+ All Categories
Home > Documents > STA333BW demo board application note - STMicroelectronics · Application note can be configured for...

STA333BW demo board application note - STMicroelectronics · Application note can be configured for...

Date post: 12-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
61
December 2006 Rev 1 1/61 AN2480 Application note STA333BW demo board application note Introduction The purpose in this document is: to describe how to connect the AN2480 demo board, how to evaluate the demo board performance with electrical curve data, how to avoid critical board and layout issues. Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W + 20 W) without headphone function. The AN2480 demo board is combined with DDx® power amplifier and an operation amplifier for headphones. It is a total solution for digital audio power amplifier TV and portable applications. Note: All the test items and graph data in this document are measured by Audio Precision equipment. www.st.com
Transcript
Page 1: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

December 2006 Rev 1 1/61

AN2480Application note

STA333BW demo board application note

IntroductionThe purpose in this document is:

● to describe how to connect the AN2480 demo board,

● how to evaluate the demo board performance with electrical curve data,

● how to avoid critical board and layout issues.

Application note can be configured for either:

● 2.0 channels (2 x 20 W), with headphone output,

● 2.1 channels (2 x 10 W + 20 W) without headphone function.

The AN2480 demo board is combined with DDx® power amplifier and an operation amplifier for headphones. It is a total solution for digital audio power amplifier TV and portable applications.

Note: All the test items and graph data in this document are measured by Audio Precision equipment.

www.st.com

Page 2: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Contents AN2480

2/61

Contents

1 Test condition and connection of demo board . . . . . . . . . . . . . . . . . . . 3

1.1 Test condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Power supply and interface connections . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Equipment requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Connection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Top view of PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Bottom view of PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 Test connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 BOM list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Test curve report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Ternary mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 BTL configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Binary mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Single end configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Headphone performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Design guideline for PCB schematic and layout . . . . . . . . . . . . . . . . . 48

4.1 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Main driver for components selection . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Output filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Page 3: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test condition and connection of demo board

3/61

1 Test condition and connection of demo board

1.1 Test condition

1.1.1 Power supply and interface connections

1. Connect positive voltage of 12 V DC power supply to +Vcc pin and negative to GND.

2. Connect positive voltage of 3.3 V DC power supply to +3.3 V pin and negative to GND.

3. Connect GUI LPT interface board to the J1 connector of AN2480 demo board.

4. Connect the S/PDIF signal cable to the RCA jack on the interface board, the other side connecting to the signal source such as Audio precision or DVD player.

5. The voltage range of the DC power supply for Vcc is from 5 V to 18 V.

1.1.2 Output configuration

STA333BW demo board can be configured in the ternary state for 2.0 channels.

1.2 Equipment requirement● Audio Precision (System 2700) by AP Co., USA

● DC power supply (5 V to 18 V)

● Digital oscilloscope (TDS3034B) by Tektronix

● PC (with AN2480 GUI control software installed)

1.3 Connection methodTop view of demo board.

Figure 1. Block diagram

Vcc, DC 5-18 V

Speaker jack,

Connect edwith GUI control

3.3 V from LPT

Headphone jackψ : 3.5 mm

board (I2C andI2S)

output can be set for either 2.0 or 2.1configuration

Page 4: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test condition and connection of demo board AN2480

4/61

Figure 2. 2.0 speaker jack configuration

Figure 3. 2.1 speaker jack configuration

L-CHR-CH

L-CH

R-CH

Sub-woofer

Page 5: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test condition and connection of demo board

5/61

1.3.1 Schematic

Figure 4. DDx schematic diagram

Figure 5. Headphone schematic diagram

Page 6: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test condition and connection of demo board AN2480

6/61

1.4 PCB Layout

1.4.1 Top view of PCB layout

Figure 6. Top layout

1.4.2 Bottom view of PCB layout

Figure 7. Bottom layout

Page 7: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test condition and connection of demo board

7/61

1.4.3 Test connection

Figure 8. Block diagram of test equipment

Audio precision equipment

Digital oscilloscopeTDS3034B Tektronix

GUI LPT board or

DC power supply

DDX STA333BWdemo board

Outputto AP

S/PDIFsignal

I2S signal

(DC3V3)

From 5 V to 18 V

(DC7V)7 V for LPT B’D

Monitor

USBSPDIF I/O board

PC with GUI to controlthe chipset

Page 8: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Electrical characteristics AN2480

8/61

2 Electrical characteristics

Note: THD works better with high impedance loading (based on a fixed value of RdsON).

2.1 BOM list

Table 1. Electrical characteristics(1)

1. Refer to the STA333BW demo board circuit. Vs= +18 V, Tamb = 25.5 oC, f = 1 KHz, Ref = 1 W unless otherwise specified.

Parameter Configuration Test condition Unit

PSRR (50 Hz - 120 Hz) BTL configurationPlease refer to measurements section

65 dB

Min SNR BTL configuration1 W output, -20 dBFs input, 1 KHz

100 dB

Max modulation index DDX modulation mode 98.5%

Vcc current (18 V) BTL configuration

Operating

QuiescentStandby/sleep

40 mA

30 mA0 mA

Table 2. BOM

Item no.

Type Package Description Qty Reference code Manufacturer

1 CCAP CCAP0603 50 V NPO 100pF +/- 10 % 2 C22, C24 Murata

2 CCAP CCAP0603 50 V NPO 150pF +/- 10 % 2 C14, C18 Murata

3 CCAP CCAP0603 50 V NPO 220pF +/- 10 % 4 C16, C19, C20, C21 Murata

4 CCAP CCAP0603 50 V NPO 330pF +/- 10 % 3 C418A, C418B, C425 Murata

5 CCAP CCAP0603 50 V NPO 470pF +/- 10 % 2 C10, C17 Murata

6 CCAP CCAP0603 50 V NPO 680pF +/- 5 % 1 C9 Murata

7 CCAP CCAP0603 50 V 1 nF +/- 10 % 2 C3 Murata

8 CCAP CCAP0603 50 V 4.7 nF +/- 10 % 1 C7 Murata

9 CCAP CCAP0603 50 V 100 nF +/- 10 % 24

C2, C4, C5, C6, C11, C13, C15, C26, C429, C420A, C421A, C421B, C423A, C422A, C422B, C423B, C424A, C424B, C427A, C427B, C428A, C428B, C429A, C429B

Murata

10 CCAP CAP1206 50 V, 1U +/- 10 % 2 C426A, c426B Rubycon

11 BEAD L0805 600 ohm @ 100 MHz 2 BD1, BD2 Murata

12 RES R1206 6.2 +/- 10 % 1/8 W 4 R423, R422A, R425A, R425B Murata

13 RES R1206 20 +/- 10 % 1/8 W 3 R423, R422A, R422B Murata

Page 9: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Electrical characteristics

9/61

14 RES R0603 0 ohm 1/16 W 4 R29, R30, R401, R402 Murata

15 RES R0603 100 +/- 10 % 1/16 W 2 R2, R3 Murata

16 RES R0603 2.2 K +/- 10 % 1/16 W 1 R6 Murata

17 RES R0805 33 ohm +/- 10 % 1/10 W 2 BD3, BD4 Murata

18 RES R0805 3.4 K +/- 10 % 1/10 W 4 R426A, R426B, R427A, R427B Murata

19 RES R0603 4.7 K +/- 10 % 1/16 W 12R7, R8, R9, R10, R13, R14, R15, R16, R17, R18, R21, R22

Murata

20 RES R0603 10 K +/- 10 % 1/16 W 13R1, R4, R5, R11, R12, R19, R20, R23, R24, R25, R26, R27, R28

Murata

21 ECAP ECAP25X5 100 µ/25 V 4 C1, C12, C23, C25Rubycon/Panasonic

22 ECAP ECAP25X5 N.M.

23 ECAP ECAP25X8 330 µ/25 V 4 C430A, C430B, C431A, C431BRubycon/Panasonic

24 ECAP ECAP25X10 100 µF/25 V 1 C4Rubycon/Panasonic

25 IC STA333BW STA333BW(SS036) 1 IC1 ST

26 IC LM833 LM833(SO8) 1 IC2 ST

27 Coil L22n_1015 22 nH choke coil 4 L421A, L421B, L422A, L422B Kwangsung

28 Jack SPKR_JACK 6P speaker jack 1 J7 Any source

29 MCAP470N-M (63 V)

470NF-M963 V) capacitor 3 C415SL, C415SR, C416S Any source

30 TerminalCNN_Terminal

2P pitch: 5 mm connector terminal

2 CN2, CN5 Any source

31 SW TACT SW 4P tact switch 1 SW1 Any source

32 Jack3.5 mm phone jack

3P 2 CH 3.5 MM phone jack

1 J9 Any source

33 CNN 16P-CNN16P (8 x 2 row) 2.5 mm male CNN

1 J1 Any source

34 JW2P-2.5 mm JW

Not mounting 4 J2, J3, J4, J5 Any source

Table 2. BOM

Item no.

Type Package Description Qty Reference code Manufacturer

Page 10: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

10/61

3 Test curve report

3.1 Ternary mode

Figure 9. Ternary mode efficiency (2.0 BTL configuration)

Condition: R LOAD =8 ohm; VCC=18 V

Page 11: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

11/61

3.2 BTL configuration

Figure 10. Output power versus supply voltage

Figure 11. Channel separation 5 V 1 W 4 ohm

1%THD output power

0

5

10

15

20

25

30

5 7 9 11 13 15 17 19supply voltage V

outp

ut p

ower

W

4 ohm

6 ohm

8 ohm

16 ohm

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

dB r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 12: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

12/61

Figure 12. Channel separation 5 V 1 W 8 ohm

Figure 13. FFT 0 dBFs 1 KHz 5 V 4 ohm

Figure 14. FFT -60 dBFs 1 KHz 5 V 4 ohm

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 13: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

13/61

Figure 15. FFT 0 dBFs 1 KHz 5 V 6 ohm

Figure 16. FFT -60 dBFs 1 KHz 5 V 6 ohm

Figure 17. FFT 0 dBFs 1 KHz 5 V 8 ohm

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 14: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

14/61

Figure 18. FFT -60 dBFs 1 KHz 5 V 8 ohm

Figure 19. THD versus Freq. 5 V Vcc 1 W output

Figure 20. PSSR 5 V 1 W

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

0.01

1

0.02

0.05

0.1 0.2

0.5

%

20 20k50 100 200 500 1k 2k 5k 10kHz

8ohm 4ohm

6ohm

-100

+10

-90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r A

20 20030 40 50 60 70 80 90 100Hz

T T

8ohm

4ohm 6ohm

Page 15: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

15/61

Figure 21. Channel separation 12 V 1 W 4 ohm

Figure 22. Channel separation 12 V 1 W 8 ohm)

Figure 23. FFT 0 dBFs 1 KHz 12 V 4 ohm

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 16: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

16/61

Figure 24. FFT -60 dBFs 1 KHz 12 V 4 ohm

Figure 25. FFT 0 dBFs 1 KHz 12 V 6 ohm

Figure 26. FFT -60 dBFs 1 KHz 12 V 6 ohm

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 17: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

17/61

Figure 27. FFT 0 dBFs 1 KHz 12 V 8 ohm

Figure 28. FFT -60 dBFs 1 KHz 12 V 8 ohm

Figure 29. THD versus Freq 12 V Vcc 1 W output

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

0.01

1

0.02 0.05 0.1 0.2

0.5

%

20 20k50 100 200 500 1k 2k 5k 10kHz

4ohm 6ohm

8ohm

Page 18: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

18/61

Figure 30. PSSR 12 V 1 W

Figure 31. Channel separation 18 V 1 W 4 ohm

Figure 32. Channel separation 18 V 1 W 6 ohm

-100

+10

-90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r A

20 20030 40 50 60 70 80 90 100Hz

T T

8ohm

6ohm 4ohm

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 19: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

19/61

Figure 33. FFT 0 dBFs 1 KHz 18 V 4 ohm

Figure 34. FFT -60 dBFs 1 KHz 18 V 4 ohm

Figure 35. FFT 0 dBFs 1 KHz 18 V 6 ohm

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 20: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

20/61

Figure 36. FFT -60 dBFs 1 KHz 18 V 6 ohm

Figure 37. FFT 0 dBFs 1 KHz 18 V 8 ohm

Figure 38. FFT -60 dBFs 1 KHz 18 V 8 ohm

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-150

+10

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 21: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

21/61

Figure 39. THD versus Freq. 18 V Vcc 1 W

Figure 40. PSSR 18 V 1 W

Figure 41. Frequency response 18 V Vcc 1 W

0.01

1

0.02

0.05

0.1 0.2

0.5

%

20 20k50 100 200 500 1k 2k 5k 10kHz

4ohm 6ohm

8ohm

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

dBr A

20 20030 40 50 60 70 80 90 100Hz

TTT

8ohm

4ohm 6ohm

-3 -2.5 -2 -1.5 -1 -0.5 +0 +0.5 +1 +1.5 +2 +2.5

d B r A

20 20k50 100 200 500 1k 2k 5k 10kHz

8ohm

4ohm 6ohm

+3

Page 22: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

22/61

Figure 42. THD versus Freq 18 V Vcc 16 W output

Figure 43. THD versus PWR 4 ohm load

Figure 44. THD versus PWR 6 ohm load

0.01

10

0.02 0.05 0.1 0.2 0.5 1 2 5

%

20 20k50 100 200 500 1k 2k 5k 10kHz

4ohm

8ohm

6ohm

0.01

10

0.02 0.05 0.1 0.2 0.5 1 2 5

%

100m 50 200m 500m 1 2 5 10 20W

5v 8v

12v 14v

10v

16v

0.01

10

0.02 0.05 0.1 0.2 0.5 1 2 5

%

100m 50 200m 500m 1 2 5 10 20W

5v

8v

10v 12v

14v 16v 18v

Page 23: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

23/61

Figure 45. THD versus PWR 8 ohm load

Figure 46. THD versus PWR 16 ohm load

3.3 Binary mode

Figure 47. Binary mode efficiency (2.1 single end configuration)

Condition: R LOAD =8 ohm; VCC=18 V

0.01

10

0.02 0.05 0.1 0.2 0.5 1 2 5

%

100m 50 200m 500m 1 2 5 10 20W

5v 8v

10v

14v

12v

16v

18v

0.01

10

0.02 0.05 0.1 0.2 0.5 1 2 5

%

100m 50 200m 500m 1 2 5 10 20W

5v

18v

16v

14v

12v

10v

8v

Page 24: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

24/61

3.4 Single end configuration

Figure 48. Output power versus supply voltage

Figure 49. Channel separation 5 V 1 W 2 ohm single end

1%THD output power vs supply voltage

02468

101214

5 7 9 11 13 15 17 19supply voltage V

outp

ut p

ower

W

2 ohm3 ohm

8 ohm

4 ohm

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 25: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

25/61

Figure 50. Channel separation 5 V 1 W 3 ohm single end

Figure 51. Channel separation 5 V 1 W 4 ohm single end

Figure 52. FFT 0 dBFs 1 KHz 5 V 2 ohm single end

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 26: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

26/61

Figure 53. FFT -60 dBFs 1 KHz 5 V 2 ohm single end

Figure 54. FFT 0 dBFs 1 KHz 12 V 3 ohm single end

Figure 55. FFT -60 dBFs 1 KHz 5 V 3 ohm single end

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 27: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

27/61

Figure 56. FFT 0 dBFs 1 KHz 5 V 4 ohm single end

Figure 57. FFT -60 dBFs 1 KHz 5 V 4 ohm

Figure 58. PSSR 5 V 1 W

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-100

+10

-90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r A

20 20030 40 50 60 70 80 90 100Hz

2ohm

4ohm

3ohm

Page 28: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

28/61

Figure 59. Channel separation 12 V 1 W 2 ohm single end

Figure 60. Channel separation 12 V 1 W 3 ohm single end

Figure 61. Channel separation 12 V 1 W 4 ohm single end

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 29: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

29/61

Figure 62. FFT 0 dBFs 1 KHz 12 V 2 ohm single end

Figure 63. FFT -60 dBFs 1 KHz 12 V 2 ohm single end

Figure 64. FFT 0 dBFs 1 KHz 12 V 3 ohm single end

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 30: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

30/61

Figure 65. FFT -60 dBFs 1 KHz 12 V 3 ohm single end

Figure 66. FFT 0 dBFs 1 KHz 12 V 4 ohm single end

Figure 67. FFT -60 dBFs 1 KHz 12 V 4 ohm single end

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 31: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

31/61

Figure 68. PSSR 12 V 1 W

Figure 69. THD versus Freq 12 V Vcc 1 W output single end

Figure 70. Channel separation 18 V 1 W 2 ohm single end

-100

+10

-90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r A

20 20030 40 50 60 70 80 90 100Hz

4ohm

2ohm

3ohm

0.01

1

0.02

0.05 0.1 0.2

0.5

%

20 20k50 100 200 500 1k 2k 5k 10kHz

2ohm

3ohm 4ohm

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 32: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

32/61

Figure 71. Channel separation 18 V 1 W 3 ohm single end

Figure 72. Channel separation 18 V 1 W 4 ohm single end

Figure 73. FFT 0 dBFs 1 KHz 18 V 2 ohm single end

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-100

+10

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 33: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

33/61

Figure 74. FFT -60 dBFs 1 KHz 18 V 2 ohm single end

Figure 75. FFT 0 dBFs 1 KHz 18 V 3 ohm single end

Figure 76. FFT -60 dBFs 1 KHz 18 V 3 ohm single end

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Page 34: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

34/61

Figure 77. FFT 0 dBFs 1 KHz 18 V 4 ohm single end

Figure 78. FFT -60 dBFs 1 KHz 18 V 4 ohm single end

Figure 79. PSSR 18 V 1 W

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-130

+10

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

+0

d B r

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

-100

+10

-90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r A

20 20030 40 50 60 70 80 90 100Hz

4ohm

2ohm

3ohm

Page 35: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

35/61

Figure 80. THD versus Freq 18 V Vcc 1 W output single end

Figure 81. THD versus PWR 2 ohm load single end

Figure 82. THD versus PWR 3 ohm load single end

0.01

1

0.02

0.05 0.1 0.2

0.5

%

20 20k50 100 200 500 1k 2k 5k 10kHz

2ohm

3ohm 4ohm

0.01

10

0.02 0.05 0.1 0.2 0.5 1 2 5

%

100m 50 200m 500m 1 2 5 10 20W

5v

8v 14v 12v 10v

16v

18v

0.01

10

0.02 0.05 0.1 0.2 0.5 1 2 5

%

100m 50 200m 500m 1 2 5 10 20W

5v

16v

14v 12v

10v 8v

18v

Page 36: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

36/61

Figure 83. THD versus PWR 4 ohm load single end

Figure 84. THD versus PWR 8 ohm load single end

3.5 Headphone performance

Figure 85. Channel separation 5 V 1 mW 16 ohm

0.01

10

0.02 0.05 0.1 0.2 0.5 1 2 5

%

100m 50 200m 500m 1 2 5 10 20W

5v

16v

14v

12v

10v 8v

18v

0.01

10

0.02 0.05 0.1 0.2 0.5 1 2 5

%

100m 50 200m 500m 1 2 5 10 20W

5v

16v14v 12v

8v

18v

-80

+0

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

d B

20 20k50 100 200 500 1k 2k 5k 10kHz

Page 37: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

37/61

Figure 86. Channel separation 5 V 1 nW 32 ohm

Figure 87. Channel separation 12 V 1 mW 16 ohm

Figure 88. Channel separation 12 V 1 mW 32 ohm

-80

+0

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

d B

20 20k50 100 200 500 1k 2k 5k 10kHz

-80

+0

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

d B

20 20k50 100 200 500 1k 2k 5k 10kHz

-80

+0

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

d B

20 20k50 100 200 500 1k 2k 5k 10kHz

Page 38: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

38/61

Figure 89. Channel separation 18 V 1 nW 16 ohm

Figure 90. Channel separation 12 V 1 mW 32 ohm

Figure 91. Noise floor 5 V 16 ohm

-80

+0

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

d B

20 20k50 100 200 500 1k 2k 5k 10kHz

-80

+0

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

d B

20 20k50 100 200 500 1k 2k 5k 10kHz

-140

+0

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B V

20 20k 50 100 200 500 1k 2k 5k 10kHz

Page 39: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

39/61

Figure 92. FFT 0 dBFs 1 KHz 5 V 16 ohm

Figure 93. FFT -60 dBFs 1 KHz 5 V 16 ohm

Figure 94. Noise floor 5 V 32 ohm

-120

+10

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r A

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+10

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r A

20 20k 50 100 200 500 1k 2k 5k 10kHz

-140

+0

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B V

20 20k 50 100 200 500 1k 2k 5k 10kHz

Page 40: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

40/61

Figure 95. FFT 0 dBFs 1 KHz 5 V 32 ohm

Figure 96. FFT -60 dBFs 1 KHz 5 V 32 ohm

-120

+10

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+10

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

Page 41: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

41/61

Figure 97. Noise floor 12 V 16 ohm

Figure 98. FFT 0 dBFs 1 KHz 12 V 16 ohm

Figure 99. FFT -60 dBFs 1 KHz 12 V 16 ohm

-140

+0

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B V

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+0

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+0

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

Page 42: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

42/61

Figure 100. Noise floor 12 V 32 ohm

Figure 101. FFT 0 dBFs 1 KHz 12 V 32 ohm

Figure 102. FFT -60 dBFs 1 KHz 12 V 32 ohm

-140

+0

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B V

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+0

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+0

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

Page 43: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

43/61

Figure 103. Noise floor 18 V 16 ohm

Figure 104. FFT 0 dBFs 1 KHz 18 V 16 ohm

Figure 105. FFT -60 dBFs 1 KHz 18 V 16 ohm

-140

+0

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B V

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+0

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+0

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

Page 44: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

44/61

Figure 106. Noise floor 18 V 32 ohm

Figure 107. FFT 0 dBFs 1 KHz 18 V 32 ohm

Figure 108. FFT -60 dBFs 1 KHz 18 V 32 ohm

-140

+0

-130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10

d B V

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+10

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

-120

+10

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 +0

d B r

A

20 20k 50 100 200 500 1k 2k 5k 10kHz

Page 45: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

45/61

Figure 109. THD versus Freq 5 V 1 mW 16 ohm

Figure 110. THD versus Freq 5 V 1 mW 32 ohm

Figure 111. THD versus Freq 12 V 1 mW 16 ohm

0.01

10

0.02

0.05 0.1 0.2

0.5 1 2

5

%

20 20k 50 100 200 500 1k 2k 5k 10kHz

0.01

10

0.02

0.05 0.1 0.2

0.5 1 2

5

%

20 20k 50 100 200 500 1k 2k 5k 10kHz

0.01

10

0.02

0.05 0.1 0.2

0.5 1 2

5

%

20 20k 50 100 200 500 1k 2k 5k 10kHz

Page 46: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Test curve report AN2480

46/61

Figure 112. THD versus Freq 12 V 1 mW 32 ohm

Figure 113. THD versus Freq 18 V 1 mW 16 ohm

0.01

10

0.02

0.05 0.1 0.2

0.5 1 2

5

%

20 20k 50 100 200 500 1k 2k 5k 10kHz

0.01

10

0.02

0.05 0.1 0.2

0.5 1 2

5

%

20 20k 50 100 200 500 1k 2k 5k 10kHz

Page 47: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Test curve report

47/61

Figure 114. THD versus Freq18 V 1 mW 32 ohm

Figure 115. THD versus PWR 16 ohm

Figure 116. THD versus PWR 32 ohm

0.01

10

0.02

0.05 0.1 0.2

0.5 1 2

5

%

20 20k 50 100 200 500 1k 2k 5k 10kHz

0.01

10

0.02

0.05 0.1 0.2

0.5 1 2

5

%

100u 10m200u 500u 1m 2m 5mW

0.01

10

0.02

0.05 0.1 0.2

0.5 1 2

5

%

100u 20m200u 500u 1m 2m 5m 10mW

Page 48: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Design guideline for PCB schematic and layout AN2480

48/61

4 Design guideline for PCB schematic and layout

4.1 Schematic

4.1.1 Main driver for components selection

● Absolute maximum rate: 20 V.

● Bypass capacitor 100 nF in parallel to 1 µF for each power Vcc branch. Preferable dielectric is X7R.

● Vdd and ground for PLL filter separate of the power supply.

● Coil saturation current compatible with the peak current of the application.

4.2 Decoupling capacitorsThere are two different ways to use the decoupling capacitors:

● shared among the channels: the best practise layout route must be used for the board,

● one decoupling system per channel: it is mandatory that the decoupling capacitor must be as close as possible to the IC pins.

4.2.1 Output filter

Figure 117. Output filter

● The key function of a snubber network is to absorb energy from the reactance in the power circuit. The purpose of the snubber RC network is in order to avoid the high pulse energy (such as spikes) in the power circuit which can be dangerous to the system. When using the snubber network, the energy is be transferred to and from the snubber network, ensuring the system can work safely.

C98

470n

C105100n

C101100n

C95100n

C89100nC90

330p

C991000p

C1031000p

L13 22u

L11 22u

C911000p

R37

6.2

R34

6.2

R3620

INxA

INxB

12

J7

CON2

Dumping networkMain filterSnubber

Page 49: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Design guideline for PCB schematic and layout

49/61

● The purpose of the main filter is to remove frequency higher than audible range of 20 KHz. The main filter uses the Butterworth formula to define the cut off frequency, which must be higher than 20 KHz, otherwise the frequency response is affected.

● The purpose of the dumping network is to avoid high frequency oscillation on the output circuit. After using the dumping network the THD can be improved, and can also avoid the inductive copper on the PCB route when the system is working in high frequency with PWM or PCM.

Snubber filter

Figure 118. Snubber filter

The snubber circuit must be optimized for the application. Starting values are 330 pF in series to 22 ohm. The power can be defined by the following formula which considers the power supply, frequency and capacitor value:

P=C*f*(2*V)^2

This power is dissipated in series resistance.

Figure 119. Dissipated power

Dumping network

The C-R-C is a dumping network. It is mainly intended for high inductive loads.

C126330p

R4422

INxA

INxB

C127330p

C130330p

R4522

R46

22

INxA

INxB

Page 50: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Design guideline for PCB schematic and layout AN2480

50/61

Figure 120. Dumping filter

Main filter

The main filter is an L and C based Butterworth filter. The cut-off frequency must be chosen between the upper limit of the audio band (20 KHz) and the carrier frequency (384 KHz).

Figure 121. Main filter

Recommended values

Rload 8 ohm 4 ohm

Lload 22 µH 10 µH

Cload 470 nF 1 µH

C dump-S 100 nF 220 nF

C dump-P 220 nF 220 nF

R dump 6.2 2.7

C dump-S

C dump-P

C dump-P

C dump-S

R dump

Rdump

Rload

C load

Lload

Lload

INxA

INxB

LloadRload

2 Π 2× fcutoff××---------------------------------------------------=

Fcutoff1

2 Π× 2 Cload Lload×××-----------------------------------------------------------------------=

Cload1

2 2 Π fcutoff Rload×××-----------------------------------------------------------------=

Page 51: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Design guideline for PCB schematic and layout

51/61

Recommended power up and power down sequence

Figure 122. Main filter

4.3 Layout1. Solder snubber network as close as possible to the IC related pin.

Figure 123. Snubber network

2. Use electrolytic capacitor first to separate the Vcc branches.

Figure 124. Separate the Vcc branches

Snubber network

Separate from the E-cap

Page 52: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Design guideline for PCB schematic and layout AN2480

52/61

3. Minimize the path between Vcc pins and ground pin in order to avoid inductive paths.

Figure 125. Minimized paths between Vcc and GND

4. To dissipate the thermal with a ground plane.

Figure 126. Dissipate thermal

5. Solder PLL filter as close as possible to the FILT pin.

Figure 127. PLL filter

Vcc and ground

Big ground plane

PLL filter

Page 53: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Design guideline for PCB schematic and layout

53/61

6. For differential application create symmetrical paths for the output stage.

Figure 128. Symmetrical paths for output stage

7. Separate the coil and the neighboring coil are vertical to avoid crosstalk.

Figure 129. Avoiding crosstalk

Symmetricaloutput paths

Separate the coils to avoidcrosstalk

Page 54: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Design guideline for PCB schematic and layout AN2480

54/61

Figure 130. Filter capacitor

8. Consider ground layout. To avoid interference between ground power and small signal ground, it is necessary to divide the grounding as shown in Figure 131.

Figure 131. Ground layout

Use a polyester or metal capacitor for the filter

Channel ground plane

Headphone ground planePower ground plane

Page 55: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Design guideline for PCB schematic and layout

55/61

9. VCC routing.The best route for the Vcc supply is one which avoids interference between different signals (for example, part A is idle whilst part B is working at full load).

Figure 132. Vcc routing

10. Vcc filter for high frequency.The PWM system works with a fast switch (frequency of 340 KHz approximately) which means the copper wire works as a coil. In order to avoid this, a ceramic capacitor should be used to balance resistance. It is a mandatory requirement that ceramic capacitors are placed as close as possible to the related pins. The distance between the capacitor and their respective pins should be less then 5 mm in order to minimize inductive coil effect generated by the copper wire.

Best method to isolate

Good Vcc routingamplifiers are isolated from each other

Bad Vcc routingtwo amplifiers are daisy chained

the two channels

Page 56: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Design guideline for PCB schematic and layout AN2480

56/61

Figure 133. Vcc filter

11. Decoupling capacitors.Solder decoupling capacitors as close as possible to their respective IC pin. This reduces the inductive coil effect.

Figure 134. Decoupling capacitors

12. Snubber filters for high frequency spike protection on the PWM.

Figure 135. Snubber filter placement

Vcc capacitor filter as close to the r

The ceramic capacitors on the bottomof the PCB close to the IC due to

elated pins as possible.

SMD mounting limitations.

Good amplifier bypassingcapacitors are properly placed

Bad amplifier bypassing, capacitors areout of order and ground connection is indirect

Place snubber circuit as closeas possible to the appropriateIC pins, and the - and + for each channel.

Page 57: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Design guideline for PCB schematic and layout

57/61

Figure 136. Examples of snubber filter placement

Caution: A spike can occur if there > 3 mm distance between the snubber network and the pins. This can cause damage to the IC. Therefore the distance must be kept below 3 mm.

Good common mode snubber placement Good differential snubber placement

Page 58: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Design guideline for PCB schematic and layout AN2480

58/61

13. Output routing

Figure 137. Output routing

14. Thermal layout bit big ground

Note: The thermal pad must be connected to ground in order to properly set the IC references. It is necessary to allow the heat to flow freely to all sides of the board including top and bottom. For optimum heat dissipation it is recommended that the PCB has some solder via holes.

Figure 138. Thermal layout (1 of 3 top and bottom layers)

Good output routingtraces grow wider as space allows

Bad output routingarea between outputs is large

Good output routingarea between outputs is small

Thermal layouton top layer

Thermal layouton bottom layer

Page 59: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480 Design guideline for PCB schematic and layout

59/61

Figure 139. Thermal layout (2 of 3 thermal and soldering holes)

The thermal resistance junction at the bottom of the STA333BW to the ambient obtainable with a ground copper area of 4 x 4 cm and with 24 via holes (see Figure 139)

Figure 140. Thermal layout (3/3 heat flow direction)

24 via holes ϕ:1.0 mm

Good thermal layout (top)heat can flow freely to the sides

Bad thermal layout (top)heat flow cut off by the snubbers

Bad output routing (bottom)little copper area on 3 sides

Good thermal layout (bottom)plenty of copper area

Page 60: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

Revision history AN2480

60/61

5 Revision history

Table 3. Document revision history

Date Revision Changes

12-Dec-2006 1.0 Initial release.

Page 61: STA333BW demo board application note - STMicroelectronics · Application note can be configured for either: 2.0 channels (2 x 20 W), with headphone output, 2.1 channels (2 x 10 W

AN2480

61/61

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOTRECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAININGAPPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVEGRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com


Recommended