+ All Categories
Home > Documents > Stacked Horizontal Nanowire based 3-D Integration for...

Stacked Horizontal Nanowire based 3-D Integration for...

Date post: 30-Mar-2018
Category:
Upload: dinhbao
View: 220 times
Download: 2 times
Share this document with a friend
29
Stacked Horizontal Nanowire based 3-D Integration for Future High Performance Computing Mostafizur Rahman ([email protected]) University of Missouri-Kansas City
Transcript

Stacked Horizontal Nanowire based 3-D Integration for Future High Performance Computing

MostafizurRahman([email protected])UniversityofMissouri-KansasCity

In Memory Circuits

Beyond CMOS Boolean

Gates

Asymmetric Circuits

Digital FETs

Analog FETs

Detector Receiver

Spin torque(SFET, ASL, STO..)

Straintronics(MESH,MTJ)

Memristor(TMO, 2-D insulators..)

PCM (GST, GES..)

TFET(III-V, gnTFET..)

3-D circuits

Approximate gates

Probabilistic circuits

Neural Nets

Synaptic Circuit

Implication Logic

Majority Logic

Multivalued Circuits

Threshold Gates Binary

Gates

Circuit Layer

Device Layer

BeyondCMOSOpportunities

Ferroelectric(NCFET, P-

FET..)

Quantum Gates

Quantum Search

Quantum Algorithms

Gates Entangler

Architecture/Application Layer

SRC:IntelBCB2017,SRCNRI,ITRS

FETs

FETs

Spin

RRAM

Qubit

IntegratedTSV

WireBonding

TSVStackedMemory

HeterogenousDieswithTSVs

Monolithic3-D

SingleWafer

Multi-ChipPlanar WireandPadBonding

SiliconInterposer

2.5-D

3-D

2-D

LogicDensity

Wafer-Wafer

Die-Die

Device-Device

3-DICClassification

SN3DFabricOverview

• Architectedcomponentstoaddressdevice,circuit,connectivity,heatmanagementandmanufacturingrequirementsin3-D

• Stackednanowiresarebuildingblocks

StackedHorizontalNanowirebased3-DIC(SN3D)Fabric

ConnectivityComparison

SGI

Substrate

GI

LI

Substrate

SGIGI

HIHBCGCC

SNW

MIVs

GI

SGILI

LI

N-Tier

P-Tier

TSV

GI

LI

Die2

SGI

GI

LISGI

Die12DCMOS

Monolithic3-D(M3-D)

Multilithic 3-D

SN3D

• SN3Dusesnanowiresinasinglediebasedprocess

• Localconnectivitythroughfabricfeatures

Outline

• SN3DCoreComponentsandLogic• Benchmarking• ThermalManagement• CostAnalysis

Gate(TiN)

Gate(Ti)

(ii)CommonGate

CoreComponents

• FabricassemblybyIntegrationofcorecomponents• Intrinsicthermalmanagement– starkcontrasttoother3-Ddirection

StackedNanowires

NWChannelGateOxide(HfO2)Contact

Gate(Ti/TiN)Spacer(Si3N4)

(i)CommonContact

Contact(Ni)

Contact(Al)

Junctionless Transistor

Nanowires

(iii)HorizontalBridge

BridgeHorizontalIsolation(SU8/SiO2)

HorizontalInsulation(HI)

• CMOScircuitstyle• Usesbothn- andp-typeV-GAA

Junctionlesstransistors• Fabricspecificphysicalmapping• Localinterconnection,noiseanddelay

mitigationthroughutilizingfabricfeaturesandcircuitoptimizations

FullAdderDesigninSN3D

• Fabricspecificphysicalmapping• Highdrivestrengthtransistors• Stacked(series)Inverters– CC-CG

SRAMCellDesigninSN3D

ParallelNanowires(3xTpd) Inverter(X1)– 1xTpu:3xTpd

CGCC CCCG

CC CC

D

D

Vdd

Gnd

Vdd

Gnd D

D

X1

X2

Gnd

Gnd

Vdd

Vdd

DD

DD

TA1Wl

Bl

Bl WlTA2

Sp-nw

St1 St2

HB-CC

HB

HB

Wl

Wl

Bl

Bl

Bl Bl

Tpd

Vdd

Vdd

Vdd

Gnd

Gnd

D

D

X1

X2

Gnd

Tpu

Tpu

Tpd

Tpd

TA1

TA2

SN3DSRAMArrayOrganizationandBenefits

TwoAdjacentCells

2 13

45 5

Topview

C25 5

4

3

12

4

C1

C1 C2Bl

Gnd

WlVddWl

Bl

Bl

Gnd

Bl

-Metal2-Metal1

MetalRoutedLayout

• SharingFVs(BL, BL,Wl,Vdd,Gnd)– 2EffectiveFVsforeachcell• 3DAbutmentofadjacentCells

SRAMArrayinSN3D

Bl

Bl

Gnd

Wl Vdd Wl

Bl

Bl

Gnd

Bl

Bl

Gnd

Bl

Bl

Gnd

Bl

Bl

Gnd

GndWl Vdd Wl Wl Vdd Wl Wl Vdd Wl

DesignBenefits

Gnd

Gnd

Bl

WlVdd

z

45l

26 l

Bl

6T-Cell2D-CMOSLayout

PMOSt ier

Wl

Bl

NMOStier

Vdd Gnd VddBl

27l

30l

6T-CellM3DLayout

Bl

Gnd

VddWl

Bl

Bl

Gnd

Bl 27l

14l6T-CellSN3DLayout

• 3:2:1ratioforalldesigns• TSVsaddadditionalareaoverhead• M3Dislimitedtotwotierdesign,only30%reductioninfootprint• M3Dneedshighprecisionalignmentofinter-tier-vias

Benchmarking:MethodologyExperimental

Results

SN3DTCADProcessSimulation

3-DTCADDeviceI-VSimulation

3-DTCADDeviceC-VSimulation

DeviceModelingforHSPICEsimulation

SN3DCircuitandLayoutDesign:Logic,SRAMetc.,

InterconnectExtraction(PTMModel)

RCcalculations

DensityEvaluation

DesignRule

SN3DCircuit(Logic,SRAM)HSPICESimulation

Functionality,PowerandPerformanceEvaluation

BenchmarkingResults

Performance/powerforSN3DandM3Dvs.2-D

• 6.4xperformance/power,67%areareductionforSRAM

• >10xareareduction,19%and18%performanceandpowerimprovementsforlogic

0

20

40

60

80

100

120

PERC

ENTA

GE

2-D MONOLITHIC3D SN3D

PercentageReductioninSRAMFootprint

30.7%

67.8%

LogicBenchmarkingResults

RM=175.87mV

D(V)0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.2

0.4

0.6

0.8

0.0

D(V

)

WM=380.25mV

D(V)0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.2

0.4

0.6

0.8

0.0

D(V

)

HM=325.54mV

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.2

0.4

0.6

0.8

0.0

HM=325.54mV

D(V

)

D(V)NoiseMargin

0 1 2 3 4 5 6 7

1

SN3D M3D 2-D

6.4X

1.2X

[2] Naveen Macha, Sandeep Geedipally, Mostafizur Rahman, NANOARCH 2017, pp. 155-161, 2017.[3] N. K. MacHa, and M. Rahman, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, submitted.

[1] N. K. MacHa, M. A. Iqbal, and M. Rahman, NANOARCH, 2016, pp. 51-152.

Outline

• SN3DCoreComponentsandLogic• Benchmarking• ThermalManagement• CostAnalysis

ThermalEffect

[5] R. Rhyner, Mathieu Luisier., Nano Lett., 2016, 16 (2), pp 1022-1026, DOI: 10.1021/acs.nanolett.5b04071.[6] Md Arif Iqbal, Mostafizur Rahman, IEEE S3S Conference, San Fransisco, CA, 2017.

300nm

Transistor(P-Type)

Interconnects

W(Via)

Substrate/Heatsink

SiO2(Dielectric)

Transistor(N-Type)

HeatFlow

415

410

405

400

395

390

385

380

• Self-heatingexacerbatesforvertical/SOIFETs• Lackofheatdissipationpathsin3-Disakeyproblemforhotspot

Monolithic3-Dcircuit’sthermalprofile

ThermalSimulationMethodology

• TheConductiveheattransferinsolidsisobtainedby:ρCp ∂T/∂t+∇ .(-k∇T)=Q

• FiniteElementBasedMethod(FEM)forfine-grainedmodeling

Region Material Dimension(LxWxT)nm

ThermalConductiv

ityWm-1 K-1

Drain Silicide 10x16x16 45.9Drain

Electrode

Ti 10x16x12 21

Channel DopedSi 16x16x16 13Source Silicide 10x16x16 45.9GateOxide HfO2 16x18x2 0.52

GateElectrod

eTiN 10x16x6 1.9

Spacer Si3N4 10x16x16 1.5

DEVICE MATERIALS AND THEIRDIMENSIONSThermalModelingof

Interconnects,Contacts.Powerrails,SignalNanowires,Devices

andPowerPillars

ThermalModelingof3-DCircuit

3-DCircuitLayout

HeatFluxfromHSPICEElectrical

Simulations

Calibration

3-DThermalProfile

EquivalentElectricalRepresentationandHSPICESimulation

FEMThermalSimulations

FEMMethodThermalCircuitSimulationMethod

ThermalSimulationResults(FEM)

• Temperaturereductionby53%to375Kfrom700K• HeatPillarwaseffectivelydissipatingheatfromheatedregion

FETbasedCircuitwithFeatures TransientThermalBehaviorofeachFETwithandwithoutFeatures

ThermalSimulationResults(FEM)

• HeatPillarcanbesharedamongneighboringFETs

• Highesttemperaturewas375Kfortoptransistors

EffectivenessofHeatExtractionFeatures

• SN3D’sconnectivityfeaturesenableheatextraction

• HeatJunctionandHeatPillarreducesheatfurther– Canbecustomizedtomeet

thermalrequirements

HeatFlow

Nano-Pillar

Substrate/Heatsink

SiO2(Dielectric)

CC

CC

CG

CC

CG

CC

CC

CC

Transistor

Transistor

HB 378

377.5

377

376.5

376

375.5

SN3Dcircuit’sthermalprofile

[6] Md Arif Iqbal, Mostafizur Rahman, IEEE S3S Conference, San Fransisco, CA, 2017.

Outline

• SN3DCoreComponentsandLogic• Benchmarking• ThermalManagement• CostAnalysis

EarlyCostEstimationMethodology

(TSVs3DandM3D)

DieArea

#MetalLayers

#ProcessSteps

Temperature

CoolingCost

BondingCost

MetalLayerCost

Die-Cost

Processdependency

𝐶$%& = 𝑐)$𝐴+%&

𝐶-&./0 = 𝑐)-𝑛-𝐴+%&

𝑐)$, 𝑐)-T

Inter-connects

CircuitDensity

FabricationProcess

DieBonding

Cooling

SN3DDesignRules,Guidelines

SN3DCircuitDesignPrinciples

AreaEstimation(2D,3D,M3D,SN3D)

InterconnectEstimation(2D,3D,M3D,SN3D)

MetalLayerEstimation(2D,3D,M3D,SN3D)

CostEstimation

(2D,3D,M3D,SN3D)

3-DInterconnects(TSVs,MIVs,FIs)

CoolingCost

(2D,3D,M3D,SN3D)

BondingCost

(3D,M3D)

DieAreaEstimation4

3.5

3

2.5

2

1.5

1

0.5

Area(mm

2 )

5.0E+06 10.0E+06 20.0E+06Ng-Numberofgatesinthedesign

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5.00E+06 1.00E+07 2.00E+07

A2D

A3D

AM3D

ASN3D

SN3DArea

2DArea3DAreaM3DArea

AverageGateArea2-D:

AverageGateArea3-D/M3D:

SN3DAverageGateArea:

86%,72%and74%reductioninfootprintcomparedto2D,T3DandM3Drespectively[7]

3125 l2 [8]

AreaComparison

3125 l2

2432l2

𝐴4+/678+ = 𝑁:𝐴:,4+/678+𝐴8+/;8+ = 𝑁:𝐴:,8+/;8+ +𝑁=6>/;?>𝐴=6>/;?>

SN3DGateArea

[7] N. K. MacHa and M. Rahman, IEEE S3S Conference, San Fransisco, CA, 2017.[8] X. Dong, J. Zhao, and Y. Xie, IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 29, no. 12, pp. 1959–1972, 2010.

Rent’s Correlation for Terminal Count:

InterconnectEstimation

[2] N. K. MacHa and M. Rahman, Available: https://arxiv.org/abs/1709.01965.[7] N. K. MacHa and M. Rahman, IEEE S3S Conference, San Fransisco, CA, 2017.

𝐼= = 𝛼𝑘𝑁:(1 − 𝑁:)F [2]

𝑇678+ = H𝑇%

I

%JK

= 𝑛𝑘𝑁:𝑛

)

Total Interconnect

𝑖 𝑙 = 𝑓(𝑁:, 𝑙, 𝑘, 𝑝)[7] ;Distribution

InterconnectDensityFunctio

n,i(l)

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 10 100 1000 10000

1E71E6

1E5

1E3

1E21E1

1E0

0 10 100 10001E-1

1E4

i(l)2D i(l)3D i(l)SN3D

Interconnectlength,l[Gatepitches]

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1 10 100 1000InterconnectLength,l (gatepitches)

InterconnectDensity

Function,i(

l)

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1 10 100 1000 10000

Metal1

Metal2

.

.

Metali

.

Metaln

Lav,1Lav,2

...

Lav,i

...

Lav,i

METAL LAYER ESTIMATION Ng 2-D CMOS TSV 3D M 3D SN3D 5 M 5 5 3 3 10 M 6 5 4 3 20 M 7 6 5 4

MetalLayerEstimates

12%32%

16%

18%22%

PhotolithographyDiffusionEtchingDepositionImplantation

ParameterizingProcessSteps

SN3DProcessConstant(26.54kc)

nPL=2

nIM=0nDF=40 nET=51 nDP=2

11

cPD=26.54kc

PROCESS STEPS Process 2D [10] 3D/M3D SN3D Metal [6] Photolithography(nPL) 9 19 2 2 Diffusion(nDF) 4 8 2 - Implantation(nET) 7 14 - - Deposition(nDP) 4 10 40 4 Etching(nIM) 5 13 51 4

RelativeCostoftheMajorProcesssteps[5]:

TypicalProcessstepsCount:

QuantifyingProcessSequenceMajorProcesses:

• Photolithography• Diffusion• Etching• Deposition• Implantation RelativeCostStatistics[9]

12%32%

16%

18%22%

PhotolithographyDiffusionEtchingDepositionImplantation

nPL=numberofPhotolithographystepsnDF=numberofDiffusionstepsnET=numberofEtchingstepsnDP=numberofDeposit ionstepsnIM=numberofImplantationsteps UnitProcessConstant(kc)

cPD=kc

nPL=1nIM=1nDF=1 nET=1 nDP=1

11

ParameterizingProcessSteps

SN3DProcessConstant(26.54kc)

nPL=2

nIM=0nDF=40 nET=51 nDP=2

11

cPD=26.54kc

PROCESS STEPS Process 2D [10] 3D/M3D SN3D Metal [6] Photolithography(nPL) 9 19 2 2 Diffusion(nDF) 4 8 2 - Implantation(nET) 7 14 - - Deposition(nDP) 4 10 40 4 Etching(nIM) 5 13 51 4

Arbitraryunitprocessconstant: RelativeCostoftheMajorProcesssteps[5]:

TypicalProcessstepsCount:

RelativeCostStatistics[9]

𝐶678+= 26.54𝑘U𝐴678+ +

2𝑘U𝑛-𝐴678+ +𝐶UVV0%IW

𝑘U = 𝑘XY + 𝑘+Z + 𝑘[= + 𝑘+X + 𝑘?; 𝑘XY = 0.32𝑘U; 𝑘+Z = 0.22𝑘U; 𝑘[= = 0.18𝑘U;𝑘+X = 0.16𝑘U; and𝑘?; = 0.12𝑘U

[6] N. K. MacHa and M. Rahman, Available: https://arxiv.org/abs/1709.01965.[9] Y. Lai, “Cost Per Wafer,” Imid 2009, pp. 1069–1072, 2009.[10] James D. Plummer, et al., ed. New Jersy: Prentice-Hall, 2000, ch. 2, pp. 49–92.

CostEstimationResults

𝐶4+ = 6.26𝑘U𝐴4+ + 2𝑘U𝑛-𝐴4+ +𝐶UVV0%IW𝐶8+/𝐶;8+ = 7.26𝑘U𝐴8+ + 2𝑘U𝑛-𝐴8+ +𝐶dVI$%IW + 𝐶UVV0%IW

𝐶678+ = 26.54𝑘U𝐴678+ + 2𝑘U𝑛-𝐴678+ + 𝐶UVV0%IW

• NoBondingCostforSN3D• BondingCostforTSV3-DandM3-Daretakenasarelativecostfrom[11]

• CoolingCost:1 𝐶UVV0%IW = 𝐾U𝑇 + 𝑐

FinalCostModels:

0

10

20

30

40

50

60

70

80

90

100

COST2D COST3D COSTM3D COSTSN3D2D0

10

20

30

40

50

60

70

80

Ng-Numberofgatesinthedesign

Priceinun

itsofK

c

90

3D M3D SN3D

Diecost

CoolingcostBondingcostMetalcost

CostComparisonResults

[11] X. Dong, J. Zhao, and Y. Xie, IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 29, no. 12, pp. 1959–1972, 2010.

83%and81%reductionintotalcostcompared2-DCMOSMonolithic3-Dintegration

[7] N. K. Macha and M. Rahman, IEEE S3S Conference, San Fransisco, CA, 2017.

[13] D. Sacchetto, et al., ESSDERC, Athens, Greece,September 14-18, 2009.

SN3DImplementationAspects

[12] M. Rahman, et al., “Skybridge : 3-D IntegratedCircuit Technology Alternative to CMOS,” pp. 44.

[14] Ricky M. Y. Ng et al., IEEE ElectronDevice Lett., vol. 30, no. 5, pp. 520–522,2009.

[15]M.Rahman,etal.,IEEENANO2015-15thInt.Conf.Nanotechnol.,pp.1214–1217,2016.

Summary

• BeyondCMOSopportunitiesspandifferentapplicationdomains

• 3-DIntegrationisobviouschoiceformovingforward– Highestadvantagewithmonolithic3-D

• SN3Disanewstackednanowirebased3-DICtechnique– Integrateddevice,circuit,connectivityandheatmanagement– Possibilityof>10xdensitybenefits– 83%costreductioncomparedto2-DCMOS

Acknowledgements

• CsabaAndrasMoritz(Umass Amherst)• SantoshKhasanvis (Bluerisc)• Pritish Narayanan(IBM)• MasudChowdhury(UMKC)• KelinKuhn(Cornell,prev.Intel)

SponsorsNSF,Univ.ofMissouriResearchFund


Recommended