+ All Categories
Home > Documents > static-content.springer.com10.1007... · Web viewThermal behaviour of glycolic acid, sodium...

static-content.springer.com10.1007... · Web viewThermal behaviour of glycolic acid, sodium...

Date post: 29-Mar-2018
Category:
Upload: vuonghuong
View: 216 times
Download: 1 times
Share this document with a friend
11
Thermal behaviour of glycolic acid, sodium glycolate and its compounds with some bivalent transition metal ions in the solid-state A. L. C. S do Nascimento 1 , J. A. Teixeira 1 , W. D. G. Nunes 1 , D. J. C. Gomes 2 , O. Treu-Filho 1 , C. Gaglieri, M. Pivatto 4 , F. J. Caires 1,3 , M. Ionashiro 1 1 Departamento de Química Analítica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil. 2 Instituto Federal do Piauí, Campus Paulistana, Paulistana, PI, Brazil. 3 Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Bauru, SP, Brazil. 4 Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil 1 Corresponding author. Tel. + 55 (14) 3103-6088 E-mail address: [email protected]
Transcript

Thermal behaviour of glycolic acid, sodium glycolate and its compounds with some

bivalent transition metal ions in the solid-state

A. L. C. S do Nascimento1, J. A. Teixeira1, W. D. G. Nunes1, D. J. C. Gomes2, O. Treu-

Filho1, C. Gaglieri, M. Pivatto4, F. J. Caires1,3, M. Ionashiro1

1Departamento de Química Analítica, Instituto de Química, Universidade Estadual Paulista (UNESP),

Araraquara, SP, Brazil.2Instituto Federal do Piauí, Campus Paulistana, Paulistana, PI, Brazil.3Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Bauru, SP,

Brazil.4Instituto de Química, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil

1Corresponding author. Tel. + 55 (14) 3103-6088E-mail address: [email protected]

203.9475

-MS, 3.4min #203

0.0

0.2

0.4

0.6

0.8

5x10Intens.

50 100 150 200 250 300 350 m/z

Figure S1. HRESIMS spectrum of complex [Mn(gly)2]. The charged complex ion observed was [M – H]–.

207.9423

-MS, 6.2min #370

0

1

2

3

5x10Intens.

50 100 150 200 250 300 350 m/z

Figure S2. HRESIMS spectrum of complex [Co(gly)2]. The charged complex ion observed was [M – H]–.

206.9441

-MS, 10.1min #602

0.0

0.2

0.4

0.6

0.8

5x10Intens.

50 100 150 200 250 300 350 m/z

Figure S3. HRESIMS spectrum of complex [Ni(gly)2]. The charged complex ion observed was [M – H]–.

206.9441

208.9396

210.9377 214.9347 220.9582

-MS, 10.1min #602

0.0

0.2

0.4

0.6

0.8

1.0

5x10Intens.

202.5 205.0 207.5 210.0 212.5 215.0 217.5 220.0 m/z

207.9423

208.9446

-MS, 6.2min #370

0

1

2

3

5x10Intens.

204 206 208 210 212 214 216 m/z

203.9475

212.9392

204.9504

205.9456

-MS, 3.4min #203

0.0

0.2

0.4

0.6

0.8

5x10Intens.

202 204 206 208 210 212 214 m/z

212.9472

-MS, 4.7min #279

0.0

0.2

0.4

0.6

0.8

5x10Intens.

50 100 150 200 250 300 350 m/z

Figure S4. HRESIMS spectrum of complex [Cu(gly)2]. The charged complex ion observed was [M]–.

212.9383

-MS, 2.6min #156

0.0

0.5

1.0

1.5

2.0

5x10Intens.

50 100 150 200 250 300 350 m/z

Figure S5. HRESIMS spectrum of complex [Zn(gly)2]. The charged complex ion observed was [M – H]–.

212.9383

214.9351

216.9338

226.9527

-MS, 2.6min #156

0.0

0.5

1.0

1.5

2.0

5x10Intens.

210 215 220 225 230 m/z

212.9472

213.9503

214.9436

215.9444

-MS, 4.7min #279

0.0

0.2

0.4

0.6

0.8

5x10Intens.

212 214 216 218 220 m/z

Figure S6. X-ray powder diffraction patterns of the compounds.

Figure S7. Theoretical 3D structure of:the isomers: (a) coordinated by an oxygen of the

carboxylate group and the oxygen of the hydroxyl group and (b) coordinated by oxygen

of the carboxylate group.

Table S1. Theoretical geometry parameters of [MnL2].

[MnL2] Isomer A (trans) Isomer B (cis) Isomer CBond length (Å)Mn1-O2 1.88017

not optimized geometry

1.95978Mn1-O3 1.98052 2.02365Mn1-O4 1.88018 1.97103Mn1-O5 1.98060 2.04105Angles (°)O2-Mn1-O3 83.63 66.15O2-Mn1-O5 95.25 112.03O2-Mn1-O4 148.34 138.33O3-Mn1-O4 95.27 111.76O3-Mn1-O5 175.97 174.38O4-Mn1-O5 83.63 65.73

Figure S8. Theoretical 3D structure of the isomers: (a) and (b) coordinated by an

oxygen of the carboxylate group and the oxygen of the hydroxyl group in trans and cis

configuration, respectively and (c) coordinated by oxygen of the carboxylate group.

Table S2.Theoretical geometry parameters of [CoL2].

[CoL2] Isomer A (trans) Isomer B (cis) Isomer CBond length (Å)Co1-O2 1.85717 2.03370 1.93023Co1-O3 1.94276 1.89301 1.92781Co1-O4 1.85718 1.89297 1.93030Co1-O5 1.94275 2.03341 1.92776Angles (°)O2-Co1-O3 84.94 83.57 68.10O2-Co1-O5 95.35 92.64 111.89O2-Co1-O4 171.02 173.76 179.76O3-Co1-O4 95.37 100.65 111.91O3-Co1-O5 176.23 173.74 179.77O4-Co1-O5 84.93 83.55 68.10

Figura S9. Theoretical 3D structure of the isomers: (a) and (b) coordinated by an

oxygen of the carboxylate group and the oxygen of the hydroxyl group in trans and cis

configuration, respectively and (c) coordinated by oxygen of the carboxylate group.

Table S3. Theoretical geometry parameters of [NiL2].

[NiL2] Isomer A (trans) Isomer B (cis) Isomer CBond length (Å)Ni1-O2 1.84153 1.94123 1.91739Ni1-O3 1.88898 1.83097 1.91364Ni1-O4 1.84147 1.82939 1.91744Ni1-O5 1.88901 1.93571 1.91368Angles (°)O2-Ni1-O3 86.06 86.71 68.50O2-Ni1-O5 94.09 93.88 111.50O2-Ni1-O4 175.75 179.53 179.99O3-Ni1-O4 94.02 92.87 111.50O3-Ni1-O5 176.68 179.00 179.99O4-Ni1-O5 86.07 86.55 68.50

Figure S10. Theoretical 3D structure of the isomers: (a) and (b) coordinated by an

oxygen of the carboxylate group and the oxygen of the hydroxyl group in trans and cis

configuration, respectively and (c) coordinated by oxygen of the carboxylate group.

Table S4. Theoretical geometry parameters of [CuL2].

[CuL2] Isomer A (trans) Isomer B (cis) Isomer CBond length (Å)Cu1-O2 1.84538 2.03370 2.00964Cu1-O3 1.97927 1.89301 1.99930Cu1-O4 1.84455 1.89297 2.00956Cu1-O5 1.97845 2.03341 1.99925Angles (°)O2-Cu1-O3 85.68 83.57 65.76O2-Cu1-O5 92.27 92.64 114.23O2-Cu1-O4 130.39 173.76 179.80O3-Cu1-O4 93.30 100.65 114.25O3-Cu1-O5 176.53 173.74 179.64O4-Cu1-O5 85.88 83.55 65.76

Figure S11. Theoretical 3D structure of the isomers: (a) coordinated by an oxygen of

the carboxylate group and the oxygen of the hydroxyl group in trans configuration and

(b) coordinated by oxygen of the carboxylate group.

Table S5. Theoretical geometry parameters of [ZnL2].

[ZnL2] Isomer A (trans) Isomer B (cis) Isomer CBond length (Å)Zn1-O2 1.88860

not optimized geometry

2.03618Zn1-O3 2.11262 2.06929Zn1-O4 1.88858 2.06913Zn1-O5 2.11264 2.0368Angles (°)O2-Zn1-O3 82.23 64.62O2-Zn1-O5 110.93 138.13O2-Zn1-O4 153.94 135.60O3-Zn1-O4 110.93 132.82O3-Zn1-O5 121.05 135.63O4-Zn1-O5 82.23 64.62


Recommended