+ All Categories
Home > Documents > Standard Test Method for Crosshole Testing

Standard Test Method for Crosshole Testing

Date post: 07-Aug-2018
Category:
Upload: rodneyxerri
View: 222 times
Download: 0 times
Share this document with a friend
4
8/20/2019 Standard Test Method for Crosshole Testing http://slidepdf.com/reader/full/standard-test-method-for-crosshole-testing 1/4 Designation:  D  676 2 INTERNATIONAL Standard Test Method for Integrity Testing  of  Concrete Deep Foundations  by Ultrasonic  Crosshole  Testing 1 Thìs standard is  issued  under  thè  fixed designatici D 6760;  thè  number immediately following  thè  designatici indicates thè year of originai adoption or, in  th è  case of revision, thè year  of  last  revision.  A number in  parentheses  indicates  thè  year of lasi  reapprovai. A superscript epsilon  (e)  indicale»  an  editoria] change since  thè  last revision or reapprovai. 1 Scope 1.1  This  test  method  covers procedures  for  checking  thè homogeneity  and  integrity  of  concrete  in a  deep foundation such  as  bored  piles,  drilled  shafts. concrete piles  or  augercast piles. This method  can  also be extended  to  diaphragm walls, banettes,  dams  etc.  The  test  measures  th è  propagation lime  and relative  energy of an ultrasonic pulse between parallel access ducts installed  in  thè  pile  or  structure. This method  is  most applicatale when performed between tubes that  are  installed during pile construction. 1.2  Similar lechniques with dilL'rerit excitation sources  or single access ducts, or  both,  exist.  but  these techniques  are outsicle  thè  scope  of  this test  metliod. 1.3  Ali  observed  and  calculatecì  values  shal conform to  thè guidelines  for  significant digits  and  rounding established  in Practice  D 6026. 1.3.1 The  method used to speci fy  how  data  are  collected, calculated,  or  recorded  in  this standard  is  no i  directly related to thè  accuracy to which data can  bo  applied  in  design or other uses,  or  boih.  How one applies  thè  results  obtained using this standard  is  beyond  its  scope. 1.4  Limitations—Proper  installinoli  of  thè  access ducts is essentia for effective testing  and  interpretalion.  The  method does  not  give  thè  exact type  of  de  feci  for  example,  mclusion, oneycombing,  lack  of  cement  pai icles,  etc.  i  but rather only liat  a  defect  exists.  The  method  i .s  iimited prirnarily  lo  testing  between  thè  access ducis  and  thus  gives little ;iformation  about  thè  concrete outside  thè  reinforcement  cage  which  thè  access  ducts are aiiached when  thè  tubes are  to  thè  inside of thè  reinforcement  casre. 1.5  This  standard does  not  pin-poit  to  ncidress  ali  of  th è  concerns,  if  any,  associa/i''./  \vith  it <  use.  lì  is  thè  of  thè user  of  this stuncìard  lo  eitablisli  appro-  safety  and  hcalth practiccs  and  detergine thè applica-  ty  of  regulatory limitations prior  U>  use. Rcferenced Documenti 2.1  ASTM Standards: D  1143  Test Method for Piles Under Static Axial  Compres- sive Load2 D 3740 Practice for Minimum  Requirements  for Agencies Engaged  in  thè  Testing and/or  Inspection  of Soil and Rock as Used  in  Engineering Design  and  Construction 2 D  4945 Test Method High  Strain  Dynamic Testing  of  Piles 2 D 5882 Test Method for Low Strain Integrity Testing of Piles2 D 6026 Practice for Using Significant Digits in Calculating and  Reporting Geotechnical Test Data 2 3 Terminology 3.1  Definìtions ofTerms Specific  to  This  Standard: 3.1.1  access ducts, n—preformed steel or plastic tubes, or drilled boreholes, placed in thè concrete to allow  probe entry in pairs  to measure pulse transmission in thè concrete between thè probes. 3.1.2  anomaly,  n —irregularity or series of  irregularities observed in an ultrasonic profile indicating  a  possible defect. 3.1.3  depth interval,  n—thè maximum incrementai spacing along  thè  pile shaft between ultrasonic pulses. 3.1.4  integrity  evaluation,  n —thè qualitative evalualion  of thè concrete continuity  and  consistency between  thè  access ducts  or  boreholes. 3.1.5  specifier,  n —thè party requesting  that  thè  tests are carried out,  for  example,  thè  engineer  or  client. 3.1.6  ultrasonic profile, n —a combined graphical output of a series of measured or processed ultrasonic pulses  with depth. 3.1.7 ultrasonic pulse t for one specific depth  of a short duration  generated  by a transmitter probe  or  sensed  by  thè receiver  probe. 4 Principle  of  thè Test Method 4.1 The  actual velocity  of  sound wave propagation  in concrete  is  dependent  on thè  concrete material properties, geometry  of  thè element  and  wavelength of thè  sound waves. When  ultrasonic frequencies (for example,  >20 000 Hz) are generated, Pressure (P) waves  and'Shear  (S) waves travel though thè  concrete. Because  S  waves  are  relatively slow,  ihey are of no  further interest in this method. In good quality concrete  thè  P-wave velocity would  typically range  between  '  This test  method is under thè  jurisdiction  of ASTM Committee DI  X on Soil  and is thè direct responsihility of  Subcornnitu•••  D 8.  on  Deep  Fou ndations. Current edition approved Jan 10,  2002.  Publishol Apri'  -002.  Annua Book  af  ASTM Standards,  V oi  04.08.  ©ASTM International 100  Barr Harbor  Dr vc  PO Box  C7CC West Corshohocken PA 19428-2959 United States.
Transcript
Page 1: Standard Test Method for Crosshole Testing

8/20/2019 Standard Test Method for Crosshole Testing

http://slidepdf.com/reader/full/standard-test-method-for-crosshole-testing 1/4

Designation: D 676 2

INTERNATIONAL

Standard Test Method for

Integrity

  Testing

 of

  Concrete Deep Foundations

  by

Ultrasonic  Crosshole Testing

1

Thìs standard is

 issued  under

  th è  fixed

 designatici

D 6760;

  thè  number immediately following

  thè

 designatici

indicates thè year of

originai adoption or, in th è case of  revision, thè year  of

 last

  revision. A num ber in parentheses  indicates

  thè

  year of lasi  reapprovai. A

superscript epsilon  (e )  indicale»  an editoria] change since  thè  last revision or reapprovai.

1 Scope

1.1  This

  test

  method

  covers procedures

  fo r

  checking  thè

homogeneity

  and

  integrity

  of

  concrete

 in a

  deep

  foundation

such

 as bored piles,

 drilled

  shafts.

  concrete

 piles or

  augercast

piles.  This method  can  also be  extended  to

  diaphragm

  walls,

banettes,

 dams

 etc.

 The

  test

 measures

 th è propagation lime

 and

relative

  energy  of an  ultrasonic pulse

  between

  parallel  access

ducts installed

  in  thè

  pile

  or  structure.

  This method

 is

  most

applicatale  when per formed be tween

  tubes  that  are

  installed

during  pile construction.

1.2  Simi lar

  lechniques

  wi th  dilL'rerit excitation  sources  or

single access ducts, or  both,  exist.

  bu t  these  techniques

  are

outsicle

  th è

  scope

  of  this

  test

 m et l iod.

1.3

  Ali

  observed

  an d  calculatecì  va lue s

  shal

conform to  thè

guidel ines

  fo r

  significant digits

  an d  rounding

  established

  in

Practice

  D 6026.

1.3.1 The

  method used

  to speci fy  ho w  data  are

 collected,

calculated, o r

  recorded

  in

 this

 standard  is noi  directly

  related

 to

thè

  accuracy to  which  data can

  bo

  applied

  i n

  design or

  other

uses,

  or

  boih.

  How one

  applies  th è  resu lts  obtained using  this

standard

  is

  beyond

  its

  scope.

1.4 Limitations—Proper

  ins tal l inol i

  of  th è

  access

  ducts is

essentia for

  effect ive  testing

  an d

  interpretalion.

  The

  method

does  no t

  g ive t hè  exact type

 o f  de feci

  f o r  example,

  mclusion,

oneycombing,  lack  of  c e m e n t  pai icles,  etc.  i  but rather  only

liat  a

  defect  exists .

 The

  me thod

 i .s i imited prirnarily  lo  testing

  between

  thè

  access

  ducis

  an d  thus

  gives

  little

;iformation   about

  thè

  concrete  outside

  thè

  reinforcement  cage

  which  thè  access  ducts are  aiiached when

  thè

  tubes are

  to  th è

  inside

  of thè  re inforcement  casre.

1.5

  This  standard does  no t  pin-poit  to  ncidress  ali  of  th è

  concerns,

  if

  any,

  associa/i''./

  \vith

  i t <

  use.

  lì

  is

  th è

  of  thè user  of  this  stuncìard  lo  eitablisli  appro-

  safety  an d  hcalth

 practiccs

  an d  detergine

  thè applica-

 ty  of

  regulatory

  limitations prior  U >

  use.

Rcferenced

  Document i

2.1  ASTM

  Standards:

D

  1143

  Test Method for Piles Under S tatic Ax ial Compres-

sive Load

2

D 3740 P ractice for Minim um  Requirements  for Agencies

Engaged in thè Testing and/or

 Inspection

 of Soil and Rock

as

  Used

 in

 Engineering Design

  and Construction2

D

 4945 Test Method H igh

 Strain

  Dynamic Testing

  of

 Piles

2

D 5882 Test Method for Low Strain Integrity Te sting of

Piles2

D 6026 Practice for Using Significant Digits in Calculating

and

  Reporting

 Geotechnical Test Data2

3

Terminology

3.1  Definìtions

  ofTerms  Specific

  to  This  Standard:

3.1.1

  access ducts, n—preformed

  steel or plastic tubes, or

drilled

 boreholes, placed in thè concrete to

 allow

 probe e ntry in

pairs to measure pulse transmission in thè concrete b etw ee n thè

probes.

3.1.2   anomaly,  n

—irregularity or series of

  irregularities

observed  in an ultrasonic

  profile

  indicating  a  possible defect.

3.1.3

  depth

  interval,

 n—thè

  maximum incrementai spacing

along   thè

  pile

  shaft

  between ultrasonic pulses.

3.1.4

  integrity

  evaluation,  n—thè  qual i tat ive  evalual ion

 of

thè  concrete continuity  and  consistency between  thè

  access

ducts

  or

 boreholes.

3.1.5  specifier,  n—thè

  party

  requesting

  that

  thè

  tests are

carried  out,  fo r

  examp le ,

 thè

  engineer

  or

 c lient.

3.1.6  ultrasonic profile, n—a combined graphical output of

a series of me asured or processed ultraso nic pulses

 wi th

 depth.

3.1.7  ultrasonic

 pulse — t for one

  specific depth

  of a

short

 duration ge nerated

 by a transmitter

 probe

 o r

 sensed

  by  th è

receiver

  probe.

4 Principle  of

  thè Test Method

4.1 The

  actual  velocity

  of  sound

  w av e

  propagat ion  in

concrete   is  dependent  on thè  concrete  material  properties ,

geometry  of  thè element  and  wave length  of thè

  sound wave s .

When  ultrasonic  frequencies  (for example,  >20 000 Hz) are

generated, Pressure (P) waves  and'Shear  (S) waves  t ravel

though thè  concrete. Because S  wav es a re  relatively  slow,  ihey

are of no   further  interest in this method. In good quality

concrete  thè  P-wave ve loc i ty would

  typically

  range  b e tween

  '

  This test  method

 is

 under thè jurisdictio n

 of ASTM Com mittee DI X on

 Soil

  and

is thè direct responsihil ity of  Subcornni tu • • • D 8.   on  Deep Fou ndations.

Current  edition

  approved

  Jan 10,

 2002.

  Publ isho l Apr i '  -002 .

 

Annua Book  af  A S T M  Standards, V oi

 04.08.

 © A S T M

  International

100

 Barr

  Harbor   D r v c   PO Box   C 7 C C

West

 Corshohocken

PA 19428-2959 United States.

Page 2: Standard Test Method for Crosshole Testing

8/20/2019 Standard Test Method for Crosshole Testing

http://slidepdf.com/reader/full/standard-test-method-for-crosshole-testing 2/4

  to

 4400 m/s.  Poor

  qua l i ty

  concre t e  con t a in ing  a n o m a l i e s

  example ,

  soil

  i nc lus ion ,

  gnivel . water , dr i l l ing

  m u d ,

  concrete , or excess ive  segrega-

  th è  cons t i t uen t

  pa r t i c l e s )  b u s  a compara t ive ly lower

 ve loc i t y .

 B y

  m ea s u r i n g t hè

  i ransi t

  t ime

 of an ul t rasonic

  betvveen

  an  ul trasonic  iransmit ' .er  and receivef in

  access  ducls cast

  i n to  th è

  concrete

  spaced  a l a k n o w n d i s t ance

 apjirt,  such

  m a y b e  de t ec t ed .  U s u a l i y  th è  t r a n s m i t t e r  and re-

 rnain tained  a l  equa l e l eva i iorn  a s  tliey  a re  rnoved t ip

  th è

  access  d uc t s .  In some  cases

  an d

  for  special

  probes  m a y b e  de l i b e ra te l y  oiìset in  relat ive

an d  thè  use of mult ip le

 receivers  eilher in

  th è

 same

 d u c i

 or in

 mul t ip le access d u c f s

  can also b e

 a l l o w ed .

 T he

  an d  l im i t a t ion s  of

  th è

  test  an d  in terprelat ion  of  th è

  a re  descr ibed  in  th è  Referer .ces sect ion

  u l t r a son ic p robes ,

  one a

  ' .ransmitter

  and

  th è  other

  a

  a re

  lowered

  an d

  l i f t ed u sua l l y

  in unison in

  their

  water-f i l led

 access

  ducts io  test

  th è

  f u l l   shaf i  length

  top to

  bot tom.

  The t ransmi t t e r

  p robe

  genera te s

  u l t rasonic

  a t f requen t and regu l a r  intcrva ls  d u r i n g  th è  probes'

  trave rate.  T he  probe  dep th  a n d

  r c c e i v e r

  p robe ' s

  ( l imed

  relat ive

  to  th è  t r an sminer probe ' s u l t r a son ic

  genera t i on)

  are  recorded  fo r

  e a eh  pulso.

  T he

  rece ive r ' s

 a re  s a m p l ed  and s aved a s

 a m p h t u d e

  versus t i m e

  Fig.  1 ).

3  Alternately. thè s ignals  m a y b e  inodulaux to a  scries  of

 and w h i t e  l in es

 cor respond ing

  respect ivel) to thc

 posi t ive

  peaks o f  thè  s ignal .  In  eilher case, thè data  are

 processed  and  presen ted  lo show

  th è  f i r s i

  arriv;;] of  th è

  pulse and

  th è

  relat ive

  energ>

  of

  th è

  s ignal to a id

 T he

  processed  d a t a

  a re

  p lot ted  ver sus dep th

 as a

  r epresen t a t ion o f  th è

  ii l irasonic

  proi i le  of

  th è

  tested

  Special test  m e t h o d s  to   f u n h e r  i nves t i ga t e a n o m a l i e s

  w he r e

  th è

  probes

  are  noi  raised

  toaether .

  T hc

  scct ion  l is t s  fur ther  so iuces  of  information  a b o u t

  special  les t

  techn

  ques .

  an d

  U se

.1

  This

  m e thod

  use s  data from ult rasonic probes  lowered

  para lei  access  duc t s  in

  th è

  pi le  or  s iructure  to assess  th è

 an d  i n teg rhy  of  concre t e  >eiween  th è probes. T he

  are  used  to

  c o n f i m i

  a d eq u a t e co n c r e te  qua l i t y  or  i denti f y

  poor

  qua l i t y .

  If

  defcc t s

  m e  d e t e c t e d ,

  then fur ther

  s h o u l d  be inade by  excavation  or

  coru ig

  th è

 a s appropriale, or by other

 l e s i m i

  such  a s Test  Method

  D 4 9 4 5   or D

  5882 ,

  a n d m e a s u r c s  t aker  to  remediate

  if a

  d e f e c t

  is

  con f i rmed

  1 — T h e

  qua l i t y

  o f

  thè resul t  p r o J ' i i v d

  b y  t h i s

  s t i i i iù i rd

  is

  o n t h è c o m p e t e n c e  of   th c

  pe r s u r meì

  perforrnì i ig i l ,  an d  ih e

  o f thc eq u i p i nen l and  fhc i l i i i c s  u s c d .  Agendi's  that  n w e t  thè

 of  Practice

  D

 3740 are genera )' consideri  capat i le

  o f

 c o n i p c t e n t

  and i nspcc i ion .

 Users ofths

  s t n n n a r d  a r e umi ioncd

FIG

1 1

  rns  uration  Ultrasonic   Pulso from

  Receìver

D 6 7 6 0

that

  comp l i ance

  w i t h

  Prac tice D

 3740 does noi

  in

  itself  assure  r e l i ab l e

r e su l t s . R e l i ab le  rcsulis depend

  on m a n y

  factors; Practice

  D 3740

 provides

a

  m e a n s o f

  e v a l u a t i n g  some

  of

  those

  factors.

6 Apparatus

6. 1

  Apparatiis

  for Aìlowing Internai  nspcctìon  Access

Ducts)

— To

  provide  access

  fo r

  th è probes, access  d u c t s

  can be

preformed  tubes,  wh ich  a re preferably  ins ta l led  d u r i n g  thè pi le

or

  st ructure insta l la t ion .  T he   tubes shall preferably  b e  mi ld

steel. Plastic tubes.  w h i l e  not preferred, can be  used  in  special

ci rcumstances i f approved  by thè  test  agency  b u t

  require

  m o r e

f requent  a t tachment to  thè reinforcing

  cage

  to  m a i n t a i n  a l i gn -

ment .

  T he

  plastic  malerial  m u s t

  n ot

  deform  dur ing  thè h igh

t empera tures o f concrete cur ing . I f n o  tubes  a re  in s t a l l ed dur ing

construct ion ,  boreholes dr i l led in to thè pi le  or

  s tn i c ture

  can be

ins tal led

  after

  i n s t a l l a t i on .  T he  in ternai  d i a m e t e r  of

  thè access

ducts shal l

  b e

  suflìcienl

  to

  a l low thè  easy  passage

  of

  th è

ul t rasonic

  probes

  over

  thè

  ent ire

  access  d uc i

  l en g t h .

  Jf

  th è

access

  duc i  d iameter  is too  large

  i l   in f iuences

  th è  precision  of

arr ivai

  t ime  an d ca l cu la t ed  concrete w ave speed. Access  d u c t s

typica l ly  have an  interna i  d iameter  from 38 lo 50 mm.

6. 2

  Apparaius for

  Determinine Physical  Test

 Parameters

6.2.1

  Weigh ted

  Measuring

  Tape

— A p l u n i b  bob   con n ec t ed

to a  measuring  lape  sha l l be  used  a s a d u m m y probe  to  c h e c k

free   passage  ihrough

  and de tenn ine

  th è

  unobs t ruc i ed

  l en g t h

  of

each access  d u c i  to thè  nearest  1 0 0 m m . T h e p l u m b b o b  shal l

have   a  d iameter s imilar  to thè d iameter  of thè

  p robes .

6.2.2  Mcignetic  Compass—h m a g n e t i c

  com p a s s

 a c cu r a t e

  to

w i i h ù i

  10°  sha l l

  be

  used

  to documenl

  th è access  d u c i  d e s i g n a -

t ion s compared wi th

  th è

  s i te layout

  p ian .

  Al t erna t e ly ,  access

duc l s

  can be

  labeled based

  on

  th è

  site  pian, s i ruclure

  or ienta-

tion

  or

  other methods

  to

  d o c u m e m

  access

  d u c i

  des igna t ions

assigned and used for  r epon ing  test resul ts .

6. 3  pparati t i for  Obtaining

  Measurementr.

6.3.1

  Probes—Probes

  shal l

  a l l o w

  a

  generated

  or

  d e t e c t ed

pulse

  within

  1 00

  rn m

  of  thè bot toni  of thè  access duc i .  The

we igh t

  of

  each  probe  shall

  in   al i

  cases

  be  suff i c i ent  to

  a l low

  it

to   s ink under  i ts own  weight  in  th è  access  duc t s .  The  p robe

hous ing sha l l

 be

 waterproof

  to at

  least  1 .5  t i m e s  th è  m a x i m u m

depth  of  test ing .

6.3.2  Transmitter Probe-—The  transmi i ler probe  shal l  gen -

erale an  u l t r a son ic pu l se wi th a  m i n i m u m

  f r eq u en cy

  of 30 000

 

O  ̂ \\

H z.

6.3.3

  Receivcr Probe

— T h e

  r ece iver

  probe  shal l  be of a

similar  size

  an d

 compatile

 des ign  lo

  th è

  t r an smi t t e r p robe  an d

used to  de tec t  th è  arr ivai of thè uhrasonic pulse generated by

th è  transni i t te r  probe.

6.3.4  Probe Centralizer— If

  thè

  r ece iver

  or

  t r a n s m i t l e r

probes .

  or both, are less  than

  ha l f

  th è

  access

  due t d iameter ,

each probe shall be

  fitted

  wi lh

  centra l izers

  w i t h  e f l ec t i ve

d iameter  equ iva l en t  to al  least  50 % o f  th è  access

  d u c i

d iame t e r .  It  shal l be designed to  m i n i m i z e  any  poss ib l e

snagg ing   on irregularit ies in

  th è

  inner  access

  d uc i

  w a l l .

6.3.5   Signat

  Transmission

  Cables— T h e   s ignal cables used

to deploy

  ihe

  probes and transmit data from  thè  probes shal l be

su f f ic ien t ly  robust  lo supporl  th è  p robes '  w e i g h t . T h e c a b l e

shall

  b e

  abrasion resis tan i

  to

  allow repeated

  iield

  use and

main t a in   f l e x i b i l i t y   in

  th è

  range of

  an t i c ipa ied t empera tures .

A li   cable connectors  or  splices.  if  any, shall  b e  w a t e r l i g h t .

Page 3: Standard Test Method for Crosshole Testing

8/20/2019 Standard Test Method for Crosshole Testing

http://slidepdf.com/reader/full/standard-test-method-for-crosshole-testing 3/4

D6760

Where thè  signal  transmiss ion

  cub le s

  e x i t  th è  access  duc i ,

suitable  cable guides. pulleys  or  cush ion ing  materia shall be

fitted inside thè  access  ducts to m i n i m i z e  abrasion and gener-

ally  assist  w i t h

  smooth  dep loymcn l o f thè

  probes .

6.3.6  Probe

  Depth-Meaxuring

  Device—The  signal  cables

shall

  b e passed  over or through a  p u l l e y w i t h  a dep th-encoding

dev ice

  to determine

  th è

  depth lo

  i l i o   local ion

  of  th è transmit ler

and receiver on thè  probes  in thè  access duc t s th roughoui

  th è

test.  The design of thè depth-measi i r ing device  sha l l  be such

ihal

  cable slippage shall not

  occur .

  Pre ie rab ly

  a

  separate

deplh-measuring

 dev ice ,

 s u c h

  as   d i  ree  m a r k in g s  on  ine

  cables,

shal mon itor each  probe  separate i y   su  th è

 e xa c t

  depth of  each

probe is

 k n o w n

  al

  a l i  t imes.  (A l l e rna te i y

  a single

 p u l l e y  can

  b e

connected

  to one

  electronic depth encuder ,  b u i  then  th è probes

must remain  a t  th è  same  k n o w n  re l a t i ve  eleva t ion  dif te rence

for   th è

  entire

  test.

Th e  deplh-measuriniz

  device

  shall  be

accu ra te

  to

  w i i h i n

  1 % of

  th è

  access

  duc i  l eng th ,

  or

  0.25

  m,

whichever i s

  larger.

6.4

  Apparatus  for

  Reconling

Pmcessin\>  an d  Displaying

Data:

6.4.1

  Genera/—The  s ignals

  freni

  th è  t ransmit te r  and re-

ce ive r probes

  and  thè

  dep th-measu r ing

  device shal l  b e  trans-

mitted

  to a field

  r i igged,  de  ba t i e r y  powered .  c on pu t e r i z ed

apparatus  fo r  recording,

  processili'-.

1  ar.d

  d i sp lay ing

  th è  data  in

th è

  form

  of

  an

  ul trasonic profi le. \ l  sche r na t i c  ar range-

ment  for thè test apparatus  is   i l l u s t r a t e d   in F ig  2. The  appa ra tus

shall

  generate

 pulses  from thè

  tra: sini:ter

  probe ei ther at f ixed

depth inlervals  or al f ixed  l ime

  i n t e rva . s .  In thè

  la t ter  case,

  ih e

deplh shall be recorded  and assigned to eacli  pu lse c a p t u r ed b y

th è

  appa ra lus

  fo r  thè

  instani  o f p u N e

  generat'.on.  The

  rate

  of

pul se

  generat ion by

  either

  meihoJ  s h ; . l l

  genera te a i

  leasl  one

ulirasonic

  pu l se  fo r  every required depth  inserva i ,  lyp ica l ly 50

m m   or

  less.

  The appa ra tus  sh; : i ì l iave

  ad ius t ab le

  gain to

op t imize

  detection  of

  ih e  i ransrm' iec: pulse  t > \ è

  r ece iver

probe for

  th è

  concre te  under test .

6.4.2

  Recording Apparatus

— 1

  neh

  t ran smined

  u l t r a son ic

pulse shal l

  immedia te l y

  start

  th è  d ; i t a

  a cqu i s i i i on

  fo r

  th è

receiver probe. A n a l og  s ignais of  a r  u l i rasonx 1 pu l se measured

b y   th è

  rece ìv ing

 probe

  shall

  b e  d i g : t i / e J  by an analog to

 d ig i ta i

convel ler

  w i l h  a  m i n i m u m a m p l k u d e

  l e so l u i on

  of  1 2   b i t s and

a minimum sampl ing   i requency   o : 2 5 ( <

 000

  H / . The  apparatus

shall

  read

  th è

  d ep t h - m ea su r i n g  d e v i c e  and

  ass ign

  a  depth  to

each

  d i g i t ke d

  u l i r a son i c pu l se .  Tlie  a ppa r a l u s shal l  store these

ravv

  digitized ultrasonic

  pulses

  a:id ine

  pr;>cessed

  data from

each

  u l lrasonic

  profi le

  fo r

  ea c h pa ; r

 of  access

  clucis.  A l i  stored

data

  sha l l

  have

  i d e n t i f y i n g  headf

  .marma: .vi a t tached to i l

escrib ing thè

  lesi  local ion.  profi le  idenlif ier.  da te s iamp a nd  al i

er t inent informat ion  regarding  th è  t e^ .

6.4.3  Apparatili-

  far

  Processing  Data—The  a ppa r a l u s  fo r

processing

  thè

  data

  shall

  be a  digita i computer  or  micropro-

cessor

 capab le of ana lyz ing ali  data to

  identi fy

  a t

  leasl

 thè first

arr ivai

  and  energy  of thè transmit ied ul trasonic pulse a t thè

receiver

 probe  fo r

 each

  depth interval.  Th e  data shall then  be

compiled into a single ultrasonic profile for each

  d u c i

  pai r .

6.4.4

  Apparatus

  far

  Display

  of  Measured Data—The  appa-

ra tus shal l be capable of displaying  th è r aw r ece iver u l t r a son i c

pulses lo  conf imi  data  qua l i t y  d u r i n g

  acqu is i t ion .

  A fter data

acquisi t ion.

  th è

  apparatus shal l be capable of displaying  th è

raw data of each ultrasonic pulse along  thè  ent i re pi le length.

The

  apparatus shal l  also  display

  th è  processed

  u l t r a son i c

profile.  Th e  apparatus  may

  optionally

  include  a printer  for on

site  o u t p u t

  of results.

7 Procedure

7. 1  Jnsrallation of  Preforme  d Access  Ducts:

7.1.1  General—The  access

  ducts shall  b e  suppl i ed  and

installed  during  construction  by or in  cooperai ion  w i th ihe

coniractor of thè pi le or s t ruc tu re to be tesled. Th e  total  n u m b e r

of

  installed  access

  duc t s i n

  th è

  p i l e or s t r uc ture  shou ld  b e

chosen   consis tenl wilh good coverage

  of ihe

 cross  seci ion.

 A s

a guide,  th è  number of access  d u c t s  is

  often

  selected as one

du c i  for every 0.25 to 0.30 m of pi le diameler,  w i l h  a m i n i m u m

of three access d u c t s . spaced  equa l ly  around thè c i rc u m t e r en c e .

Typical  access  du c i  l ayou l  coni ìgurat ions for

  v a r i o u s

  s t ruc t u ra l

elements  are  il lustraled  in  Fig.  3.

7.1.2  Preformati  Access

  Tube

  Preparano/ -

  Th e

  access

tubes  shall

  b e

  stra ight

 a nd

  free  from

  in terna i  obs t ruc t ions .  Th e

exierior  tube  surface  shall be free

  from

  contamina i ion  ( for

example ,  oil .

  dir t ,  loose

  rust.

  mil i

  scale,

  etc.),

  and for  p l a s t i c

t u b e s

  th è

  surface  shal l  b e  fu l ly  roughened  b y  abrasion pr ior io

installalion. to  ensure  a good bond between thè tube surface

and  th è

  su r rounding

  concrete. The ends of

  th è  t u b e s

  sha l l  b e

undamaged

  and  su i l ab ly  prepared  fo r

  ih e

  end  c a p s  and

  c ou -

pl ing System adopted. The  access  l u b e s sha l l  be c lose-ended  al

th è

  bol lom

  and

  fìtted  w i th  r emovable

  end

  caps a i  th è

  lo p  to

prevent

  eniry

  of concrete or

 foreign  objecis ,

  w h i c h

 c ou l d  b lock

th è  tubes prior lo tesiing operaiions.

7.1.3

  Preformaci

  Access

  Tube  Extenaions

— If  ex tens ion

  of

thè access  tubes is necessary  due io

  long  tube

  lengths, access

t u b e

  coup l ings  sha l l

  b e

  used  w h i c h  preven t s l u r r y

  or

  grout

ingress dur ing construct ion.  B u t t  w e l d i n g f or  siee t ube cou-

pl ings shal l  not be

  permilted.

  F or

  c ou p l i n g

  plast ic tubes,

FIG Test  Arrangement

FIG

3 Typical

 Access

 Duct Configurations

Page 4: Standard Test Method for Crosshole Testing

8/20/2019 Standard Test Method for Crosshole Testing

http://slidepdf.com/reader/full/standard-test-method-for-crosshole-testing 4/4

D676

with  th è

  measured

  access  duci  ìeng th .  In  compar i ng  these

measurements

  a

  correction

  should he made  to  account

  fo r  th è

length  between  thè bo t tom  o f  th è  p robe  assembly to

  th è

  exact

point of thè t ransmit ter and

  receiver

  on  th è

  probe.

  T he

difference

  berween thè corrected

  measurements shall  not ex-

ceed

  1

 % of t hè

 measured

  length

  or

 ( i .25

 m. whichever is  larger.

7.6.3   Ensure  t ha t

  th è

  capiured  data  is  labeled

  w i t h  th è

  pi le

idenlification,  identi t ìcation  o f  th è  tw o access ducts  fo r thè data

set,  date  o f  test , identification  o f  th è  test  operator. and any

further necessary

 project  informai 

ori

  such

  as

  site

  an d

  location

details  as  requested  by  th è  spentier.  S to re  th è  data  an d

information

  safely.

7 .7   Completing thè

  Tesr.

7.7.1  If  th è

  ult rasonic

  profi le  i nd icn tes  an

  ano ma ly ,  then

  th è

suspecl anomaly

  zone

  rnay

  be

  fur ther

  invesiigated  by

  special

test  procedures such

  as fan

  shapecl  tests,

  tests

  w i th  th è  probes

raised

  at a fixed

  offset

  distante, or  oliici

  tomographical

techniques

  (2, 3).

  The  probes

  shai l

  he lowered to a depili of at

least

  1 m

  belovv

  thè

  anomaly

  anc raised

  to a

  deptfi

  of at

  least

1 m  above  th è

  anomaly .

7.7.2 Repeat

  7.5-7.7  fo r  th è reniain ing

 pai rs

 o f

 access  ducts.

NOTI  5 — I f

 specifice , thè accesa ductx

  ,nia\e grouu-d upor.

 completion

o f thè

  t c s t i ng .

7.8   Analysis

  of   Measurements .

7.8.1  A

 hard

  copy  o f

  th è  u l t rason i c profiles  shal l

  be

  clearly

presented  an d

  anno ta ted .

  T he  uhnisonic profi les shall  be

collated  separately

  fo r

  each

  tesi

  pi le

  or

  strutture.

  A s a

  mini -

mum,

  th è  profi le shal l include  thè

  culculated  re la t ive

  energy

an d  th è arrivai

  t ime

  or  calculated  \ > . i : v c speed

  derived

  from  th è

arrivai  t ime and tube spacing .

  The

  le i ;

  edge

  o f  thè  t radi t ional

"waterfair

  diagram also

  def ines

  ih;

  arrivai

  t ime.

  Fig.

 4

i l lus trates

  both  t h i s t rad i t i ona l  "vunerfa l l" dr. igram  shown  o n

r igh i

  an d processed  s ignals on  lei : . Tii is  dai;;  shows a special

tesi

 pile with

 purposely  instaHed

  ano ma l ies

 a t depihs o f

  1.8,

  8. 2

an d  14.2

  m

  be low  th è

  top of

  th è  ucc.-ss  duc t s ,

 s h ow i n g

  both

arrivai time

  delay

  an d

  loss

  of  s igna sirength  at each  anomaly

locat ion.

No n :   6 — I t  is  s t rong ly

  sugges ted

  tha t  ih.-

  va t c r fa l

d i ag ram

 

w hich   is a

nes t i ng  o t  ul t rasonic  puises  in an  u t raso : : i c p io t i le) b? inc lude: in t hc data

p resen t a t i o n .

  If  th è

  wa t e r fa l l d i ag ram

  i -o'  presc'iK-c.  in thc  reperì,  th è

or ig i n a i  data  must

  b e

  k e p t p e n n u n c n i l y  .m o  K ^   actxssihlc

  to

  censtruct  th è

waterfal l d iagram i f requested durin g a  posa t i l e  fu ture  review.

N O T E

  7 — F i l t e r i n g

 o r  s m o o t h i n g  o f t h .  nrccessed  re^ul ts shal be kept to

an abs o l u te

  m i n i m u m

  since excessive

  sr . io ,> th ing

  or f i i tenng  ca n  h ide

defects

  an d  t hus  lead to  improper  i n ie rp j c ta ' ì on  o '

  results .

  Thercfore,  if

an y  t ì l ier ing or smoothing of thc  datt ,  is  ;vrfonned  for thc  processed

results, thcn

  th è

  waterf a l l d iagram m us;  ;i:so  be pr.-scntctl in thc reperì.

7.8.2

  The

  results

  o f

  thè analysis  shall

  i nc lude

  th è  t ime

  o f

fìrst

 arrivai

  o f

  thè ul trasonic

  puises  (o r

  calcuiaied wave speed)

an d  Ihe  relat ive  energy

  ploi ted

  i v l a l i v c  lo   th è  pile depth to

quant i fy  th è exlent

  an d

  location o'  a n >

  appurent

  anomaly.

  A n y

further

  in terpretai ion

  is quali tative-  an c

  possib iy

  re la t ive  lo   th è

parlicular

  pile material,

  constru. ' iion characteristics of

  thè

tested

  structure,

  and thè

  apparati^

  ased.

  Interpreiai ìon there-

fore  musi

 con t a in proper  e n g i n e e r : : i L >  j t

  d g m e n t

  an d experience .

A n y

  evaluation

  o f  i n tegr i ly  is to he  nude  by  :in  eng inee r  wi th

specialized

  expe r ience

  in this fiele:.

 ;;mì

  is

 b e v o n d

  th è

  scope

  o f

th is

  standard.

SE

Lcngth 15.1212 raten

4

 t ryy

  (log)

SadB

0  1 25

  Airìvai

 Tyre  ms )

fluft 

SE

Ungth<15.1212

 meters

SpKng 0.4572

  meters

FIG 4

 Typical Ultrasonic Profile

8

Report

8. 1  Generai

— T he  test  report  shall contain

  th è

  f o l l o w i n g

i n fonna t ion   when avai lable

  o r

  applicable :

8 . 1 . 1  Ident i f icat ion  of les t ing agency,

8.1.2 Project and

  c l ient

 i den l i f i ca t i on ,

8.1.3

  Daie of

 test,

8.1.4 Description

  of thè

  tes t ing apparalus

  u n i i  an d

  probes,

an d

8.1.5

  Ident i f ica t ion  o f  test staff and of person  respons ib le  fo r

thè  validity

  of thc

 test report.

8.2   T e s i  P H e s ) :

8.2.1

  Ident i f icat ion

  an d

  location

  o f

  test

 pile.

8.2.2

  As-bui l t

  geometry

  o f

  test

  pile

  i n c l u d i n g n o m i n a i

and/or  acluai  d iameter and  lengih,

8.2.3 Test pile

  ins tal lat ion  daie

  an d

  method,  w i ih

  an y

specifìc  ins ta l la t ion  obse rva tions ,

8.2.4

  Arrangemenl  an d

  identification

  o f

  access

  ducts, rela-

t ive separat ion

 o f

 ducts,

  an d  iden t i f y i ng  des igna t i c i documen -

tation,

8.2.5

  A n y fai lure  o f

  th è probes

  to

 pen etrate

  th è

  f u l l  depth

  o f

thè access  ducts  shall  be repoited,

8.2.6  Cut -o f f  an d  g round  e ievat ion  o f  th è  pi le ,  e leva t i on  o f

each

  access duci

 top.

 o r

  length

  of access

 duci

 a b o v e

  p i le

  top al

t ime

  o f

  test,

  an d

8.2.7

  A n y

  other specific

  observat ion or

  g i ven i n fo rmat i on

relè van i

  to

  each pi le

  tesied

  (for

 example, excavaiion .  soil


Recommended