm/s (b) 1 N/min (c) 10 N/s (d) 100 Nm/s

15. One joule (J) is equal to [A]

(a) 1 Nm (b) kNm (d) 10 Nm/s (d) 10 kNm/s. 16. The amount of heat required to raise the temperature of 1 kg of water through 1°C is called

[C]

(a) specific heat at constant volume

(b) specific heat at constant pressure (c) kilo calorie

(d) none of the above.

17. The heating and expanding of a gas is called [B]

Page 96: St. PETER’S ENGINEERING COLLEGE

(a) thermodynamic system

(b) thermodynamic cycle (c) thermodynamic process

(d) thermodynamic law.

18. A series of operations, which take place in a certain order and restore the initial condition is known as [C]

(a) Reversible cycle (b) irreversible cycle (c) thermodynamic cycle (d) none of the above.

19. The condition for the reversibility of a cycle is [D] (a) the pressure and temperature of the working substance must not differ, appreciably, from those of the

surroundings at any stage in the process

(b) all the processes, taking place in the cycle of operation, must be extremely slow (c) the working parts of the engine must be friction free

(d) all of the above

20. In an irreversible process, there is a [A]

(a) loss of heat (b) no loss of heat (c) gain of heat (d) no gain of heat.

UNIT – II 1. Second law of thermodynamics defines [D]

(a) heat (b) work (c) enthalpy (d) entropy (e) internal energy.

2. For a reversible adiabatic process, the change in entropy is [A] (a) zero (b) minimum (c) maximum (d) infinite

3. For any reversible process, the change in entropy of the system and surroundings is [A]

(a) zero (b) unity (c) negative (d) positive

4. For any irreversible process the net entropy change is [B] (a) zero (b) positive (c) negative (d) infinite

5. The processes of a Carnot cycle are [D]

(a) two adiabatic and two constant volume (b) one constant volume and one constant pressure and two isentropics

(c) two adiabatics and two isothermals

(d) two isothermals and two isentropics. 6. Isentropic flow is [D]

(a) irreversible adiabatic flow

(b) ideal fluid flow

(c) perfect gas flow (d) reversible adiabatic flow.

7. In a Carnot engine, when the working substance gives heat to the sink [B]

(a) the temperature of the sink increases (b) the temperature of the sink remains the same

(c) the temperature of the source decreases

(d) the temperatures of both the sink and the source decrease 8. If the temperature of the source is increased, the efficiency of the Carnot engine [B]

(a) decreases (b) increases (c) does not change (d) will be equal to the efficiency of a practical engine

9. The efficiency of an ideal Carnot engine depends on [D]

(a) working substance (b) on the temperature of the source only (c) on the temperature of the sink only (d) on the temperatures of both the source and the sink

10. In a reversible cycle, the entropy of the system [C]

(a) increases (b) decreases (c) does not change (d) first increases and then decreases 11. A frictionless heat engine can be 100% efficient only if its exhaust temperature is [D]

(a) equal to its input temperature (b) less than its input temperature (c) 0°C (d) 0°K

12. Kelvin-Planck’s law deals with [D]

(a) conservation of energy (b) conservation of heat (c) conservation of mass (d) conversion of heat into work 13. Which of the following statements is correct according to Clausius statement of second law ofthermodynamics

? [B]

(a) It is impossible to transfer heat from a body at a lower temperature to a body at a higher temperature

Page 97: St. PETER’S ENGINEERING COLLEGE

(b) It is impossible to transfer heat from a body at a lower temperature to a body at a higher temperature,without

the aid of an external source. (c) It is possible to transfer heat from a body at a lower temperature to a body at a higher temperature byusing

refrigeration cycle

(d) None of the above.

14. According to Kelvin-Planck’s statement of second law of thermodynamics [D] (a) It is impossible to construct an engine working on a cyclic process, whose sole purpose is to convert

heatenergy into work

(b) It is possible to construct an engine working on a cyclic process, whose sole purpose is to convert theheat energy into work

(c) It is impossible to construct a device which while working in a cyclic process produces no effect otherthan the

transfer of heat from a colder body to a hotter body (d) None of the above.

15. The property of a working substance which increases or decreases as the heat is supplied or removed in

areversible manner is known as [C]

(a) enthalpy (b) internal energy (c) entropy (d) external energy. 16. The entropy may be expressed as a function of [A]

(a) pressure and temperature (b) temperature and volume (c) heat and work (d) all of the above

17. The change of entropy, when heat is absorbed by the gas is [A] (a) positive (b) negative (c) positive or negative. (d) none

18. Which of the following statements is correct ? [D]

(a) The increase in entropy is obtained from a given quantity of heat at a low temperature

(b) The change in entropy may be regarded as a measure of the rate of the availability of heat for transformation into work

(c) The entropy represents the maximum amount of work obtainable per degree drop in temperature

(d) All of the above. 19. The condition for the reversibility of a cycle is [D]

(a) the pressure and temperature of working substance must not differ, appreciably from those of thesurroundings

at any stage in the process (b) all the processes taking place in the cycle of operation, must be extremely slow

(c) the working parts of the engine must be friction free

(d) all of the above.

20. In an irreversible process there is a [A] (a) loss of heat (b) no loss of work (c) gain of heat (d) no gain of heat.

UNIT – III 1. Choose the correct answer [D]

(a) Specific volume of water decreases on freezing (b) Boiling point of water decreases with increasing pressure

(c) Specific volume of CO2 increases on freezing

(d) Freezing temperature of water decreases with increasing pressure. 2. Choose the correct answer [A]

(a) The slope of vapourisation curve is always negative

(b) The slope of vapourisation curve is always positive

(c) The slope of sublimation curve in negative for all pure substances (d) The slope of fusion curve is positive for all pure substances.

3. Choose the correct answer [B]

(a) The process of passing from liquid to vapour is condensation (b) An isothermal line is also a constant pressure line during wet region

(c) Pressure and temperature are independent during phase change

(d) The term dryness fraction is used to describe the fraction by mass of liquid in the mixture of liquid water and

water vapour. 4. The latent heat of vapourisation at critical point is [C]

(a) less than zero (b) greater than zero (c) equal to zero (d) none of the above.

5. Choose the correct answer [D]

Page 98: St. PETER’S ENGINEERING COLLEGE

(a) Critical point involves equilibrium of solid and vapour phases

(b) Critical point involves equilibrium of solid and liquid phases (c) Critical point involves equilibrium of solid, liquid and vapour phases

(d) Triple point involves equilibrium of solid, liquid and vapour phases.

6. With the increase in pressure [B]

(a) boiling point of water increases and enthalpy of evaporation increases (b) boiling point of water increases and enthalpy of evaporation decreases

(c) boiling point of water decreases and enthalpy of evaporation increases.

(d) none of the above 7. With increase in pressure [B]

(a) enthalpy of dry saturated steam increases

(b) enthalpy of dry saturated steam decreases (c) enthalpy of dry saturated steam remains same

(d) enthalpy of dry saturated steam first increases and then decreases.

8. Dryness fraction of steam is defined as [C]

(a) mass of water vapour in suspension/(mass of water vapour in suspension + mass of dry steam) (b) mass of dry steam/mass of water vapour in suspension

(c) mass of dry steam/(mass of dry steam + mass of water vapour in suspension)

(d) mass of water vapour in suspension/mass of dry steam. 9. The specific volume of water when heated at 0°C [B]

(a) first increases and then decreases

(b) first decreases and then increases

(c) increases steadily (d) decreases steadily.

10. Only throttling calorimeter is used for measuring [B]

(a) very low dryness fraction upto 0.7 (b) very high dryness fraction upto 0.98 (c) dryness fraction of only low pressure steam (d) dryness fraction of only high pressure steam.

11. choose the correct answer [B]

(a) A perfect gas does not obey the law pv = RT (b) A perfect gas obeys the law pv = RT and has constant specific heat

(c) A perfect gas obeys the law pv = RT but have variable specific heat capacities.

(d) none of the above

12. Boyle’s law states that, when temperature is constant, the volume of a given mass of a perfect gas [B]

(a) varies directly as the absolute pressure

(b) varies inversely as the absolute pressure (c) varies as square of the absolute pressure

(d) does not vary with the absolute pressure.

13. Charle’s law states that if any gas is heated at constant pressure, its volume [A] (a) changes directly as it absolute temperature

(b) changes inversely as its absolute temperature

(c) changes as square of the absolute temperature

(d) does not change with absolute temperature. 14. The equation of the state per kg of a perfect gas is given by, where p, v, R and T are the pressure, volume,

characteristic gas constant and temperature of the gasrespectively. [B]

(a) p2v = RT (b) pv = RT (c) pv2 = RT (d) p2v2 = RT. 15. The equation of state of an ideal gas is a relationship between the variables : [C]

(a) pressure and volume (b) pressure and temperature (c) pressure, volume and temperature (d) none of the

above.

16. Joule’s law states that the specific internal energy of a gas depends only on [C] (a) the pressure of the gas (b) the volume of the gas (c) the temperature of the gas (d) none of the above.

17. In an ideal gas the partial pressure of a component is [B]

(a) inversely proportional to the square of the mole fraction (b) directly proportional to the mole fraction (c) inversely proportional to the mole fraction (d) equal to the mole fraction.

18. The value of the universal gas constant is [D]

(a) 8.314 J/kg K (b) 83.14 kJ/kg K (c) 848 kJ/kg K (d) 8.314 kJ/kg K.

Page 99: St. PETER’S ENGINEERING COLLEGE

19. Mole fraction of a component of gas mixture is equal to, where, f = Volume fraction, and p = Pressure of the

mixture. [C] (a) 1/f (b) f2 (c) f (d) f/p

20. In a gaseous mixture the specific volume of each component is given by, where, V = Volume of the mixture,Vi

= Volume of the ith component,m = Mass of mixture, andmi = Mass of the ith component.

[C] (a) V/m (b) Vi/mi (c) V/mi (d) none of the above.

UNIT IV 1. The Clausius-Clapeyron equation is given by: [B]

(a)(dT/dP)sat= (hfg/T vfg) (b) (dP/dT)sat = (hfg/T vfg) (c) (dP/dv)sat= (vfg/T hfg) (d) (dv/dP)sat = (Thfg/ vfg)

2. Which of the following variables controls the physical properties of a perfect gas [ D ]

(a) pressure (b)temperature (c) volume (d)all of the above 3. The statement that molecular weights of all gases occupy the same volume is known as [ A] (a)Avogadro’s

hypothesis (b)Dalton’s law (c) Gas law (d) Joule’s Law

4. During the adiabatic cooling of moist air ____ [ D ]

(a) dry-bulb temperature remains constant (b) specific humidity remains constant (c) Relative humidity remains constant (d) specific enthalpy remains constant

5. Boyle's law states that when temperature is constant, the volume of a given mass of a perfect gas

[ B ] (a) Varies directly as the absolute pressure (b) varies inversely as the absolute pressure (c) varies as square of

the absolute pressure (d) does not vary with the absolute pressure

6. Change of entropy depends upon [C]

(a)change of mass (b)change of temperature (c)change of heat (d)change of specific heat

7. The ratio of molar specific heats for monoatomic gas is [C]

(a)1 (b)1.4 (c)1.67 (d)1.87 8. In mollier diagram the pressure lines are straight in the wet region, because [B]

(a)(dg/ds) is constant (b)Tds is constant (c) ds = constant (d) dg is constant

9.With increase in temperature the specific heats for gases(except monoatomic)______ [A] a) Increases b)decreases c)constant d)zero

10.Relative C.O.P. is equal to _______ [A]

a)Actual C.O.P/Theoretical C.O.P b) Actual C.O.P-Theoretical C.O.P c) Actual C.O.P*Theoretical C.O.P

d) Actual C.O.P+Theoretical C.O.P 11. The specific heats of an ideal gas depend on its [A]

(a) Temperature (b) Pressure (c) Volume (d) Molecular weight and structure

12. Which one of the following statements applicable to a perfect gas will also be true for an irreversible process? (Symbols have the usual meanings). [C]

(a) dQ = du + pdV (b) dQ = Tds (c) Tds = du + pdV (d) None of the above

13. The number of degrees of freedom for a diatomic molecule [D] (a) 2 (b) 3 (c) 4 (d) 5

14. The ratio 𝐶𝑝/ for a gas with n degrees of freedom is equal to: [D]

(a) n + 1 (b) n – 1 (c) 2/n -1 (d) 1+2/n

15. The Clapeyron equation with usual notations is given by: [B]

(a) (𝑑𝑇/𝑑𝑃) = h/𝑇𝑣 (b) (𝒅𝑷/ 𝒅𝑻) 𝒂 = h / (c) (𝑑𝑇/𝑑𝑃)𝑎 = 𝑇 h/𝑣 (d) (𝑑𝑃/𝑑𝑇)𝑎 = 𝑇 h/𝑣

16. Clausius-Clapeyron equation gives the 'slope' of a curve in [C]

(a) p–v diagram (b) p–h diagram (c) p–T diagram (d) T–S diagram 17. Number of components (C), phase (P) and degrees of freedom (F) are related by Gibbs-phase rule as:

[D]

(a) C – P – F = 2 (b) F – C – P = 2 (c) C + F – P = 2 (d) P + F – C = 2

18. As per Gibb's phase rule, if number of components is equal to 2 then the number of phases will be: [C]

(a) ≤ 2 (b) ≤ 3 (c) ≤ 4 (d) ≤ 5

19. Gibb's phase rule is given by: [D]

Page 100: St. PETER’S ENGINEERING COLLEGE

(F = number of degrees of freedom; C = number of components; P = number of phases) (a) F = C + P (b) F = C

+ P – 2 (c) F = C – P – 2 (d) F = C – P + 2 20. Gibb's free energy 'c' is defined as: [A]

(a) G = H – TS (b) G = U – TS (c) G = U + pV (d) G = H + TS

UNIT-V 1. For same compression ratio and for same heat added ottocycle is ___________efficient than Dieselcycle

[ B ] (a)less (b) more (c)equally (d) none

2. For same compression ratio the efficiency of dual combustion cycle is ______ Otto cycle [ A

] (a)less than (b)more than (c)equal to (d) none

3. Diesel cycle consists of following four processes _____ [ C ]

(a)two isothermals and two isentropics (b) two isentropics and two constant volumes (c) two isentropics and one constant volume and one constant pressure (d) two isentropics and two constant pressures

4. For the same compression ratio and for same heat added ___ [ A ]

(a) Otto cycle is more efficient than Diesel cycle (b) Diesel cycle is more efficient than Otto cycle (c) both

Otto and Diesel cycles are equally efficient (d) none 5.Otto cycle consists of following four processes______ [ B ]

(a) Two isothermal and two isentropic (b) two isentropic and two constant volume (c) Two isentropic, one

constant volume and one constant pressure (d) Two isentropic and two constant pressure 6. The efficiency of Diesel cycle with decrease in cut off ____ [ A ]

(a) Increases (b) decreases (c) remains unaffected (d) first increases and then decreases

7. Air standard efficiency of theoretical otto cycle [A]

(a)increases with increase in compression ration (b) increases with increase in isentropic index of compression only (c)dose not depend upon the pressure ratio (d)depends on the temperature after expansion

8. In an air compressor an after cooler is used to: [C]

(a)reduce volume of air (b)remove impurities from air (c)cool the air (d)cause moisture and oil vapour to drop out

9. A heat engine is supplied heat at the ratio of 30,000 j/s and gives an output of 9kW.The thermal efficiency of

the engine is [A] (a)30% (b)33% (c)40% (d)50%

10.Work done in afree expansion process is: [A]

(a)zero (b)always positive (c)always negative (d)non-zero quantity either positive or negative

11. In the expression of brake power BP= (2πnT/60),for a four stroke engine ‘n’ should be taken as: [B] (a)N (b)N/2 (c)2N (d)N/4 Where , N=speed of the crankshaft in rpm

12. The constant pressure gas turbine works on ___________cycle [D]

(A) Otto (B) Joule (C) stirling (D) Brayton 13.Thermal power plant works on _________ [ C ]

(a) Carnot cycle (b) Joules cycle (c) Rankine cycle (d) Otto cycle

14. Bell-Coleman cycle is a reversed ____ [ B ] (a) Carnot cycle (b) Joules cycle (c) Rankine cycle (d) Otto cycle

15. The constant pressure gas turbine works on the ____ [ B ]

(a) Reversed-Braytron cycle (b) Braytron cycle (c) Rankine cycle (d) Otto cycle

16. Steam power plant works on______ cycle. [A] a)Rankine b) Otto c) Carnot d) Atkinson

17. According to ______law the specific c internal energy of a gas depends only on the temperature of the gas

and is independent of both pressure and volume. [C] a) Atkinson b) Turbo-jet c) Joule’s d) Stirling

18. Dual cycle consists of_____ number of processes. [D]

a)two b)four c)one d)five

19. The efficiency of RANKINE _______cycle is closer to that of Carnot cycle [A] a)cycle b)process c)system d)none

20. The ratio of actual cycle efficiency to that of the ideal cycle efficiency is called_____ [A]

a) Efficiency ratio b) COP ratio c) power ratio d)speed ratio

Page 101: St. PETER’S ENGINEERING COLLEGE

Short and long answer type questions

UNIT - I

1 Define Closed System, Open System and Isolated System. 2 List some of the thermodynamics properties

3 Explain the intensive and extensive properties.

4 List the point functions and path functions. 5 Explain thermodynamic equilibrium.

6 Describe thermodynamics cycle.

7 Explain first law of thermodynamics.

8 Define zeroth law of thermodynamics. 9 List the differences between Open system and Closed system.

10 Define thermodynamic system, surrounding and universe.

11 Explain the Joule’s experiment with a neat sketch. 12 Give examples of closed, open and isolated systems.

13 Illustrate that heat and work are path functions.

14 State and explain the zeroth law of thermodynamics.

15 State the limitations of first law of thermodynamics. 16 Explain the constant volume gas thermometer.

17 Differentiate open system and closed system.

18 To a closed system 100 kJ of work is supplied. If the initial volume is 0.5 m3 and pressure of a system changes as P = (8 – 4 V), where P is in bar and V is in m3, Compute the final volume and pressure of the system.

19 PMM1 is impossible? Justify.

20 A stationary mass of gas is compressed without friction from an initial state of 0.3 m3 and 0.105 MPa to a final state of 0.15 m3 and 0.105 MPa, the pressure remaining constant during the process. There is a transfer of 37.6 kJ

of heat from the gas during the process. Calculate the change in internal energy of the gas change?

UNIT - II 1 Define thermal energy reservoir.

2 Define heat engine and draw a neat sketch 3 Define heat pump and draw a neat sketch

4 Define refrigerator and draw a neat sketch

5 Define COP and write the equations for heat pump and refrigerator. 6 Define Kelvin Planck statement of II law of Thermodynamics.

7 Define Clausius statement of II law of Thermodynamics.

8 Define thermal efficiency of a heat engine cycle. Can this be 100%. Knowledge B 9 List the processes in Carnot cycle.

10 State the Clausius inequality.

11 Differentiate the terms heat engine and heat pump.

12 Explain the Carnot cycle with p-v diagram 13 Explain the equivalence of Kelvin Planck and Clausius statements of second law of thermodynamics.

14 Justify that entropy is a property of a system.

15 Explain the inequality of Clausius. 16 An inventor claims to have developed an engine that takes in 105 MJ at a temperature of 200 K, and delivers

15kWh of mechanical work. Would you advise investing money to put this engine in the market?

17 A reversible heat engine working between two thermal reservoirs at 875 K and 315 K drives a reversible refrigerator which operates between the same 315 K reservoir and a reservoir at 260 K. The engine is supplied

2000 kJ of heat and the network output from the composite system is 350 kJ. Calculate the heat transfer to the

refrigerator and the new heat interaction with the reservoir at 315 K temperature. 18 Using an engine of 30% thermal efficiency to drive a refrigerator having a COP of 5, compute the heat input

into the engine for each MJ removed from the cold body by the refrigerator?

19 A heat engine receives half of its heat supply at 1000 K and half at 500 K while rejecting heat to a sink at 300

Page 102: St. PETER’S ENGINEERING COLLEGE

K. Compute the maximum possible thermal efficiency of this heat engine?

20 A reversible heat engine operates between 875 K and 310 K and deliver a reversible refrigerator operating between 310 K and 255 K. The engine receives 2000 kJ of heat and new work output from the arrangement equals

to 350 kJ. Calculate the cooling effect of refrigerator.

UNIT - III 1 Define is critical point?

2 Define is pure substance? 3 Define triple point of water.

4 Define dryness fraction.

5 Draw the p-v diagram of pure substance water. 6 Draw the T-s diagram.

7 Draw the p-v-T surface of the water.

8 Describe the Mollier chart. 9 List the methods of measurement of quality of steam.

10 Explain about superheating and subcooling.

11The volume of a high altitude chamber is 40m3.It is put into operation by reducing pressure from 1bar to 0.4bar

and temperature from 250C to 50C.How many kg of air must be removed from the chamber during the process? Calculate the mass as a volume measured at 1bar and 250C.

12 Draw the p-v-T surface diagram and List the various dryness fraction measuring devices.

13 Determine dryness fraction of a wet steam of 5 kg, in which 0.5 kg of water is present. 14 Determine the enthalpy of wet steam, if the pressure is 8 bar and 0.9 dryness.

15 Draw the isobaric lines and isothermal lines on Mollier chart (h-s diagram).

16 List the properties of dry saturated steam at 10 bar pressure using steam tables.

17 Explain the process of free expansion? 18 A reversible polytropic process begins with a fluid at p1=10bar, T1=2000C and at p2=1bar, the exponent n has

the value 1.15. Calculate the final specific volume, the final temperature and the heat transfer per kg of fluid, if the

fluid is air. 19 Explain the process of Throttling?

UNIT - IV 1 Define Mole fraction.

2 Define mass fraction 3 Define partial pressure of mixture of gases.

4 Define Dalton’s Law of partial pressure.

5 State Avagadro’s law.

6 State Boyles law 7 State Charles law

8 What is Gas constant

9 Write the procedure to find the entropy and specific heat of gaseous mixture 10 differentiate real gas and ideal gas

11 A Mixture of 2 kg Oxygen (M=32kg/kgmol) and 2kfg argon (m=40 Kg/kmd) is present in an insulated piston

in cylinder arrangement at 100kpa, 300K. The piston now compresses the mixture to half of its initial volume. Calculate the final pressure, temperature and piston work, assume c, for oxygen and argon for oxygen and argon as

0.6618kj/kgk and 0.3122KJ/kgK respectively

12 Write the expression for Vander Wall’s equation and determine the constants?

13 A reversible polytropic process begins with a fluid at p1=10bar, T1=2000C and at p2=1bar, the exponent n has the value 1.15. Calculate the final specific volume, the final temperature and the heat transfer per kg of fluid, if the

fluid is air.

14 A constant volume of 0.3m3capacity contains 2kg of this gas at 50C. Heat is transferred to the gas until the temperature is 1000C. Calculate the work done, the heat transfer and changes in internal energy, enthalpy and

entropy?

15 Define mass fraction, mole fraction, volume fraction and partial pressure fraction of a constituent of a mixture

of gases. 16 A tank having a volume of 0.6 m 3, contains oxygen at 25o C and 480 kPa. Nitrogen is introduced into the tank

Page 103: St. PETER’S ENGINEERING COLLEGE

without producing a change in temperature until the pressure becomes 920 kPa. Determine the mass of each gas

and its partial volume. 17 Explain the Dalton’s law of partial pressure

18 A mixture of 6 kg of O2 and 9 kg of N2 has a pressure of 3 bar and a temperature of 20 o C. Determine for the

mixture ( i ) the mole fraction of each component (ii) The molar mass (iii) Specific gas constant (iv) the

volume 19 A vessel of 6 m3 capacity contains two gases A and B in proportion of45 per cent and 55 per cent respectively

at 30°C. If the value of R for the gases is 0.288 kJ/kg Kand 0.295 kJ/kg K Dand if the total weight of the mixture

is 2 kg, calculate :(i) The partial pressure ; (ii) The total pressure (iii) The mean value of R for the mixture 20 The pressure and temperature of mixture of 4 kg of O2 and 6 kg of N2 are4 bar and 27°C respectively. For the

mixture determine the following :(i) The mole fraction of each component ; (ii) The average molecular weight (iii)

The specific gas constant ; (iv) The volume and density (v) The partial pressures and partial volumes.

UNIT-V 1 Draw the p-v and T-s diagram of Otto cycle.

2 Draw the p-v and T-s diagram of Diesel cycle.

3 Draw the p-v and T-s diagram of Dual cycle.

4 Draw the p-v and T-s diagram of Brayton cycle 5 Draw the p-v and T-s diagram of Bell-Coleman cycle.

6 State the processes in Otto cycle

7 Distinguish between Otto, Diesel and Dual cycles 8 Write the expression for efficiency for Otto cycle

9 Write the expression for mean effective pressure for Diesel cycle

10 Write the expression for mean effective pressure for Brayton cycle

11 The swept volume of a diesel engine working on dual cycle is 0.0053 m3 and clearance volume is 0.00035m3. The maximum pressure is 65 bar. Fuel injection ends at 5 percent of stroke. The temperature and pressure at the

start of compression are 800C and 0.9 bar. Determine the air standard efficiency of the cycle. Take γ for air = 1.4

12 Describe Otto cycle with the help of P-V and T-S diagrams? 13 In a constant volume Otto cycle, the pressure at the end of compression 15 times that at the start, the

temperature of air at the beginning of compression is 380C and maximum temperature attained in the cycle is

19500C. Determine i) Compression ratio ii) Thermal efficiency of the cycle. iii) Work done. Take γ for air = 1.4 14 Explain the Otto cycle with the help of P-V and T-S diagrams.

15 An engine working on Otto cycle is supplied with air at 0.1 M Pa, 350C. The compression ratio is heat supplied

is 2100kJ/kg. Calculate the maximum pressure and temperature of cycle, cycle efficiency and Mean effective

pressure. Take Cp =1.005, Cv = 0.718, R= 0.287kJ/kg? 16 Explain dual cycle with the help of P-V and T-S diagrams.

17 A diesel engine has a clearance volume of 250 cm3 and a bore and stroke of 15 cm and 20 cm respectively. The

inlet conditions are 100 kN/m2 and 200C.The maximum temperature of the engine is 15000C Calculate thermal efficiency

18 Explain the Bell – Coleman cycle?

19 Compare Otto, Diesel and Dual cycle, for the same compression ratio and maximum temperature, 20 Derive thermal efficiency and mean effective pressure of a diesel cycle.

Assignment Questions

UNIT - I Assignments Short Answer Questions 1 Define thermodynamics process.

2 Label the thermodynamic system, boundary and surrounding of the give figure.

3 Draw the P-V diagram of Isobaric process. 4 List the modes of heat transfers.

5 Describe PMM I.

6 Sketch the control volume of nozzle and turbine. 7 Write the steady flow equaltion.

8 Define thermodynamic work.

Page 104: St. PETER’S ENGINEERING COLLEGE

9 Define thermometer and thermometry.

10 Draw the sign conventions of heat interaction and work interactions

UNIT - I Assignments Long Answer Questions 1 If a gas of volume 6000 cm3 and at pressure of 100 kPa is compressed quasi-statically according to pV2 =

constant until the volume becomes 2000 cm3, compute the final pressure and the work transfer.

2 Air flows steadily at the rate of 0.5 kg/s through an air compressor, entering at 7 m/s velocity, 100 kPa pressure, and 0.95 m3/g volume, and leaving at 5 m/s, 700 kPa, and 0.19 m3/kg. The internal energy of the air leaving is 90

kJ/kg greater than that of the air entering. Cooling water in the compressor jackets absorbs heat from the air at the

rate of 58 kW. Compute the rate of shaft work input to the air in kW. 3 In a steady flow apparatus, 135 kJ of work is done by each kg of fluid. The specific volume of the fluid,

pressure, and velocity at the inlet are 0.37 m3/kg, 600 kPa, and 16 m/s. The inlet is 32m above the floor, and the

discharge pipe is at floor level. The discharge conditions are 0.62 m3/kg, 100 kPa, and 270 m/s. The total heat loss

between the inlet and discharge is 9 kJ/kg of fluid. In flowing through this apparatus, does the specific internal energy increase or decrease, and justify?

4 Reproduce the displacement work in a polytropic process pVn=C.

5 Explain the quasi-static process with a neat sketch. 6 Gas from a bottle of compressed helium is used to inflate an inelastic flexible balloon, originally folded

completely flat to a volume of 0.5 m3. If the barometer reads 760 mm of Hg, what is the amount of work done

upon the atmosphere by the balloon? Sketch the system before and after the process.

7 A mass of 1.5 kg of air is compressed in a quasi-static process from 0.1 MPa to 0.7 MPa for which pv = constant. The initial density of air is 1.16 kg/ m3. Compute the work done by the piston to compress the air.

8 Setup that the internal energy is a property of the system.

9 A mass of 2.5 kg of air is compressed in a quasi static process from 0.1 MPa to 0.7 MPa for which PV = constant. The initial specific volume is 0.80 m3/kg. Compute the work done by the piston to compress the air.

10 Differentiate the microscopic and macroscopic viewpoints.

UNIT - II Assignments Short Answer Questions 1 Define mechanical energy reservoir

B 4 Define the term available energy. 5 State Helmholtz function and Gibbs function?

6 List few Maxwell’s equations.

7 Write the Clausius-chaperon equation. 8 Define third law of thermodynamics.

9 Define dead state?

10 State the Carnot principles.

UNIT - II Assignments Long Answer Questions 1 Explain the Kelvin Planck and Clausius statements. 2 0.2 kg of air at 300 0C is heated reversibly at constant pressure to 2066 K. Calculate the available and

unavailable energies of the heat added. Take T0 = 30 0C and cp = 1.004 kJ/kg K.

3 Explain the available energy referred to a cycle 4 Explain the Maxwell’s equations.

5 Explain the Gibb’s and Helmholtz function

6 Two kg of air at 500 kPa, 80 0C expands adiabatically in a closed system until its volume is doubled and its temperature becomes equal to that of the surroundings which is at 100 kPa, 5 0C. For this process, determine (a)

the maximum work (b) the change in availability, and (c) the irreversibility. For air, take cv = 0.718 kJ/kg K, u =

cv T where cv is constant, and pV = mRT where p is pressure in kPa, V volume in m3 , m mass in kg, R a

constant equal to 0.287 kJ/kg K, and T temperature in K. 7 Explain Clausius-Claperyon equation.

8 A reversible power cycle is used to drive a reversible heat pump cycle. The power cycle takes in Q1 heat units at

T1 and rejects Q2 at T2. The heat pump abstracts Q4 from the sink at T4 and discharges Q3 at T3. Develop an expression for the ratio of Q4/Q1 in terms of the four temperatures.

Page 105: St. PETER’S ENGINEERING COLLEGE

9 Explain the Carnot’s theorem. Comprehension B 10 Explain the corollary of Carnot’s theorem.

UNIT - III Assignments Short Answer Questions 1 Define is critical point?

2 Define is pure substance? 3 Define triple point of water.

4 Define dryness fraction.

5 Draw the p-v diagram of pure substance water. 6 Draw the T-s diagram.

7 Draw the p-v-T surface of the water.

8 Describe the Mollier chart.

9 List the methods of measurement of quality of steam. 10 Explain superheating and subcooling

UNIT - III Assignments Long Answer Questions 1 List the properties of dry saturated steam at 10 bar pressure using steam tables.

2 Draw the saturation curve on p-v and T-s diagrams for water.

3 Draw the Isobaric line on p-v and T-s diagram for water. 4 Compute the enthalpy and entropy of dry saturated steam at 5 bar using Mollier chart.

5 Determine the enthalpy of water to convert water at 200C to dry saturated steam at 100 0C.

6 Explain the phase transformation of water. 7 Define latent heat.

8 List the enthalpy, entropy and specific volume of superheated vapor at 20 bar and 3000C.

9 State the Clausius – clapeyron equation.

10 Define sensible heating

UNIT - IV Assignments Short Answer Questions 1 Differentiate between mole fraction and volume fraction

2 Differentiate between mass fraction and mole fraction

3 Explain in brief gravimetric analysis

4 Explain in brief volumetric analysis 5 Explain the procedure to calculate equivalent as constant for gaseous mixture

6 Write the equation for entropy of mixture of perfect gases

7 Write the equation for enthalpy of mixture of perfect gases 8 Write the equation for specific heat of mixture of perfect gases

9 Distinguish between moisture and gas

10 Write the expression for equivalent molecular energy of mixture of gases

UNIT - IV Assignments Long Answer Questions 1 Write the equation of state and explain.

2 Determine the final pressure, work done and change of internal energy per kg of air at 2500C and 300kPa is

compressed reversibly and isothermally to 1/16th of its original volume.

3 Calculate :(i) The partial pressure ; (ii) The total pressure ;(iii) The mean value of R for the mixture of a vessel of 6 m3 capacity contains two gases A and B in proportion of45 per cent and 55 per cent respectively at 30°C. If the

value of R for the gases is 0.288 kJ/kg Kand 0.295 kJ/kg K and if the total weight of the mixture is 2 kg.

4 Determine the (i) The mole fraction of each component (ii) The average molecular weight (iii) The specific gas constant ; (iv) The volume and density (v) The partial pressures and partial volumes of mixture of 4 kg of O2 and

6 kg of N2 with pressure and temperature of 4 bar and 27°C respectively.

5) 4 kg of carbon dioxide at 40°C and 1.4 bar are mixed with 8 kg of nitrogen at 160°C and 1.0 bar to form a mixture at a final pressure of 0.7 bar. The process occurs adiabatically in a steady flow apparatus. Calculate : (i)

The final temperature of the mixture ; (ii) The change in entropy. Take value of cp : for CO2 = 0.85 kJ/kg K and

N2 = 1.04 kJ/kg K.

6) Determine :(i) The temperature of the equilibrium mixture ;(ii) The pressure of the mixture ;(iii) The change in entropy for each component and total value of a tank of capacity 0.45 m3 is insulated and is divided into two

sectionsthrough a partition. One section initially contains H2 at 3 bar and 130°C and has a volume of0.3 m3 and

Page 106: St. PETER’S ENGINEERING COLLEGE

the other section initially holds N2 at 6 bar and 30°C. The gases are then allowed tomix after removing the

adiabatic partition. Assume : cv(N2 ) = 0.744 kJ/kg K, cv(H2 ) = 10.352 kJ/kg Kcp(N2 ) = 1.041 kJ/kg K, cp(H2 ) = 14.476 kJ/kg K.

7 A perfect gas mixture consists of 4 kg of N2 and 6 kg of CO2 at a pressure of 4 bar and a temperature of 25°C.

Calculate cv and cp of the mixture. If the mixture is heated at constant volume to 50°C, find the change in internal

energy,enthalpy and entropy of the mixture. Take : cv(N2 ) = 0.745 kJ/kg K, cv(CO2 ) = 0.653 kJ/kg K cp(N2 ) = 1.041 kJ/kg K, cp(CO2 ) = 0.842 kJ/kg K.

8 An insulated vessel containing 1 mole of oxygen at a pressure of 2.5 bar and a temperature of 293 K is connected

through a valve to a second insulated rigid vesselcontaining 2 mole nitrogen at a pressure of 1.5 bar and a temperature of 301 K. The valve isopened and adiabatic mixing takes place. Assuming that oxygen and nitrogen

are perfect gasescalculate the entropy change in the mixing process. Assume the following specific heats at

constant volume : cv(O2 ) = 0.39 kJ/kg K cv(N2 ) = 0.446 kJ/kg K. 9 Given that air consists of 21% oxygen and 79% nitrogen by volume. Determine: (i) The moles of nitrogen per

mole of oxygen ; (ii) The partial pressure of oxygen and nitrogen if the total pressure is atmosphere ; (iii) The kg

of nitrogen per kg of mixture.

10 Air (N2 = 77%, O2 = 23% by weight) at 25°C and 12 bar is contained in a vessel of capacity 0.6 m3. Some quantity of CO2 is forced into the vessel so that the temperatureremains at 25°C but the pressure rises to 18 bar.

Calculate the masses of O2, N2 and CO2 in the cylinder

UNIT - V Assignments Short Answer Questions 1 Write the air standard efficiency equation for Diesel cycle. 2 Write the air standard efficiency equation for Dual cycle.

3 Write the air standard efficiency equation for Stirling cycle.

4 Write the air standard efficiency equation for Atkinson cycle.

5 Write the air standard efficiency equation for Lenoir cycle. 6 Define compression ratio.

7Write the relation between compression ratio, expansion ratio and cut-off ratio.

8 Define expansion ratio. 9 Write the order of air standard efficiency of Otto, Diesel and Dual cycles based on same compression ratio.

10 Write the heat addition equation for Otto cycle

UNIT - V Assignments Long Answer Questions 1 An air standard dual cycle has a compression ratio of 18, and compression begins at 1 bar 500C.The maximum pressure is 60 bar. The heat transferred to air at constant pressure is equal to that at constant volume. Estimate i.

pressures and temperatures at cardinal points of the cycle ii. cycle efficiency iii. m.e.p of cycle. Cv =0.718 kj/kg k,

Cp=1.005 kj/kg k.

2 The compression ratio in an air standard Otto cycle is 7.5. At the beginning of compression process the pressure is120 kN/m2and the temperature is 300 K. The heat added to the air per cycle is 1650 kJ/kg of air. Calculate. (a)

The pressures and the temperatures at the end of each process of the cycle (b) The thermal efficiency (c) The m.e.p

of the cycle; 3 An air standard diesel cycle has a compression ratio of 17. The pressure at the beginning of compression stroke

is 1 bar and the temperature is 230C. The maximum temperature is 14300C. Determine the thermal efficiency and

the mean effective pressure for this cycle. 4 Compare the air standard efficiencies of Otto cycle, diesel and dual cycle based on same compression ratio with

the help of p-v diagram.

5Compare the air standard efficiencies of Otto cycle, diesel and dual cycle based on same maximum pressure and

maximum temperature with the help of p-v diagram. 6 Derive the air standard efficiency of Otto cycle.

7 Derive the air standard efficiency of Diesel cycle

8 Derive the air standard efficiency of Dual cycle 9 Derive the air standard efficiency of Brayton cycle

10 Derive the air standard efficiency of Bell-Coleman cycle Creation

Page 107: St. PETER’S ENGINEERING COLLEGE

Code No: 123AB JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2016 THERMODYNAMICS

(Common to ME, AE, AME, MSNT) Time: 3 Hours Max. Marks: 75 Note: This question paper contains two parts A and B.

PART- A (25 Marks) 1.a) Explain the process of irreversibility. [2]

b) What is the principle of Thermometry? [3] c) Define two statements of second law of thermodynamics. [2]

d) Mention all Maxwell relations. [3]

e) Explain the non flow process. [2] f) Write the Clausius Clapeyron equation and its significance. [3]

g) What is meant by molecular internal energy? [2]

h) Write the Carrier’s equation and its significance. [3] i) Draw p-v and T-s diagrams of Lenoir cycle. [2]

j) Draw the Bell Coleman cycle in operation. [3]

PART-B (50 Marks)

2.a) What is meant by thermodynamic equilibrium? Explain with the help of examples.

b) What is meant by SFEE and derive it and reduce it for the turbine. [5+5]

OR

3.a) Write about constant volume gas Thermometer? Why it is preferred over a constant pressure gas Thermometer. b) A blower handles 1kg/s of air at 200C and consuming a power of 15 kw. The inlet and outlet

velocities of air are 100 m/s and 150 m/s respectively. Find the exit air temperature, assuming adiabatic conditions.

Take Cp of air as 1.005 kJ/kgk. [5+5]

4.a) Discuss the significance of Third law of thermodynamics. b) A heat pump working on a reversed Carnot

cycle takes in energy from a reservoir maintained at 30C and delivers it to another reservoir where temperature is 770C. The heat pump drives power for its operation from a reversible engine operating within the higher and lower

temperature limits of 10770C and 770C. For 100 kJ/sec of energy supplied to the reservoir at 770C, estimate the

energy taken from the reservoir at 10770C. [5+5]

OR 5.a) Explain the concept of irreversibility and its significance. b) 0.5 kg of air executes a Carnot power cycle

having a thermal efficiency of 50%. The heat transfer to the air during isothermal expansion is 40 kJ. At the

beginning of the isothermal expansion the pressure is 7 bar and the volume is 0.12 m3. Determine the maximum and minimum temperatures for the cycle in Kelvin, the volume at the end of isothermal expansion in m3 and the

work, heat transfer for each of the four processes in kJ. cp=1.008 kJ/kgK and cv=0.721 kJ/kgK

for air. [5+5] R15

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer

any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub

questions. 4.a) Discuss the significance of Third law of thermodynamics. b) A heat pump working on a reversed Carnot

cycle takes in energy from a reservoir

6.a) What do you understand by triple point? Give the pressure and Temperature of water at its triple point. b) Water at 400C is continuously sprayed into a pipeline carrying 5 tonnes of steam at 5 bar, 3000C per hour. At a

Page 108: St. PETER’S ENGINEERING COLLEGE

section downstream where the pressure is 3 bar, the quality is to be 95%. Find the rate of water spray in kg/hr.

[5+5] OR 7.a) Write about Vander Waals equation for real gases. b) Explain the steps involved in the construction of Psychrometric chart at 2 bar pressure and also explain the process of adiabatic saturation. [5+5]

8.a) What are the Daltons Law of partial pressures? How it is different from Avagadro’s law? b) A sling

psychrometer reads 400C dry bulb Temperature and 360C wet bulb Temperature. Find the humidity ratio, Relative

humidity, dew point Temperature, specific volume, and enthalpy of air. [5+5] OR 9.a) What is an adiabatic saturation? When does the wet bulb temperature equal the saturation temperature? b) At steady state, 100m3/min

of dry air at 320C and 1 bar is mixed adiabatically with a stream of oxygen (O2) at 1270C and 1 bar to form a

mixed stream at 470C and 1 bar. The kinetic an potential energy effects are negligible. Determine (i) Mass flow rates of dry air and oxygen in kg/min, (ii) The mole of fraction of dry air and oxygen in the existing mixture, and

(iii) Time rate of entropy production, in kJ/K.min. [5+5]

10.a) Write about Dual combustion cycles and the significance of the same. b) An Ericsson cycle operating with an ideal regenerator works between 1100 K and 288 K. the pressure at the beginning of isothermal compression is

1.013 bar. Determine: i) The compressor and turbine work per kg of air, and ii) The cycle efficiency. [5+5]

OR

11.a) How is a reversed Carnot cycle used for refrigeration? Explain the processes. b) An engine working on the Otto cycle is supplied with air at 0.1 MPa, 350C. The compression ratio is 8. Heat supplied is 2100 kJ/kg.

Calculate the maximum pressure and Temperature of the cycle, the cycle efficiency and the mean effective

pressure. For air. Cp = 1.005, cv = 0.718, and R = 0.287 kJ/kgK. [5+5]

Code No: 133BX JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2017 THERMODYNAMICS

(Common to ME, AE, MSNT) Time: 3 Hours Max. Marks: 75 Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all

questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each

question carries 10 marks and may have a, b, c as sub questions.

PART- A (25 Marks)

1.a) What do you understand by macroscopic and microscopic viewpoints? [2] b) What do you understand by point function and path function? What are exact and inexact differentials?

[3]

c) State and prove the ‘Clausis’ theorem. [2] d) What is PMM 1? Why it is impossible? [3]

e) Define ideal gas. And show that for ideal gas internal energy depends only on its temperature. [2]

f) Why do the isobars on Mollier diagram diverge from one another? Why do isotherms on Mollier diagram

become horizontal in superheated region at low pressures? [3] g) Draw psychrometric chart and show psychrometric processes in the chart. [2]

h) State Gibb’s theorem and write expressions of average specific internal energy, average specific enthalpy and

average specific heats of the mixtures. [3] i) Draw P-V, T-S diagrams of Sterling cycle, Duel cycle and Bell-Coleman cycle. [2]

j) State different types of power cycles. Mention the merits and demerits of Stirling and Ericsson Cycles.

[3]

PART-B (50 Marks)

2.a) Give the differential form of S.F.E.E. Under what condition the S.F.E.E. does reduces to Euler’s equation.

b) A reciprocating air compressor takes in 2 m3/min at 0.11 MPa, 200C which is delivers at 1.5 MPa, 111 0C to an aftercooler where the air is cooled at constant pressure to 25 0C. The power absorbed by the compressor is 4.15

kW. Determine the heat transfer in compressor and the cooler. c) A turbine operates under steady flow

conditions, receiving steam at the following state: 1.2 MPa, 1800C, 2785 kJ/kg, 33.3 m/sec and elevation 3 m. Steam leaves the turbine at the following state: 20 kPa, 2512 kJ/kg, 100 m/sec and elevation 0 m. Heat is lost to

Page 109: St. PETER’S ENGINEERING COLLEGE

the surrounding at the rate of 0.29 kJ/sec. if the rate of steam flow through the turbine is 0.42 kg/sec. what is

power output of turbine in kW. [2+4+4] OR

3.a) A cylinder/ piston contain 100 L of air at 110 kPa, 250C. The air is compressed in reversible polytrophic

process to a final state of 800 kPa, 2000C. Assume the heat transfer is with the ambient at 250C and determine the

polytrophic exponent ‘n’ and the final volume of air. Find the work done by the air, the heat transfer. b) Nitrogen gas flows into a convergent nozzle at 200 kPa, 400K and very low velocity. It flows out of the nozzle at 100 kPa,

330K. If the nozzle is insulated, find the exit velocity. [5+5]

4.a) Prove that the COP of the reversible refrigerator operating between two given temperatures is the maximum. b) The amount of entropy generation quantifies the intrinsic irreversibility of a process. Explain. c) Air flows

through an adiabatic compressor at 2 kg/s. the initial conditions are 1 bar and 310 K and the exit conditions

are 7 bar and 560 K. Compute the net rate of availability transfer and irreversibility. Take T0=298 K. [2+4+4]

OR

5.a) In a steam power plant 1 MW is added at 7000C in the boiler , 0.58 MW is taken at out at 400C in the

condenser, and the pump work is 0.02 MW. Find the plant thermal efficiency. Assuming the same pump work and heat transfer to the boiler is given, how much turbine power could be produced if the plant were running in a

Carnot cycle? b) Differences in surface water and deep-water temperature can be utilized for power

generation. It is proposed to construct a cyclic heat engine that will operate near Hawaii, where the ocean temperature is 200C near the surface and 50C at some depth. What is the possible thermal efficiency of such a heat

engine? [5+5]

6.a) A cylinder has a thick piston initially held by a pin. The cylinder contains carbon dioxide at 200 kPa and

ambient temperature of 290K. The metal piston has a density of 8000 Kg/m3 and the atmospheric pressure is 101 kPa. The pin is now removed, allowing the piston to move and after a while the gas returns to ambient

temperature. Is the piston against the stops? b) Two tanks are connected as shown in figure, both containing

water. Tank A is at 200 Kpa, ν=1m3 and tank B contains 3.5 Kg at 0.5 Mp, 4000C. The valve is now opened and the two come to a uniform state. Find the specific volume. [5+5]

OR

7.a) Sample of steam from a boiler drum at 3 MPa is put through a throttling calorimeter in which pressure and temperature are found to be 0.1 MPa, 1200C. Find the quality of a sample taken from the boiler. b) A rigid close

tank of volume 3 m3 Contains 5 kg of wet steam at a pressure of 200 kPa. The tank is heated until the steam

becomes dry saturated. Determine final pressure and heat transfer to the tank. [5+5]

8.a) A sling psychrometer reads 400C DBT and 360C WBT. Find the humidity ratio, Relative humidity, Dew point temperature, specific volume and enthalpy of air. b) What do you understand by saturated and unsaturated

air? State the various properties of air. c) An air-water vapour mixture at 0.1 MPa, 300C, 80% relative

humidity has a volume of 50 m3. Calculate Specific humidity, Dew point, WBT, mass of dry air and mass of water vapour. [4+2+4]

OR

9.a) On a particular day the weather forecast states that the dry bulb temperature is 370C, while the relative humidity is 50% and the barometric pressure is 101.325 kPa. Find the humidity ratio, dew point temperature and

enthalpy of moist air on this day. b) Moist air at 1 atm. pressure has a dry bulb temperature of 320C and a

wet bulb temperature of 260C. Calculate i) the partial pressure of water vapour, ii) humidity ratio, iii)

relative humidity, iv) dew point temperature, v) density of dry air in the mixture, vi) density of water vapour in the mixture and vii) enthalpy of moist air using perfect gas law model and psychrometric equations. [5+5]

10.a) In a Diesel cycle, the compression ratio is 15. Compression begins at 0.1 MPa, 400C. The heat added is

1.675 MJ/kg. Find (i) the maximum temperature in the cycle, (ii) work done per kg of air (iii) the cycle efficiency (iv) the temperature at the end of the isentropic expansion (v) the cut-off ratio. b) A refrigerator works on

the carnet cycle in temperature between -700C and 2700C. It makes 500kg of ice per hour at -500C from water at

1400C. Find H.P required to drive the compressor and C.O.P. of the cycle. Take specific heat of ice as 2.1

kJ/kg-k and latent heat as 336kJ/kg? [5+5] OR

11.a) An air standard Ericsson cycle has an ideal regenerator. Heat is supplied at 10000C and heat is rejected at

200C. If the heat added is 600 kJ/kg, find the compressor work, turbine work and cycle efficiency. b) In a Stirling cycle the volume varies between 0.03 and 0.06 m3, the maximum pressure is 0.2 MPa, and the

temperature varies between 5400C and 2700C. The working fluid is air (an ideal gas). Find the efficiency and the

work done per cycle for both simple cycle and cycle with ideal regenerator. Compare the results with Carnot cycle

Page 110: St. PETER’S ENGINEERING COLLEGE

with same temperature limits. [5+5]


Recommended