+ All Categories
Home > Documents > STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

Date post: 06-Feb-2017
Category:
Upload: hoangthu
View: 225 times
Download: 2 times
Share this document with a friend
51
STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH FACTOR MIXTURE MODELS A Degree Thesis Submitted to the Faculty of the Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona Universitat Politècnica de Catalunya by Joan Pallarès Sadó In partial fulfilment of the requirements for the degree in Audiovisual Systems ENGINEERING Advisor: Stefan Weinzierl Berlin, February 2016
Transcript
Page 1: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

STATISTICAL AND ACOUSTICAL ROOM ANALYSIS

THROUGH FACTOR MIXTURE MODELS

A Degree Thesis Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya by

Joan Pallarès Sadó

In partial fulfilment of the requirements for the degree in Audiovisual Systems ENGINEERING

Advisor: Stefan Weinzierl

Berlin, February 2016

Page 2: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

1

Abstract  

The   acoustics   of   music   rooms,   theatre   halls   and   venues   in   general   depend   greatly   on   the  materials   with   which   they   have   been   built   and   designed.   Yet   the   size,   dimensions   and  morphology  are  factors  that  play  a  fundamental  roll  in  the  acoustical  properties  of  the  rooms.  300   concert   venues   from   all   over   the   world   have   been   analysed   and   documented   in  dependence  on  these  factors  in  order  to  respond  the  following  aspects.    On  the  one  hand,  the  aim  of  the  research  is  to  prove  if  there  is  a  correspondence  between  the  morphological  shape  of  rooms  and  their  acoustical  properties.  In  other  words  it  is  intended,  by   statistical   analysis,   to   carry   out   a   classification   in   classes   in   order   to   verify   if   such  assumption  is  true  or  not.  Moreover,  a  set  of  new  acoustical  variables  is  exposed  as  a  result  of   the   combination   of   original   (primitive)   acoustical   parameters.   For   such   achievements   a  statistical   mixture   model   combining   Latent   Profile   Analysis   (LPA),   Exploratory   Factor  Analysis  (EFA)  and  Common  Factor  Analysis  (CFA)  has  been  developed.    

   

 

 

Page 3: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

2

Resum  

L’acústica  de  les  sales  de  concerts,  teatres  i  espais  escènics  en  general  depèn  en  gran  mesura  dels  materials  a  partir  dels  quals  s’han  dissenyat  i  construït.  No  obstant  això,  les  dimensions  i  la  morfologia   són   factors  que   condicionen   també   les  propietats   acústiques  de   les   sales.   En  aquest   sentit,  un   total  de  300  sales  d’arreu  del  món  han  estat  documentades   i   analitzades,  d’acord  amb  els  seus  paràmetres  acústics,  per  tal  de  donar  resposta  als  següents  aspectes.  En  primer  terme,  l’objectiu  de  la  recerca  és  estudiar  si  existeix  una  correspondència  entre  la  morfologia   de   les   diferents   sales   i   l’acústica   d’aquestes.   En   altres   paraules   es   pretén,  mitjançant   l’anàlisi   estadística,  dur  a   terme  una  classificació  per   classes  amb   la   finalitat  de  comprovar   si,   efectivament,   es   verifica  o  no   el   plantejament.   En   segon   lloc,   es  presenta  un  seguit   de   noves   variables   acústiques   les   quals   són   fruit   de   la   combinació   de   paràmetres  acústics  originals   (primitius).  Per   tal  d’assolir  ambdós  objectius   s'ha  emprat  un  model  que  combina  eines  d'anàlisi  estadística  com  són  LPA  (Latent  Profile  Analysis),  EFA  (Exploratory  Factor  Analysis)  i  CFA  (Common  Factor  Analysis).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 4: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

3

Resumen  

La   acústica   de   las   salas   de   conciertos,   teatros   y   espacios   escénicos   en   general   depende   en  gran   medida   de   los   materiales   a   partir   de   los   cuales   se   han   diseñado   y   construido.   Sin  embargo,   las   dimensiones   y   la   morfología   son   factores   que   condicionan   también   las  propiedades  acústicas  de   las  salas.  En  este  sentido,  un  total  de  300  salas  de  todo  el  mundo  han   sido   documentadas   y   analizadas,   de   acuerdo   con   sus   parámetros   acústicos,   para   dar  respuesta  a  los  siguientes  aspectos.  En  primer  término,  el  objetivo  de  la  investigación  es  estudiar  si  existe  una  correspondencia  entre   la   morfología   de   las   diferentes   salas   y   la   acústica   de   éstas.   En   otras   palabras   se  pretende,   mediante   el   análisis   estadístico,   llevar   a   cabo   una   clasificación   con   el   fin   de  comprobar   si,   efectivamente,   se   verifica   o   no   dicho   planteamiento.   En   segundo   lugar,   se  presenta  una  serie  de  nuevas  variables  acústicas   las  cuales  son   fruto  de   la  combinación  de  parámetros  acústicos  originales  (primitivos).  Para  alcanzar  ambos  objetivos  se  ha  empleado  un  modelo  que  combina  herramientas  de  análisis  estadístico  como  son  LPA  (Latent  Profile  Analysis),  EFA  (Exploratory  Factor  Analysis)  y  CFA  (Common  Factor  Analysis).  

Page 5: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

4

To  my  parents  Toni  and  Mª  Antònia,    

my  sister  Anna  and  my  brother  Jordi.

Page 6: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

5

Acknowledgements  

I’d   like   to   express  my  gratitude  and  gratefulness   to  Dr.Stefan  Weinzierl,   head  of  TU-­‐Berlin  Audiokommunikation  Department  and  advisor  of  the  project,  for  giving  me  the  opportunity  of  carrying  out  my  thesis  alongside  with  the  team  he  leads.    

Secondly,  to  Dr.  Steffen  Lepa,  member  of  the  Audiokommunikation  Department  and  advisor  of   the   research,   for  providing  me  with   the  appropriate   statistical  background   that   enabled  the  mathematical  analysis  and  the  consequent  achievement  of  the  final  results.    

Moreover,   to   the   staff  members  and   fellow  students  of   the  Audiokommunikation  Research  Group  in  the  collection  of  data,  hints  and  endorsement.  

Likewise,  my  thankfulness  to  Professor  Antoni  Carrión  Isbert   for  his  support  as  co-­‐tutor  of  the  project  at  home  university,  Telecom  Barcelona-­‐UPC.  

Finally,   to   Technische   Universität   of   Berlin   for   hosting   me   during   this   period   and   for  providing  me  with  the  necessary  tools  and  infrastructures  in  order  to  develop  the  research.    

Page 7: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

6

Revision  history  and  approval  record  

Revision   Date   Purpose  

0   02/01/2016   Document    creation  

1   02/02/2016   Document    revision  

 

 

DOCUMENT  DISTRIBUTION  LIST  

 

 Name    e-­‐mail  

 Joan  Pallarès  Sadó   [email protected]  

Stefan  Weinzierl   stefan.weinzierl@tu-­‐berlin.de  

Steffen  Lepa   steffen.lepa@tu-­‐berlin.de  

 

 

Written  by:   Reviewed  and  approved  by:  

Date   02/01/2016   Date   02/02/2016  

Name   Joan  Pallarès  Sadó   Name   Stefan  Weinzierl  

Position   Project  Author     Position   Project  Supervisor  

Page 8: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

7

Table  of  contents  

Abstract  ............................................................................................................................................................................  1  

Resum  ...............................................................................................................................................................................  2  

Resumen  ..........................................................................................................................................................................  3  

Acknowledgements  .....................................................................................................................................................  5  

Revision  history  and  approval  record  ................................................................................................................  6  

Table  of  contents  ..........................................................................................................................................................  7  

List  of  Figures  ................................................................................................................................................................  8  

List  of  Tables  ..................................................................................................................................................................  9  

1.   Introduction  ......................................................................................................................................................  10  

1.1.   Requirements  and  Specifications  ...................................................................................................  10  

1.2.   Work  Plan  .................................................................................................................................................  11  

2.   State  of  the  art  ..................................................................................................................................................  16  

3.   Methodology  /  project  development:  ....................................................................................................  17  

4.   Results  ..................................................................................................................................................................  25  

5.   Budget  ..................................................................................................................................................................  36  

6.   Conclusions  and  future  development:  ...................................................................................................  37  

Bibliography:  ..............................................................................................................................................................  38  

Appendices  (optional):  ...........................................................................................................................................  40  

Glossary  .........................................................................................................................................................................  50  

Page 9: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

8

List  of  Figures  

Figure  1  page  19  

Figure  2  page  19  

Figure  3  page  20  

Figure  4  page  20  

Figure  5  page  20  

Figure  6  page  20  

Figure  7  page  20  

Figure  8  page  20  

Figure  9  page  21  

Figure  10  page  21  

Figure  11  page  21  

Figure  12  page  21  

Figure  13  page  22  

Figure  14  page  22  

Figure  15  page  22  

Figure  16  page  23  

Figure  17  page  24  

Figure  18  page  24  

Figure  19  page  26  

Figure  20  page  29  

Figure  21  page  30  

Figure  22  page  30  

Figure  23  page  32  

Figure  24  page  32  

Figure  25  page  33  

Figure  26  page  33  

Figure  27  page  34  

Figure  28  page  34  

Figure  29  page  34  

Figure  30  page  35  

 

Page 10: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

9

List  of  Tables  

Table  1  page  22  

Table2  page  26  

Table  3  page  27  

Table  4  page  27  

Table  5  page  27  

Table  6  page  29  

Table  7  page  31  

Table  8  page  31  

Table  9  page  31  

 

 

 

   

Page 11: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

10

1. Introduction  

Music   rooms,   theatre   halls,   opera   houses   and   venues   in   general   are   daily   frequented   by  thousands  of  people  around  the  world  looking  forward  to  a  vibrant  artistic  experience.  The  acoustics   play   an   essential   roll   in   it   and   engineers   are   conscious   that   an   appropriate  acoustical  design  can  bring  the  spectator’s  sensorial  enjoyment  to  another  level.      This   project   has   been   developed   under   the  willingness   to   investigate   the   acoustics   of   300  rooms   from   an   overall   perspective.   That   is,   considering   all   those   factors   that   have   a  significant   impact  on  the  acoustical  behaviour  of  a  room.  By  this,  variables  such  as  volume,  height,  width,   surface  of   the   stage  or   the  number  of   seats-­‐  among  many  others-­‐  have  been  included   as   part   of   the   acoustical   analysis.   The   research   aims   to   accomplish   two  principal  goals.  Yet,  a  previous  work  of  data  acquisition  has  been  carried  out  in  order  to  satisfy  such  purposes.   The   resulting   database   contains   a   total   number   300   rooms   with   34   acoustical  variables  defining  each  sample.    The  first  objective  is  to  carry  out  a  classification  by  classes  of  the  whole  database  by  using  a  factor  mixture   statistical  model   that   combines  CFA,  EFA  and  LPA   (Latent  Profile  Analysis).    With   that,   the   purpose   is   to   test   whether   such   clustering   responds   to   a   morphological  pattern  and,  therefore,  prove  that  there  exists  a  correspondence  between  the  shape  and  the  acoustical  parameters  that  describe  a  certain  room.      The   second   part   of   the   research   is   focused   on   the   existence   of   a   new   set   of   acoustical  parameters.   The   goal   is   to   define  new  variables   as   a   result   of   applying  Exploratory  Factor  Analysis  to  the  34  acoustical  original  (primitive)  parameters  that  are  in  the  database.    To  do  so,  the  document  consists  on  a  theoretical  part  divided  in  two  main  blocks.  On  the  one  hand,  the  generation  of  the  database  and  the  acoustical  parameters  taking  part  in  it.  As  far  as  the  second  block   is  concerned,   the  subsequent   treatment  of   the  data,   the  methodology  and  statistical  analysis  used  for  the  obtaining  of  the  results  are  detailed.  Besides,   the   study   is   part   of   a   larger   project   within   the   TU-­‐Berlin   Audiokommunikation  research   framework.   Moreover,   the   software   and   methods   that   are   presented   in   this  document  have  been  used   in  some  projects  within   the  Akustik  Department   as  part  of  other  researches.  Basically,   it   is   two  mathematical   tools   that   take  part   in   the  development  of   the  results.   On   the   one   hand,   Latent   Profile   Analysis   and   on   the   other   hand   Factor   Analysis.  Further   on   the  document  both   concepts   are  widely  detailed.  More,   a   combination  of   these  two,  resulting  in  the  so-­‐called  Factor  Mixture  Model  (FMM)  has  been  used  for  the  obtaining  of  the  results.    

 

Page 12: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

11

1.1. REQUIREMENTS  AND  SPECIFICATIONS  

In  regards  with  the  acquisition  of  the  database  the  following  is  required:    

-­‐ A  total  number  of  300  sample  rooms  in  order  to  get  to  perform  a  solid  statistical  analysis  and  so  achieve  satisfactory  results    

-­‐ The  values  within  it  are  obtained  according  to  standardized  measurements  [1]    As  for  the  statistical  analysis:      

-­‐ MPLUS  software  is  required  for  the  procedure

-­‐ Ill  models  need  to  be  avoided  since  they  do  not  provide  reliable  results

-­‐ LPA  models  are  acceptable  if  they  have  been  replicated  a  number  of  times  with  different  random  start  values,  for  instance  10  times.  

-­‐ The  optimum  LPA/LFA  mixture  model  corresponds  to  the  one  with  lowest  BIC  

value

-­‐ The  number  starting  values  of  the  model  must  be  a  multiple  of  the  number  of  processors  selected  for  such  procedure  

   

1.2. WORK  PLAN  

 

1.2.1.    WORK  BREAKDOWN  STRUCTURE  

 

Page 13: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

12

1.2.2.    WORK  TASKS  &  MILESTONES

Project:  Room  acoustical  statistical  analysis   WP  ref:  (WP1)  

Major  constituent:  LPA/EFA  statistical  background   Sheet  1  of  4  

Short  description:  

To  get  familiar  with  the  LPA  and  EFA  statistical  models  as  a  tool  to  interpret,  compute  the  final  database.    

 

Planned  start  date:  09/10/2015  

Planned  end  date:    07/11/2015  

Start  event:  09/10/2015  

End  event:    07/11/2015  

Project:    Room  acoustical  statistical  analysis   WP  ref:  (WP2)  

Major  constituent:  Generation  of  the  database   Sheet  2  of  4  

Short   description:   To   gather   information   regarding  theatres   &   opera   halls   from   all   over   the   world   based   on  their  acoustic  design  specifications.  About  85-­‐90  samples  in  total  so  that  a  first  statistical  analysis  can  be  performed.  

Planned  start  date:  09/10/2015  

Planned  end  date:  21/12/2015  

Start  event:  09/10/2015  

End  event:  22/12/2015  

Internal   task   T1:   To   get   an   initial   database   approach   by  making  use  of  Leo  Beranek  Book  “Theaters  &  Opera  Halls”,  which  includes  a  total  number  of  87  rooms.    

Internal   task   T2:   To   expand   the   database   through  research   within   journals,   publications   from   AES   Journal,  JASA,  Acta  Acustica  &  Audio  Engineering  Society  in  order  to  expand  the  database.    

Page 14: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

13

Project:  Room  acoustical  statistical  analysis   WP  ref:  (WP3)  

Major  constituent:  Mplus  Software     Sheet  3  of  4  

Short  description:    

To   get   familiar   with   Mplus   software   in   order   to   execute   and  compute   all   the   calculations   required   with   the   database  obtained.    

Planned  start  date:  09/10/2015  

Planned  end  date:  28/12/2015  

Start  event:  24/10/2015  

End  event:  10/01/2016  

Internal   task  T3:  Estimate  Exploratory  Factor  analysis  (EFA)  to  determine  latent  factor  structure  for  the  indicators.    

Internal   task   T4:   Fit   simple   “Mixture-­‐Factor-­‐Models”   (LPA  with   underlying   factors)   for   all   numbers   of   classes   with  homogenous   variances   across   classes   and   latent   Factors  (introducing   BY-­‐statements   to   model   specification   with  regards   to   results   from   step  5)   until   reaching   a   turning  point  for  BIC.    

Internal   task   T5:   Fit   complex   “Mixture-­‐Factor-­‐Models”   (LPA  with   underlying   factors)   for   all   numbers   of   classes   with  heterogeneous   variances   across   classes   and   partly   correlated  indicators  until      reaching  a  turning  point  for  BIC.    

Internal  task  T6:  Choose  final  model  from  all  7  model-­‐variants  with   the   best  BIC   and  produce   graphics   of   standardized   class  profiles   (incl.  Ds)   and  also   tables  with  non-­‐standardized   class  profiles  (incl.  SDs).  

 

Page 15: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

14

Project:  Room  acoustical  statistical  analysis   WP  ref:  (WP4)  

Major  constituent:  Results   Sheet  4  of  4  

Short   description:   To   obtain,   interpret   and   expose   the   final  results   in   relation   to   the   initial   proposals.   Furthermore,   to  come  up  with  the  corresponding  conclusions.  

Planned  start  date:  07/10/2015  

Planned  end  date:  28/12/2015  

Start  event:  10/01/2016  

End  event:  19/01/2016  

Internal   task  T7:  To  obtain  the  final  model  classification  as  a  result  of  the  mixture  model  analysis.  For  each  class,  to  make  a  table  including  the  probability  of  each  sample.  More,  the  name  of  the  auditorium/room  and  their  shape.  

Internal  task  T8:  To  display  the  standardized  class  profiles  in  dependence  on   the   factors   that  have  been  achieved.  Likewise,  the  same  for  the  variables  included  in  each  of  the  factors.    

Internal   task   T9:   To   display   the   non-­‐standardized   class  profiles  in  dependence  on  the  factors  that  have  been  achieved.  Likewise,   the   same   for   the   variables   included   in   each   of   the  factors.    

Internal   task  T10:  To  expose  the  linear  dependence  across  a  factor   and   the   variables  within   it.   That   is,   the   achievement   of  the   “new”   variables   as   a   result   of   linear   combination   of  primitive  ones.    

Internal  task  T11:  To  discuss  and  expose  the  final  conclusions  according  to  the  results  achieved.  

 

1.2.3.    INCIDENCES  &  WORK  PLAN  MODIFICATIONS  

 

After  performing  a  first  statistical  analysis  approach  with  the  MPlus  software,  we  realized  we  had  to  expand  the  database  dimensions  in  order  to  obtain  more  satisfactory  results.  That  is,  not   only   the   number   of   samples,   but   also   the   number   of   variables   per   sample.   Hence,  we  increased  the  database  from  90  sample  rooms  per  10  variables  each  to  300  rooms  with  34  variables  per  sample.    On  the  other  hand,  the  MPlus  software  calculations  required  a  great  amount  of  time  due  to  the   increase   of   the   data.   For   that   reason,   we   had   to   make   use   of   the   high   performance  computer   provided   by   the   Akustik   TU-­‐Berlin   Department.   However,   it   was   not   always  

Page 16: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

15

accessible  and  some  time-­‐planning  modifications  had  to  be  made.  Furthermore,   for   initial   analysis   we   considered   all   the   possible   LPA   and   LFA   statistical  models  (that   is,  simple  and  complex  models)  with   the  purpose  of  getting  the  most  suitable  classification  of  the  database.  However,  we  realized  that  for  this  project  in  particular,  there  is  significant   correlation   across   some   of   the   parameters.     That   is   e.g   the   reverberation   time  (RT)  with   the  early  decay   (EDT)   time  and   the  clarity   (C80).   In   this   context,  we  considered  that  basic  LPA  models   (from  1   to  8  classes)  didn’t  contribute   to   the  database  classification  and   for   this   reason   we   decided   to   compute   Mixture   Models   as   a   priority.   Under   these  assumptions,  we   realized   that   better   results  were   achieved.   That   is,   best   entropy   and   BIC  values.      

1.2.4  GANTT  DIAGRAM  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Page 17: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

16

2. State  of  the  art    

The   development   of   clustering  methodology   has   been   a   truly   interdisciplinary   endeavour.  Taxonomists,   social   scientists,   psychologists,   biologists,   statisticians,   mathematicians,  engineers,  computer  scientists,  medical  researchers,  and  others  who  collect  and  process  real  data  have  all  contributed  to  clustering  methodology.  The  appliance  of  clustering  in  general  to  all  these  sciences  have  led  to  relevant  investigations  [2]  [3].  In  regards  with  the  motivation  of  our  project,  statistical  methods  such  as  EFA,  LPA  and  FMM  are  today  being  implemented  in  countless  number  of  studies.  Especially  FMM,  they  are  considered  to  be  mathematically  more  powerful  as  they  arise  from  a  combination  of  EFA  and  LPA  and  so  offer  more  reliable  results.  As   it   is   exposed   in   the   introduction,   these   models   are   the   tools   through   which   we   are  developing  the  research.  In  this  respect,  acoustics   is  the  subject  that   is  under  investigation.  Acoustical   engineering   is   a   field   that   comprehends   a   wide   range   of   sub   disciplines:   from  urban   sound   legislation   to   acoustical   conditioning   in   restaurants…  Yet,   in   our   case  we   are  focused  on   the  acoustical  parameters   that  define   the  behaviour  of   concert  halls   and  music  rooms   in   general.   With   this,   we   can   fit   this   study   in   the   sub   discipline   of   architectural  acoustics.    Back   to   the   ancient   times   architectural   acoustics   were   already   a   matter   of   important  relevance.  Greek  classical   theatres   like  Epidaurus  from  IV  b.  C  or  Roman  Classical  Theatres  like  Aspendos  (Turkey)  are  a  good  example  of  that.  They  have  emerged  as  paradigms  of  the  perfect  harmony  among  acoustics  and  architecture.  Throughout  the  centuries  and  to  the  very  present,   such   conjunction   is   still   a   current   element   of   discussion   among   engineers   as   the  marriage   of   these   two   is   often   difficult   to   achieve.   That   is,   to   provide   a   room-­‐   with   its  predefined   characteristic   shape-­‐  with   the   proper   acoustical   design   as   so   art   performances  can  be  correctly  developed.      In  the  recent  times  there  has  been  a  great  deal  of  research  in  this  respect,  starting  from  the  discovery   of   the   RT   formula   by  Wallace   C.   Sabine.   Over   the   20th   century  many   acoustical  parameters  were   discovered  with   the   purpose   of   expressing   the   behaviour   of   rooms   and,  what’s  more,  the  feeling  that  such  rooms  produce  to  the  listener.  For  instance,  Leo  Beranek,  considered  to  be  the  father  of  concert  halls  acoustics,  is  the  introducer  of  parameters  such  as  Initial  Time  Delay  Gap   (ITDG)   [4]  [5],  measurement   to   express   the   subjective   impression  of  intimacy   of   the   listener.   As   can   be   seen,   the   goal   of   the   investigators   is   to   exhaustively  characterize  all  the  phenomena  that  occur  in  interior  spaces.  That  is,  to  numerically  express  the   aspects   taking   part   in   it.   To   do   so,   the   contribution   of   mathematics   to   this   science   is  fundamental  and  this  is  exactly  what  this  project  aims.    

 

 

Page 18: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

17

3. Methodology  

3.1  DATABASE    

The  development  of  the  project  starts  with  the  obtaining  of  the  database.  In  this  respect,  the  data  was   collected   from   the   following   sources:  Concert  Halls  &  Opera  Houses   [4]   [5],  Pop  &  Rock   Venues   [6],   TU-­‐Berlin   Akustik   Department   Simulations   [7]   and   finally   a   set   of   paper  publications  within  journals  such  as  Acta  Acustica  [8],  Audio  Engineering  Society  Journal  [9-­‐20]  and   Acoustical   Society   of   America   [21]   [22].   A   part   from   this,   measurements   from   Nagata  Acoustics  Company  involving  a  large  number  of  rooms  are  part  of  it  too.      In   total,   300   venues   from   all   over   the   world   are   documented.   Moreover,   each   of   them   is  characterized   by   34   acoustical   parameters.   Though,   there   are  missing   values   in   the   great  majority   of   the   cases.   This   is   due   to   the   fact   that   the   samples   are   extracted   from  different  publications   in   which   certain   measurements   are   not   considered.   Next,   the   acoustical  parameters  included  in  the  database  are  exposed.    Reverberation  Time  (RT  in  sec):  time  that  it  takes  for  the  sound  in  a  hall  to  decay  from  0dB  to  -­‐60dB.  Likewise,  as  the  time,  multiplied  by  2,  that  it  takes  for  the  sound  to  decay  from  -­‐5dB  to  -­‐35dB.    It  expresses  the  degree  of  liveliness  or  brightness  of  the  room.  An  enclosure  with  a  large  RT  is  called  “bright”  or  “alive”,  while  it   is  known  to  be  “off”  in  case  RT  is  small.  In  the  database  both  RT  measured  under  occupied  and  unoccupied  conditions  are  considered.    

Early  Decay  Time   (EDT   in   sec):   time   that   it   takes   for   a   signal   to  decay   from  0dB   to   -­‐10dB  relative   to   its   steady   state   value.   EDT   is   more   related   to   the   subjective   impression   of  liveliness  than  the  RT.  In  the  database  both  EDT  measured  under  occupied  and  unoccupied  conditions  are  considered.    

Clarity   Factor   (c80   in   dB):   ratio   of   the   energy   in   the   first   80msec   of   an   impulse   sound  arriving   at   a   listener’s   position   divided   by   the   energy   in   the   sound   after   80msec.   Such  parameter   indicates   the   degree   of   separation   of   the   individual   sounds   taking   part   in   a  musical   performance.   Moreover,   C80   is   highly   correlated  with   RT.   Rooms  with   large   RT’s  (bright)   result   in   low   C80   values.   Both   C80   occupied   and   C80   unoccupied   included   in   the  database.  

Strength  Factor  (G  in  dB):  ratio  of  the  sound  energy  at  a  seat  in  a  hall  that  comes  from  a  non-­‐directional  source  to  the  sound  energy  from  the  same  source  when  measured  in  an  anechoic  room  at  a  distance  of  10m.  It  corresponds  to  the  degree  of  amplification  produced  by  a  room.  Both  G  occupied  and  G  unoccupied  included  in  the  database.  

GLow(dB):   low   frequency   strength   factor.   Average   of   the   G’s   measured   in   the   125Hz   and  250Hz  bands.  

Bass  Ratio  (Bas):  ratio  of  the  average  of  RT’s  at  125Hz  and  250Hz  to  the  average  of  RT’s  at  500Hz  and  1KHz.  Bass  ratio  is  related  to  the  warmth  of  the  room.  Both  BR  occupied  and  BR  unoccupied  included  in  the  database.  

Page 19: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

18

Brilliance  Ratio  (Bri):  ratio  of  the  average  of  RT’s  at  2KHz  and  4KHz  to  the  average  of  RT’s  at  500Hz   and   1KHz.   It   associates  with   the   high   frequencies.   Br   occupied   and   Br   unoccupied  included  in  the  database.  

Stage  Support  (ST1  or  STEarly   in  dB):  difference  between  the  impulse  sound  energy  from  an  omnidirectional  sound  source  that  arrives  at  a  player’s  position  at  the  stage  within  the  first  10msec  (measured  at  a  distance  of  1  m  from  the  sound  source)  and  that  one  which  arrives  in  the  time   interval  between  20  and  100msec  at   the  same  position.   It   is  meant  to  express  the  capacity  of  the  musicians  of  listening  to  the  orchestra  and  to  themselves  when  performing.    

ST2  or  STTotal  (dB):  parameter  used  to  describe  the  amount  of  support  of  the  room.  Difference  between  the   impulse  sound  energy   from  an  omnidirectional  sound  source   that  arrives  at  a  player’s  position  at  the  stage  within  the  first  10msec  (measured  at  a  distance  of  1  m  from  the  sound  source)  and  the  one  that  arrives  in  the  time  interval  between  20  and  1000msec  at  the  same  position.    

IACCE:   interaural  cross  correlation  coefficient  determined   for  a   time  period  of  0   to  80msec  where  0msec   the   time  at  which   the  direct   impulse   sound   from   the  omnidirectional   source  reaches   the   tiny   microphones.   It   correlates   with   the   ASW   (Apparent   Source   Width)  parameter,   that   is,  with  the  spaciousness   impression  that  the   listener  has   in  relation  to  the  room.  

IACCA:  interaural  cross  correlation  coefficient.  Measurement  of  the  difference  in  the  sounds  arriving  at  the  two  ears  of  a  listener  facing  the  performing  entity  in  a  hall.    

IACCL:  interaural  cross  correlation  coefficient  determined  for  a  time  period  of  80msec  to  750  msec.  It  is  related  to  the  degree  of  dissemination  of  the  sound.    

Definition   (D50):   ratio   of   the   sound   energy   in   the   first   50msec   after   arrival   of   the   direct  sound  at  a  listener’s  position  to  the  total  sound  energy  arriving.    

Initial-­‐Time-­‐Delay  Gap  (ITDG  in  msec):  the  time  interval  between  the  arrival,  at  a  seat  in  the  hall,   of   the   direct   sound   from   a   source   on   stage   to   the   arrival   of   the   first   reflection.   It  correlates  with  the  subjective  impression  of  “intimacy”.  This  measurement  is  defined  in  Leo  Beranek  publications  [4]  [5].    

Lateral  Fraction  (LFEarly):  it  covers  the  time  period  of  0  to  80  msec.  It  is  the  ratio  of  the  energy  in   the  sound  at  a   listener’s  position  that  does  not  come  from  the  direction  of   the  source  to  that  which  comes  from  all  the  directions  including  that  of  the  source.   It  correlates  with  the  ASW  (Apparent  Source  Width)  parameter,  that  is,  with  the  spaciousness  impression  that  the  listener   has   in   relation   to   the   room.   Like   in   IACC   measurement,   it   is   related   to   the  spaciousness  impression  of  the  room.    

Volume  (V  in  m3):  total  volume  of  the  hall.  

N:  number  of  seats  in  the  hall.    

V/N:  ratio  between  volume  and  number  of  seats.  

Page 20: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

19

So  (in  m2):  area  of  the  stage.  

H  (in  m):  average  room  height,  measured  from  main  floor  to  ceiling  in  that  part  of  the  main-­‐floor  audience  area  not  covered  by  balconies.    

W  (in  m):  average  width,  measured  between  sidewalls  in  the  audience  area  on  the  main  floor,  disregarding  any  balcony  overhang.    

L  (in  m):  average  room  length,  measured  from  the  stage  front  to  the  average  of  the  back  wall  positions  at  all  levels.    

L/W:  ratio  between  length  and  width.    

H/W:  ratio  between  height  and  width.  

D  (in  m):  distance  from  the  front  of  the  stage  to  the  most  remote  listener.  

Sa  (in  m2):  area  of  the  audience  occupied  by  the  seats.  

SA  (in  m2):  total  area  of  the  audience  including  the  area  occupied  by  the  seats.    

Sa/SA:  ratio  between  Sa  and  SA.  

 A  part  from  these,  the  shape  of  the  rooms  is  also  documented.  In  relation  to  this,  7  different  typologies   have   been   proposed   [23].   Thus,   each   sample   can   be   classified   in   one   of   the  following:  

1) Shoe  Box  

Rooms  regarding  this  shape  are  relatively  narrow  with  narrow  balconies.  More,  parallel  sidewalls  (figure  1)  assure  early  reflections  to  the  audience  on  the  main  floor,  essential  to  the  desired  acoustical  attribute  “spaciousness”.  Furthermore,  high  acoustical  intimacy  and  diffusivity  associated.    

Examples:   Boston   Symphony   Hall   (figure   2),   Amsterdam   Concertgebouw   (figure   3),  Kyoto  Concert  Hall  (figure  4).    

 

 

 

 

 

 

 

 

Figure 1. Shoe Box characteristic shape

Figure 2. Boston Symphony Hall

Page 21: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

20

 

 

 

 

 

 

 

 

2) Vineyard  

The  design  is  based  on  the  overlap  of  several  audience  terraces,  offering  a  large  capacity  (figure  5).  Though  it  may  seem  complex  in  terms  of  shape  it  offers  remarkable  acoustical  properties  such  as  good  spaciousness  impression  and  acoustical  intimacy.    

Examples:  Philharmonic  Berlin  (figure  6).  

 

 

 

 

     

3) Hexagonal  

Acoustically,   they   offer   a   high   spaciousness   impression   and   a   large   quantity   of   first   sound  reflections.  In  terms  of  capacity,  they  can  hold  a  large  number  of  spectators.  

Examples:  Bunka  Kaikan,  Tokyo  (Figure  7  &  8).  

 

 

 

 

 

 

 

Figure 3. Amsterdam Concertgebouw

Figure 4. Kyoto Concert Hall

Figure 5. Vineyard characteristic shape Figure 6. Philharmonie Berlin

Figure 7. Bunka Kaikan room map Figure 8. Bunka Kaikan, Tokyo

Page 22: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

21

4) Horse  Shoe  

Room  profile  used  principally   in  Opera  Houses.  As   for   the  acoustics,   they  offer   low  energy  early  reflections.  In  terms  of  the  capacity,  they  hold  a  large  audience.    

Examples:  Gran  Teatre  del  Liceu,  Barcelona  (figure  9),  Carnegie  Hall,  New  York  (figure  10).  

 

 

 

       

 

 

5) Fan  Shaped  

No  early  sound  reflections  at   the  central  part  of   these  rooms,   low  spaciousness   impression  and  low  acoustical  intimacy.    

Example:  Deutsche  Oper,    Berlin  (figure  11  &  12).  

 

 

 

 

   

 

   

 

 

 

6)  Elliptical  

Huge   pavilions,   arenas   and   large   concert   stadia   are   included   in   this   group   (up   to   21.000  spectators).  

Example:  Palau  Sant  Jordi  Barcelona  (figure  13  &  14).  

Figure 9. Gran Teatre del Liceu, Barcelona Figure 10. Carnegie Hall, New York

Figure 11. Deutsche Oper room map Figure 12. Deutsche Oper, Berlin

Page 23: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

22

 

 

 

7)  Church  

High  ceilings  (up  to  20  meters),  wide  surfaces  and  the  lack  of  absorptive  materials  result  in  reverberant  and  echoic  chambers.    

Examples:  Jesus  Christus  Kirche  Berlin  (figure  15).  

 

Figure 15. Jesus Christus Kirche, Berlin  

 

Table   1   shows   the   final   distribution   of   the   database   in   relation   to   the   number   of   samples  according  to  their  shape.  Yet,  as  can  be  noticed,  33  rooms  could  not  be  appropriately  fitted  in  any  group  because  of  lack  of  information.    

 

 

 

     

Table 1. Database distribution according to the morphological shape

Figure 14. Palau Sant Jordi, Barcelona Figure 13. Palau Sant Jordi room map

Page 24: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

23

3.2  STATISTIC  ANALYSIS:  FACTOR  MIXTURE  MODELS    To  identify  room  subtypes  we  used  a  FMM,  a  statistical  method  that  combines  principles  of  Factor  Analysis  and  LPA.  While  Factor  Analysis  is  a  variable  centered  approach  that  models  the  data  in  a  set  of  latent  continuous  factors,  LPA  uses  a  case-­‐centered  approach  that  allows  latent  categorical  factors  to  be  identified  and  assigns  cases  to  these  classes.  In  other  words,  Factor  Models  serve  to  cluster  items  and  Latent  Profile  Models,  on  the  other  hand,  serve  to  cluster  participants.    The  models  obtained  through  FMM  provide  a  class-­‐factor  classification  of  the  items/samples  that  are  in  a  database.  Figure  16  shows  an  overview  in  regards  with  the  methodology  adopted.                                              At   this   point,   once   we   come   up   with   the   proper   model,   the   question   that   arises   is   the  following.   Which   is   the   criterion   to   determine   the   number   of   classes?   There   are   many  measures  of  model  fit  (the  model  reproduces  the  empirical  data  obtained),  the  most  common  ones  being  the  AIC  (Akaike  Information  Criterion)  and  BIC  (Bayesian  information  Criterion).  For   this  research  we  took  BIC  value  as   the  measure   for  our  choice.  The  stepwise   is  simple.  We   apply   our  model   starting   from  1   class   on   (usually   up   to   7-­‐8   classes   depending   on   the  number  of  samples).  We  stop  when  we  come  across  a  BIC   turning  point.  That  will   indicate  that  lowest  BIC  value  has  been  reached  [24].  So  to  exemplify  this,  see  figure  17.  In  this  case,  3  classes  is  the  optimum  choice.      

Figure 16. Methodology stepwise scheme

Page 25: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

24

1930,000  

1935,000  

1940,000  

1945,000  

1950,000  

1955,000  

1   2   3   4  

BIC  

BIC  

                         In   the   current   study,   we   adopted   the   Mplus   Editor   v.6   software   [25].   The   samples   were  submitted  to  EFA,  CFA  and  LPA  using  mixture  modeling  procedure  with  the  robust  maximum  likelihood  (MLR)  estimator.  Mplus  is  a  statistical  modeling  program  that  provides  researches  with  a   flexible   tool   to  analyze   their  data.   It  offers  a  wide  choice  of  models,  estimators,  and  algorithms  in  a  program  that  has  an  easy-­‐to-­‐use  interface  and  graphical  displays  of  data  and  analysis  results.    3.2.1  EXPLORATORY  FACTOR  ANALYSIS    For  receiving  a  proper  factor  model  for  the  FMM,  we  need  to  find  out  about  the  proper  factor  structure,  referring  to  number  of  factors  and  the  grouping  of  items  on  them.  This  is  done  by  EFA.  Accordingly,  the  goal  is  to  investigate  common  content  among  the  items  [26]  by  seeing  if  items  group  together  on  continuous  latent  variables  called  factors.  Because  the   latent   variable   is   continuous,   there   is   no   assumption   of   different   subpopulations   of  individuals.  It   is  assumed  that  all   individuals  in  the  sample  are  from  the  same  homogenous  population  and  that  differences  among  individuals  arise  because  of  differences  on  the  factor.    The  factor  model  is  appropriate  for  data  from  a  single  homogeneous  population.  The  model  is   designed   to   investigate   the   common   content   of   observed   scores   such   as   questionnaire  items.  Continuous   latent  variables  called   factors  are  used   to  model   the  common  content  of  the   observed   variables.   Thus,   each   factor   results   in   the   combination   of   different   variables  that  are  accordingly  weighted.  See  figure  18.                

Figure 18. EFA scheme

Figure 17. BIC turning point curve example

Page 26: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

25

Like  in  the  FMM,  the  criterion  to  determine  the  number  of  factors  depends  on  the  BIC  values.  That   is,   the   lowest   BIC   indicates   the   best   choice.   However,   it   is   not   the   only   one.   In   this  respect,   the  Kaiser   criterion   (eigenvalues  <1)   or   the   scree   criterion   are   good   indicators   as  well   as.   In   our   case,   we   have   applied   the   scree   criterion,   which   says   to   drop   all   further  components  after  the  one  starting  the  elbow  (see  figure  19).    After  we  have   found  out  about  a  meaningful   factor  structure,   the  next  step   is   to  simplify   it  into  a  common  factor  model  (CFA).  This  means  converting  the  model  into  a  so-­‐called  “simple  structure”  where   cross-­‐loadings   and  minor   loadings   are   eliminated   as   far   as   possible.   The  reason  for  this  is  twofold:  on  the  one  hand,  it  eases  interpretation  of  the  factors.  On  the  other  hand  it  decreases  the  computational  costs  for  the  later  FMM  model  estimation.        3.2.2  LATENT  PROFILE  ANALYSIS    LPA  identifies  classes  of  individuals  based  on  similarities  in  responses  to  a  set  of  observable  indicators.  Unlike  cluster  analysis  (such  as  K-­‐means),  which  also  classifies  individuals,  LPA  is  based  on  a  statistical  model,  provides  objective  tests  to  determine  model  identification  and  does  not  require  decisions  regarding  scaling  of  observed  variables.  LPA  is  useful  when  you  want   to   reduce   a   large  number  of   continuous   variables   to   a   few   subgroups.  They   can   also  help  experimenters  in  situations  where  the  treatment  effect  is  different  for  different  people,  but  we  do  not  know  which  people.   It’s  a   technique  whose  aim   is   to  recover  hidden  groups  from  observed  data  [27].    Indeed,  a  statistical  analysis  by  just  using  LPA  models  is  perfectly  plausible.  However,  FMM  are  preferred,  if  applicable,  because  they  normally  achieve  lower  BIC  values.      

4.     RESULTS  

4.1   EXPLORATORY  FACTOR  ANALYSIS  

Following  the  scree  criterion  a  maximum  of  3  factors  were  extracted  from  the  database  (see  figure   19).   In   addition,   some   acoustical   parameters   were   eventually   omitted   from   the  analysis  due  to  errors  in  the  modelling.  We  attribute  such  errors  to  two  aspects.  On  the  one  hand,   in   reference   to   St2,   LF   (lateral   fraction),   IACCA,   IACCL,   IACCE  and  D50   (definition)   the  errors   aroused  because   of   the   lack   of   information.   That   is,  missing   values   for   a   significant  part  of  the  database.  On  the  other  hand,  in  relation  to  parameters  such  as  EDT  occupied,  c80  occupied,  G  occupied,  Volume,  V/N,  L/W,  H/W  and  Sa/SA  errors   aroused  because   they  don’t  contribute  with  new  information  as  they  are  totally  correlated  with  other  parameters  (L/W  for  instance  with  L  and  W,  Volume  with  height,  surface  and  width…).  Hence,  the  dimension  of  the  database  was  reduced  to  19  variables.    Table  2  shows  the  grouping  in  factors  after  EFA  (oc  terminology  stands  for  occupied).  The  Mplus  code  used  for  this  model  is  specified  in  the  Appendices  (pages  40-­‐41).  

 

Page 27: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

26

Figure 19. Screeplot of Eigenvalues from Exploratory Factor Analysis

Table 2. Results from Exploratory Factor Analysis (loading matrix, standardized loadings)

From   the   eigenvalues   scree   criterion   chart   (figure   19)   we   establish   that   the   number   of  factors   is  3.  Next,  we   look  at   the   factor  structure  table  (table  2)  to  see  the   loadings  of  each  variable   within   each   factor.   Nevertheless,   as   we   have   explained   before,   EFA   gives   an  orientation   of   the   structure   but   it   needs   to   be   simplified   because   there   might   be   some  ambiguities   in   variables  with   similar   loadings   in  more   than   one   factor.   For   instance,   if  we  

Page 28: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

27

FAC2%Amplification00000 Loadings SE Wald p

G "0,861 0.043 19.989 0.000ST1 "0,560 0.145 3.862 0.000

GLOW "0,751 0.074 10.184 0.000ITDG 0.503 0.108 "4.640 0.000N 0.919 0.023 "39.523 0.000H 0.736 0.053 "13.861 0.000W 0.686 0.058 "11.786 0.000L 0.568 0.073 "7.767 0.000D 0.864 0.071 "12.132 0.000

look  at  Brioc  (brilliance  occupied)  see  that  the  weightings  in  factor  2  and  factor  3  are  similar.  Another   example   might   be   So   (surface   of   stage),   which   is   not   clearly   fitted   in   any   of   the  factors  as  the  loadings  turn  out  to  be  weak.  Therefore,  we  have  to  simplify  the  structure  by  removing  cross-­‐loadings  and  minor   loadings.  This   is  done   through  CFA.   In   table  3,  4  and  5  the  simplified  Factor  Structure  is  shown.  Note  that  the  geometrical  parameters  were  allowed  to   keep   their   cross-­‐loadings   on   either   factor   in   order   to   check   for   their   respective  determining   influence.   Further,   note   that   Brioc   was   left   in   the   3rd   factor   in   spite   a   non-­‐significant  loading.  This  was  necessary  to  prevent  a  breakdown  of  the  Factor3  measurement  model   due   to   a   plethora   of   missing   data   in   the   room   database   concerning   the   variables  forming   factor   3.Parameter   So   has   been   removed   from   the   final   structure   due   to   errors  resulting  from  its  low  loading  on  either  factor  (see  table  2).    

 

 

 

 

   

Table 4. Variable loadings after CFA for Factor2-Amplification

Table 3. Variable loadings after CFA for Factor1-Reverberation

Page 29: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

28

FAC3%&Warmth/Color&& Loadings SE Wald p

BAS 0.859 0.058 14.760 0.000BASOC 0.913 0.046 19.918 0.000BRI 20.472 0.120 23.933 0.000

BRIOC 20.389 0.257 21.515 0.130SA 0.505 0.106 4.773 0.000H 0.127 0.043 2.916 0.004L 0.380 0.064 5.954 0.000W 0.101 0.049 2.063 0.039

 

 

 

The   factor   classification   seems   reasonable   after   a   first   interpretation   as   three   acoustical  aspects   are   well   differentiated:   Reverberation   (Factor   1),   Amplification   (Factor   2),   and  Warmth/Color   (Factor  3).  One   first   thing   to  outline   is   that  geometrical  variables  appear   to  play   a   determining   role   for   all   three   factors,   indicating   their   influence   on   the   acoustical  parameters.   In  other  words,   it  denotes  that  geometrical  measures  have  their   importance  in  each  factor.  

On  the  other  hand,  by  just  looking  at  the  acoustical  variables  within  the  factors  we  see  that  each  of  them  stands  for  a  particular  acoustical  aspect.  To  start  with,  factor  1  comprises  either  objective   or   subjective   properties   that   have   to   do   with   the   reverberation/echoing   of   the  room.  Therefore,  we  categorize  Factor  1  as  representative  for  “Reverberation”.    

As   far   as   Factor   2   is   concerned,   we   see   it   contains   acoustical   parameters   referred   to   the  strength  or  amplification  of   the  rooms  such  as  G  and  Glow.  Moreover,  Stage  Support   (ST1)  and   ITDG   (Initial   Time   Delay   Gap)   take   part   in   it   with   remarkable   significance.   ITDG   for  instance  is  to  express  the  intimacy  of  the  room  perceived  by  the  listener  and  has  to  do  with  the  distance  between  source  and   listener.  Long   ITDG  values   in   large  concert  halls   result   in  the  impression  of  a  close  acoustic  source  whereas  short  ITDG  will  result  in  the  impression  of  a  distant  acoustic  source  in  a  large  hall.  For  small  halls  the  influence  of  ITDG  is  pretty  much  the   same:   short   or   null   ITDG   values   result   in   the   impression   of   a   distant   source  whereas  longer   values   result   in   the   impression   of   nearby   sources.   Therefore,   in   a   way   ITDG   is  reasonable  to  be  part  of  this  factor  as  a  distance-­‐amplification  component  is  associated.    

Another  aspect  to  remark  is  that  the  weightings  of  the  geometrical  properties  in  Factor  2  are  much  higher  than  in  the  other  two  factors.  So  to  compare,  if  we  look  at  parameters  L,  H  and  W  we  see  how  large  their  respective  influence  is.  For  factor  1,  for  instance,  width  appears  to  be   rather  unimportant. With   that  we   can   state   that   “Amplification”   as   a   general   concept   is  strongly   associated   with   the   volume.   Yet   again,   this   hints   to   the   factor   solution   and   its  interpretation  being  reasonable.  

Factor   3   is   formed   by   bass   ratio   and   brilliance   (occupied   and   unoccupied  measures).   It   is  representative   for   both  warmth   and   brilliance.  Warmth   is   a   term   used   to   describe   a   cozy  

Table 5. Variable loadings after CFA for Factor3-Warmth/Color

Page 30: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

29

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!SIMPLE!FACTOR!MIXTURE!MODEL

Variables)used:)rtoc%rt%c80%edt%g%st1%basoc%bas%bri%brioc%glow%itdg%n%h%w%l%d%sa%sa2Factor)1%by%rtoc%rt%edt%c80%Sa%l%h%w.%Factor)2)by%g%st1%glow%itdg%n%h%w%l%d.%Factor)3 %by%bas%basoc%bri%brioc%SA.Correlation)assumed:%rt%with%rtoc,%c80%with%rtoc,%glow%with%g,%c80%with%edt,%l%with%w,%l%with%h,%w%with%h.Number!of!classes Nº!Successful!Replications! LIKELIHOOD BIC AIC ADJUSTED!BIC ENTROPY Sc.!FACTOR Nº!FREE!PARAMETERS

1 10 #8534,000 17485,000 17215,000 17254,000 # 2,422 732 10 #8328,000 17097,000 16811,000 16852,000 1,000 2,346 773 10 #8276,000 17014,000 16714,000 16757,000 0,953 2,358 814 10 #8245,000 16975,000 16660,000 16705,000 0,961 2,317 855 # # # # # # # #

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Factor%correlation%from%EFA%analysis%&%same%indicator%variances%across%classes%

16700,000&

16800,000&

16900,000&

17000,000&

17100,000&

17200,000&

17300,000&

17400,000&

17500,000&

17600,000&

1& 2& 3& 4&

BIC$

BIC&

smoothness  to  the  music.  Its  counterpart  may  be  considered  to  be  brilliance,  which  refers  to  a  bright,  clear,  ringing  sound.  If  a  sound  field  is  too  warm,  the  hall  can  be  undesirably  “dark.”  With  too  much  brilliance,  the  sound  is  harsh,  brittle,  and  metallic  sounding.  Hence,  Factor  3  is  representative  for  “Color/Warmth”.    

4.2   FACTOR  MIXTURE  MODELS  

The  CFA  model  obtained  in  step  4.1  was  now  extended  to  a  factor  mixture  model  and  class  solutions   from   1-­‐5   were   estimated.   Following   the   BIC   criterion   a   maximum   number   of   4  classes   was   extracted   from   the   database,   since   5   or   more   classes   produced   inadmissible  results   (so  called  "ill  models").  Table  6  shows  the  FMM  used   in   this  case  and   figure  20   the  BIC   value   curve.   Notice   that   it   decreases   until   4   classes,   when   the   value   is   the   lowest.  Certainly,   there’s  no  turning  point  after  that  since  an  “ill”  model  occurs  when  it  comes  to  5  classes.   For   that,   the   assumption   is   that   the   lowest   BIC   is   achieved   when   dealing   with   4  classes.  The  Mplus  code  used  for  this  model  is  specified  in  the  Appendices  (pages  40-­‐41).  

 

 

 

 

 

 

 

 

 

 

 

 

   

Table 6. Factor Mixture Model analysis scheme

Figure 20. BIC curve obtained through the FMM from 1-4 classes

Page 31: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

30

!10$

!5$

0$

5$

10$

15$

20$

FAC1%&Reverbera-on&

FAC2%Amplifica-on&

FAC3%Warm

th/Color&

STANDARDIZED&MEAN&FACTOR&VALUES&

C1$

C2$

C3$

C4$

!10$

0$

10$

20$

30$

40$

50$

60$

70$

80$

FAC1%Reverbera,on/ FAC2%Amplifica,on/ FAC3%Warmth/Color/

Non%standardized/mean/factor/values/

C1$

C2$

C3$

C4$

The  classification  of  the  samples  in  the  corresponding  classes  is  included  in  the  appendices  in  a  table  format  (pages  42-­‐49),  where  we  specify  the  name  of  the  halls,  their  shape  and  the  probability  in  the  class  (the  id  column  is  not  relevant).  Besides,  the  results  obtained  through  this  model  are  detailed  next.  To  start  with,  in  figure  21  and  figure  22  the  standardized  and  non-­‐standardized  mean  factor  values  of   the  classes  are  presented.  From  this  we  can  get  a  first  general  idea  about  the  content  of  the  class  typologies.  On  the  one  hand,  C1  rooms  turn  out  to  be  non-­‐reverberant,  soft  in  terms  of  amplification  and  cold/dark  in  terms  of  the  FAC3.  A  similar  trace  is  described  by  the  C4  group.  In  this  respect  they  turn  out  to  be  non-­‐reverberant  rooms  with  little  amplification  but  warm  instead.    On   the   other   hand,   C2   and   C3   rooms   seem   to   be   totally   the   opposite.   C2   for   instance  corresponds   to   reverberant,   midi-­‐loud   cold   venues   whereas   C3   comprehends   a   group   of  reverberant,  loud  and  midi-­‐warm  halls.                                  

 

 

 

 

 

 

 

 

 

Figure 21. Standardized mean factor values

Figure 32. Non-standardized mean factor values

Page 32: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

31

FAC1%Reverberation

Rtoc RT EDT c80 Sa H W L

C1%Studio<Halls !0,070 !0,110 !0,120 0,080 0,030 !0,060 !0,030 !0,190C2%Small<Arenas 0,850 1,050 1,240 !1,060 ! ! ! !C3%Big<Arenas 1,010 1,380 1,350 !0,710 ! ! ! !C4%Church<Halls 0,100 0,390 0,410 !0,140 !1,090 0,540 0,320 1,970

FAC2%Amplification

G ST1 N Glow ITDG D H W L

C1%Studio=Halls 0,003 0,000 $0,210 0,001 0,000 0,000 $0,060 $0,030 $0,190C2%Small=Arenas $ $ 2,960 $ $ $ $ $ $C3%Big=Arenas $ $ 4,740 $ $ $ $ $ $C4%Church=Halls $0,040 $ $0,250 $ $ 0,540 0,320 1,970

FAC3%Warmth/Colour

Basoc Bri Brioc Bas SA H W L

C1%Studio9Halls !0,010 !0,017 0,030 !0,220 !0,250 !0,060 !0,030 !0,190C2%Small9Arenas ! ! ! 0,400 ! ! ! !C3%Big9Arenas ! ! ! 0,910 ! ! ! !C4%Church9Halls ! ! ! 3,270 1,980 0,540 0,320 1,970

Having   exposed   this,   we   need   to   get   into   detail   in   some  more   aspects.   For   instance,   it   is  important  to  know  which  variables  stand  behind  these  factors  in  reference  to  the  classes.  For  this,  we  have  to  look  at  the  standardized  mean  values  of  the  variables  that  are  in  each  factor  in  relation  to  every  class.  This  is  shown  in  tables  7,  8  and  9.    

 

 

 

 

 

 

 

 

Table 9. Profile of obtained classes in terms of acoustical variables of Factor3-Warmth/Color  

 

Grey  marked  columns  correspond  to  those  variables  with  non-­‐missing  values  for  any  of  the  classes.  When   it   comes   to   comparing   them   all   we   have   to  make   use   of   these   6   acoustical  properties  (RToc,  RT,  EDT,  c80,  N,  Bas).  An  important  issue  to  outline  is  that  for  classes  C2  and   C3   the   factors   F2-­‐Amplification   and   F3-­‐Warmth/Colour   are   characterized   just   by  parameters  N  and  Bas  (number  of  seats  and  bass  ratio)  accordingly.  In  this  respect,  the  best-­‐represented  factor  is  FAC1-­‐Reverberation  since  less  missing  variables  conform  it.  Yet  again,  such  downsides  issue  from  the  existence  of  a  large  number  of  missing  values  in  the  database.  The  FMM-­‐approach  helps  to  deal  with  this,  since  it  imputes  missing  values  by  drawing  on  the  factor  measurement  model.   In   figure  23  we  can  see   the  standardized  mean  values  of   the  6  variables  depending  on  each  class.  

Table 7. Profile of obtained classes in terms of acoustical variables of Factor1-Reverberation

Table 8. Profile of obtained classes in terms of acoustical variables of Factor2-Amplification

Page 33: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

32

!4# !3# !2# !1# 0# 1# 2# 3# 4# 5# 6#

Non$standarized-mean-c80$unoccupied$values-C4# C3# C2# C1#

!2,00%

!1,00%

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

Rtoc% RT% EDT% c80% N% Bas%

Standardized*Class*Profiles***

C1%

C2%

C3%

C4%

FAC1!Reverbera>on% FAC2!Amplifica>on%FAC3!Warmth/Color%

   

 

 

 

 

 

 

 

 

 

 

 

Notice   that   the   curve   described   by   each   class   is   practically   the   same   as   the   one   shown   in  figures  21  and  22.  As  said  before,  one  could  argue  that  C1  and  C4  have  aspects   in  common  and  on  the  other  hand  C2  with  C3  too.  From  a  general  perspective,  we  stated  that  C2  and  C3  were   to   be   the  most   reverberant.   However,  we  might   still   see   some   differences   regarding  FAC1-­‐Reverberation.  For  instance,  if  we  take  a  look  at  parameter  c80,  standing  for  clarity,  in  figure  24  (error  bars  correspond  to  the  standard  deviations),  we  can  see  that,  while  C4  and  C1  are  practically  alike,  C3  turns  out  to  represent  clear  rooms  in  comparison  with  C2,  which  we  could  regard  as  the  fuzziest.        

 

 

 

 

 

 

 

 

 

Figure 23. Standardized mean variables for each class

Figure 24. Non-standardized mean C80 unoccupied values

Page 34: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

33

0" 5000" 10000" 15000" 20000" 25000"

Non$standardized$mean$Number'of'seats'values'C4" C3" C2" C1"

0" 2" 4" 6" 8" 10" 12"

Non$standardized$mean$G"unoccupied"values$C4" C1"

As  far  as  FAC2-­‐Amplification  is  concerned,  we  can  still  outline  some  differences  between  the  classes.  Back  to  variable  N,  in  figure  25  we  perceive  another  remarkable  difference  between  C2   and   C3.   While   C4   and   C1   hold   similar   audiences   (relatively   small),   C3   rooms   are   the  biggest  in  terms  of  the  number  of  spectators,  with  significant  difference  in  comparison  with  C2  halls.        

 

 

 

 

 

 

 

 

 

 

Although  N  is   the  only   representative  variable   in   the  4  classes,   there  are  some  parameters  within  this  factor  that  can  be  still  analysed.  So  far,  we  have  encountered  differences  among  C2  and  C3  but  hardly  any  between  C1  and  C4.  For  this,  we  take  a  look  at  the  rest  of  variables  that  are  in  this  factor  (recall  that  C2  and  C3  are  represented  in  FAC2  just  by  N).  See  figures  25-­‐28.    

 

 

 

 

 

 

 

 

 

 

Figure 25. Non-standardized mean Number of seats values

Figure 26. Non-standardized mean G unoccupied values

Page 35: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

34

0" 5" 10" 15" 20" 25" 30"

Non$standardized$mean$Height'values$$

C4" C1"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45"

Non$standardized$mean$Width&values&C4" C1"

0" 10" 20" 30" 40" 50" 60" 70"

Non$standardized$mean$Length'values$C4" C1"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From  these  we  cannot  really  perceive  notorious  differences  in  the  variables  but  in  length  and  height.  Notice   for   example   that   C4   and   C1   are   practically   identical   in   terms   of   G   (room  strength)  or,  on  the  other  hand,  in  regards  with  the  W  (width).  From  looking  at  figure  25  we  determine  that,  while  C1  and  C4  are  similar  in  terms  of  audience  capacity  (N),  C4  venues  are  remarkably  bigger  in  terms  of  length  and  height.  Not  only  this,  they  turn  out  to  be  larger  in  terms  of  total  surface,  parameter  SA  (see  figure  30).  In  other  words,  it  results  in  that  the  V/N  ratio   in  C4   is  higher  than   in  C1.  A  good  example  of   it   is   the  Basilica  of  Eberbach  Monastery,  classified  in  C4,  which  is  about  16  m  high,  75  meters  long  and  the  V/N  ratio  being  34.  On  the  

Figure 27. Non-standardized mean Height values

Figure 28. Non-standardized mean Width values

Figure 29. Non-standardized mean Length values

Page 36: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

35

0" 1000" 2000" 3000" 4000" 5000" 6000" 7000" 8000" 9000"

Non$standardized$mean$SA#values$C4" C1"

contrary,   the  Concertgebouw,  gr.  Saal,  Amsterdam,   classified   in  C1,   is  17  m  high,  26  meters  long  and  the  V/N  ratio  is  9.    

 

 

 

 

 

Figure 30. Non-standardized mean SA values  

 

 

With  all  that,  we  can  finally  compact  these  results  into  the  following.  

C1:   Little-­‐reverberant,   soft,   cold   rooms   with   small   capacity   either   in   terms   of   seats   and  dimensions.   This   class   represents   the   big   majority   of   the   database   samples   and   includes  shapes  of  all  kind.  However,  by  taking  into  account  the  previous  properties,  we  can  say  it  is  representative  for  a  category  that  we  name  “Studio  Halls”.    

C2:   Reverberant,   fuzzy,   midi-­‐loud   cold   rooms   with   capacity   of   holding   a   considerable  audience.  By  looking  at  the  properties  we  fit  them  in  a  category  that  we  name  “Small  Arenas”.  

C3:  Reverberant,   loud  and  strong  rooms,  midi-­‐warm  with   large  number  of   spectators.  This  category   is  representative   for  big  arenas,  pavilions  and  stadia.  The  shape   in  this  case  turns  out   to   be   mainly   elliptical   (see   page   48   in   the   appendices).   We   name   this   class   as   “Big  Arenas”.  

C4:  Midi-­‐reverberant,  soft/weak,  warm  rooms  with  small  capacity   in  terms  of  seats  though  remarkably  bigger  in  terms  of  dimensions.  This  class  could  be  categorized  as  “Church  Halls”.    

In   result,   we   obtained   4  well   interpretable   classes,   with   the   overall   classification   solution  obtaining  very  good  relative  entropy  of  0,960.  This  means,   that   it  would  be  easy  to  classify  new   rooms   very   unambiguously   into   a   belonging   class   if   the   database   is   extended   in   the  future.  

 

 

 

 

Page 37: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

36

5. Budget  

PROJECT  STAFF    

Worker  1  Name:  Stefan  Weinzierl  Position:  Project  leader  and  supervisor  *Euros/hour  (gross  salary):  14  €  

 Worker  2  Name:  Steffen  Lepa  Position:  Project  contributor  and  supervisor  *Euros/hour  (gross  salary):  12  €  

 Worker  3  Name:  Joan  Pallarès  Position:  Student  Average  hours/day:  8  h  *Euros/hour  (gross  salary):  8  €  

 Start  date:  09/10/2015  End  date:  28/01/2016    

           

SOFTWARE    Mplus  Editor  v.6  software  license:  595  €    

TOTAL  COST  (approximate)  =>  280  €  +  480  €  +  5120  €  +  595  €  =  6.475  €    

Staff   Working  days   Total  hours   Total  Salary*  

Worker  1   80   20   280  €  

Worker  2   80   40   480  €    

Worker  3   80   640   5120  €  

Page 38: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

37

6. Conclusions  and  future  development  

From  the  results  we  come  to  several  conclusions.  On  the  one  hand,  that  it  has  been  possible  to  group  variables  in  the  so-­‐called  factors  in  a  coherent  way.  With  this,  we  have  introduced  “Reverberation”,   “Amplification”  and   “Colour/Warmth”  as  global  properties   to  characterize  rooms.  Moreover,  we  have  seen  that  these  factors  are  certainly  tied  to  geometrical  measures  such  as  height,   length  or  width.  Especially   in   the  case  of   “FAC2-­‐Amplification”,  where   their  influence  is  strongest.    

Second,  we  have   conducted   a   classification  of   the   rooms   in   4   groups.   It   does  not   certainly  respond  to  a  clear  separate  shape  clustering  but  in  a  way  it  helps  to  get  an  approach  of  the  general  properties  of  the  classes.  Yet  again,  we  have  seen  that  except  from  “C3-­‐Big  Arenas”,  where  the  majority  of  the  rooms  are  elliptical,  the  other  classes  are  heterogeneous  in  terms  of  the  shape.  In  this  respect,  we  are  conscious  about  the  limitation  that  we  have  faced  from  the   very   beginning   of   the   project   and   that   is   the   number   of  missing   values   on   a   lot   of   the  acoustical   measures,   which   lead   to   the   necessity   to   perform   a   lot   of   model   based   data  imputation.  As  it  is  mentioned  at  some  part  of  the  theoretical  exposure,  the  information  was  retrieved  from  different  sources  and  so,  depending  on  the  author,  certain  variables  are  not  considered.   That   is   the   case   of   variables   like   IACC  (among   others),  which   are   documented  only  in  Leo  Beranek  publications.    

Is   the  database   representative   for   all   the  existing   rooms  of   this   type   in   the  world   (concert  venues  and  music  halls)?  In  regards  with  this  we  have  to  say  that  the  rooms  documented  in  the  sources  respond  generally  to  a  criterion  of  popularity  (emblematic  worldwide  rooms)  as  they  turn  out  to  be  more  deeply  analysed  and  investigated  by  researchers.  Another  issue  to  discuss  is  the  size  of  the  database.  That  is,  how  many  samples  would  be  enough  as  so  to  have  a  better  classification.  It  seems  logical  to  think  that  the  bigger  the  better,  but  more  samples  with   still   missing   values   would   not   certainly   help.   Instead,   we   could   state   that   the   more  parameters   the   better.     That   would   not   only   reinforce   the   thickness   of   the   database   but  would  also  be   important   for  the  Factor  Analysis.  That   is,   it  would  empower  the   loadings  of  the  variables  within  the  factors  resulting  in  more  robust  structures.  Consequently,  the  FMM  would  be  more  robust  too.    

In   order   to   test   the   validity   of   the   classification,   we   propose   an   empirical   test   in  which   a  group  of  listeners  would  experience  different  concerts  in  some  of  the  rooms  that  have  been  documented   in   this   project.   Then,   we   would   ask   them   to   write   down   their   acoustical  sensation  in  each  room  and  we  would  see  if  their  assessments  match  our  FMM  classification  or  not.  

Moreover,   for   further   similar   investigations,   we   encourage   acousticians   and   engineers   in  general   to   contribute   to   the   research   and   discovery   of   the   acoustical   properties   that   have  been   missing   for   this   project.   With   it,   a   more   suitable   performance   could   be   done   and  therefore,  things  could  adjust  even  more  to  the  reality.      

Page 39: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

38

Bibliography  

[1]   ISO   3382-­‐1:2009:   Acoustics   -­‐  Measurement   of   room   acoustic   parameters   -­‐   Part   1:   Performance  spaces.  International  Organization  for  Standardization,  Geneva,  2009.  [2]  Blevins,  C.A.,  Weathers,  F.W.,  Witte,  T.K.  Dissociation  and  posttraumatic   stress  disorder:   a   latent  profile  analysis.  J  Trauma  Stress.  2014.  [3]  Pattyn  T,  Van  Den  Eede  F,  Lamers  F,  Veltman  D,  Sabbe  BG,  Penninx  BW.  Identifying  panic  disorder  subtypes  using  factor  mixture  modeling.  Depress  Anxiety,  2015.    [4]  L.  L.  Beranek:  Concert  and  opera  halls.  How  they  sound.  American  Institute  of  Physics,  Woodbury,  2004.  [5]  L.  L.  Beranek:  Concert  and  opera  halls.  How  they  sound.  American  Institute  of  Physics,  Woodbury,  1996.  [6]  Adelman-­‐Larsen,  Niels  Werner:  Pop  &  Rock  Venues.  Acoustical  and  Architectural  Design.  Springer-­‐Verlag.  Berlin  Heidelberg,  2014.    [7]  David  Ackermann,  Maximilian  Ilse:  The  simulation  of  Monaural  and  binaural  Transfer  Function  for  a  Ground  Truth  for  Room  Acoustical  Analysis  and  Perception.  TU-­‐Berlin,  2015.    [8]   Stefan  Weinzierl,   Paolo   Sanvito,   Frank   Schultz,   Clemens   Büttner:   The   Acoustics   of   Renaissance  Theatres  in  Italy.  Acta  Acustica  United  with  Acustica,  2015.  [9]   Weihwa   Chiang,   Chingtsung   Hwang,   Yenkun   Hsu:   Acoustical   Renovation   of   Tainan   Municipal  Cultural  Center  Auditorium.  Audio  Engineering  Society,  2003.  [10]  Yenkun  Hsu,  Weihwa  Chiang,   JinJaw  Tsai,   Jiqing  Wang:  Acoustical  Measurements  of  Courtyard-­‐Type  Traditional  Chinese  Theatre  in  East  China.  Audio  Engineering  Society,  2002.        [11]  Yenkun  Hsu,  Weihwa  Chiang,   JinJaw  Tsai,  Linping  Xue:  Acoustical  Measurements  of  Traditional  Theatres  Integrated  with  Chinese  Gardens.  Audio  Engineering  Society,  2003.  [12]   Marco   Facondini,   Daniele   Ponteggia:   Acoustics   of   the   Restored   Petruzzelli   Theater.   Audio  Engineering  Society,  2010.  [13]   Michael   Lannie,   Leonid   Makrinenko:   Acoustics   of   Russian   Classical   Opera   Houses.   Audio  Engineering  Society,  1997.  [14]  Ernst-­‐Joachim  Voelker,  Wolfgang  Teuber:  Room  acoustics   for   rehearsals  and  concerts-­‐The  new  Festhalle  in  Landau,  Germany.  Audio  Engineering  Society,  2003.  [15]  Ernst-­‐Joachim  Völker,  Wolfgang  Teuber:  Quality  criteria  for  the  sound  system  in  the  new  Weimar  Hall  in  Weimar,  Germany.  Audio  Engineering  Society,  2002.  [16]  Henrik  Möller,  Tapio  Lahti,  Anssi  Ruusuvuori:  The  acoustic  conditions  in  Finnish  concert  spaces.  Audio  Engineering  Society,  2001.  [17]  Weihwa   Chiang,   Liangkuang   Yang,   Wenling   Jih:   Acoustics   Design   of   the   Music   Suite   in   Taipei  National  University  of  Arts.  Audio  Engineering  Society,  2002.  [18]  Jan  Voetmann,  Lise-­‐Lotte  W.  Tjellesen,  José  Mª  Pérez  Lacorzana:  The  New  Symphony  Hall  in  Las  Palmas,  Gran  Canaria.  Audio  Engineering  Society,  2002  [19]   Weihwa   Chiang,   Chingtsung   Hwang,   Yenkun   Hsu:   Acoustical   Renovation   of   Tainan   Municipal  Cultural  Center  Auditorium.  Audio  Engineering  Society,  2003.  [21]   Takayuki   Hidaka,   Noriko   Nishihara:   Relation   of   acoustical   parameters   with   and   without  audiences  in  concert  halls  and  a  simple  method  for  simulating  the  occupied  state.  Acoustical  Society  of  America,  2001.  [22]   Cyril   M.   Harris:   Acoustical   design   of   Benaroya   Hall,   Seattle.   Columbia   University,   New   York.                                Acoustical  Society  of  America,  2001.  

Page 40: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

39

[23]  Antoni  Carrión  Isbert:  Diseño  Acústico  de  Espacios  Arquitectónicos.  Edicions  UPC,  1998.  [24]   Lubke,   G.,   &   Muthén,   B:   Investigating   Population   Heterogeneity   With   Factor   Mixture   Models,  2005.  [25]  Muthén,   L.K.   and  Muthén,  B.O.   (1998-­‐2012).  Mplus  User’s  Guide.   Seventh  Edition.   Los  Angeles,  CA:  Muthén  &  Muthén.  [26]  Oberski,  D.  L:  Mixture  models:  latent  profile  and  latent  class  analysis.  In  Robertson,  J.,  &  Kaptein,  M.  (Eds.),  In  Modern  statistical  methods  for  HCI:  a  modern  look  at  data  analysis  for  HCI  research.    [27]  Collins  LM,  Lanza  ST.  Latent  class  and  latent  transition  analysis:  With  applications  in  the  social,  behavioral,  and  health  sciences.  New  York:  Wiley;  2010.          

   

Page 41: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

40

Appendices  

EFA  MODEL  MPLUS  CODE:  

 

 

 

 

 

 

 

 

 

 

 

 

 

FACTOR  MIXTURE  MODEL  MPLUS  CODE:    

Page 42: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 43: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

42

!!!!!!!!!!!!!!!!!!!!!!!CLASS!1ID ROOM!NAME PROBABILITY! SHAPE

1 "Concertgebouw, kl. Saal, Amsterdam" 100,00% Fan Shaped2 "Concertgebouw, gr. Saal, Amsterdam" 100,00% Shoe Box3 "Music Theater, Amsterdam" 100,00% NaN4 "Megaron, Athen" 100,00% Fan Shaped5 "Festspielhaus, Baden-Baden" 100,00% Shoe Box6 "Joseph Meyerhoff Symphony Hall, Baltimore" 100,00% vineyard7 "Stadtcasiono, Basel" 100,00% Shoe Box8 "Deutsche Oper, Berlin" 100,00% Fan Shaped10 "Komische Oper, Berlin" 100,00% Horse Shoe11 "Konzerthaus kl. Saal, Berlin" 100,00% Shoe Box12 "Konzerthaus Schauspielha, gr. Saal, Berlin" 100,00% Shoe Box13 "Philharmonie, Kammermusiksaal, Berlin" 100,00% vineyard14 "Philharmonie, gr. Saal, Berlin" 100,00% vineyard15 "Symphony Hall, Boston" 100,00% Shoe Box16 "Palais des Beaux Arts, Bruessel" 100,00% Horse Shoe18 "Staatsoper, Budapest" 100,00% Horse Shoe19 "Teatro Colón, Buenos Aires" 100,00% Horse Shoe20 "Kleinhans Music Hall, Buffalo" 100,00% Fan Shaped21 "St. David's Hall, Cardiff" 100,00% vineyard22 "Civic Opera, Chicago" 100,00% Fan Shaped23 "Town Hall, Christchurch" 100,00% vineyard24 "Radiohuset Studio 1, Copenhagen" 100,00% Fan Shaped25 "Segerstrom Hall, Costa Mesa" 100,00% vineyard26 "Boettcher Hall, Denver" 100,00% vineyard27 "Semper Oper, Dresden" 100,00% Horse Shoe28 "Bass Performance Hall, Fort Worth" 100,00% Horse Shoe29 "Royal Concert Hall, Glasgow" 100,00% vineyard30 "Konserthus, Goeteborg" 100,00% Fan Shaped31 "Staatsoper, Hamburg" 100,00% Fan Shaped32 "Binyanei Ha'oomah, Jerusalem" 100,00% Fan Shaped33 "Fredric R. Mann Auditorium, Jerusalem" 100,00% Fan Shaped34 "Higashitotsuka Hall, Kanagawa" 100,00% NaN35 "Miyama Conceru, Kirishima" 100,00% Fan Shaped36 "Concert Hall, Kyoto" 100,00% Shoe Box37 "Koussevitzky Music Shed, Lenox" 100,00% Fan Shaped38 "Barbican, gr. Saal, London" 100,00% vineyard39 "Royal Albert Hall, London" 100,00% vineyard40 "Royal Opera House, London" 100,00% Horse Shoe41 "Auditorio Nacional de Musica, Madrid" 100,00% vineyard42 "Salle Wilfrid-Pelletier, Montreal" 100,00% Fan Shaped43 "Philharmonie am Gasteig, Muenchen" 100,00% vineyard44 "Teatro alla Scala, Mailand" 100,00% Horse Shoe45 "Avery Fisher Hall, New York" 100,00% Shoe Box

 

Page 44: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

43

   

46 "Metropolitan Opera, New York" 100,00% Fan Shaped47 "Koncerthus Nielsen Hall, Odense" 100,00% Shoe Box48 "Symphony Hall, Osaka" 100,00% Shoe Box49 "Opera Bastille Paris" 100,00% Fan Shaped51 "Salle Pleyel, Paris" 100,00% Fan Shaped52 "Academy of Music, Philadelphia" 100,00% Horse Shoe53 "Martine Hall, Prag" 100,00% Fan Shaped54 "Staatsoper, Prag" 100,00% Horse Shoe55 "Eastman Theater, Rochester" 100,00% Fan Shaped56 "De Doelen Concertgewouw, Rotterdam" 100,00% vineyard57 "Abravanel Symphony Hall, Salt Lake City" 100,00% Shoe Box58 "Festspielhaus, Salzburg" 100,00% Fan Shaped59 "Mozarteum, Wiener Saal, Salzburg" 100,00% Shoe Box61 "Davies Symphony Hall, San Francisco" 100,00% vineyard62 "Concert Hall, Sapporo" 100,00% vineyard63 "Liederhalle, gr. Saal, Stuttgart" 100,00% vineyard64 "Cultural Centre, Taipei" 100,00% Fan Shaped65 "Bunka Kaikan, Tokyo" 100,00% Hexagonal66 "Casals Hall, Tokyo" 100,00% Shoe Box67 "Dai-Ichi Seimei Hall, Tokyo" 100,00% Fan Shaped68 "Hamarikyu Asahi Hall, Tokyo" 100,00% Shoe Box69 "Ishibashi Memorial Hall, Tokyo" 100,00% Hexagonal70 "Metropolitan Art Space, Tokyo" 100,00% Fan Shaped71 "Mitaka Arts Center, Tokyo" 100,00% NaN72 "New National Theatre, Tokyo" 100,00% Fan Shaped73 "Nissei Theater, Tokyo" 100,00% Fan Shaped74 "Opera City Concert Hall, Tokyo" 100,00% Shoe Box75 "Sumida Small Hall, Tokyo" 100,00% NaN76 "Suntory Hall, Tokyo" 100,00% vineyard77 "Tsuda Hall, Tokyo" 100,00% Shoe Box78 "Roy Thompson Hall, Toronto" 100,00% vineyard79 "Palau de la Musica, Valencia" 100,00% vineyard80 "JFK Center Opera House, Washington" 100,00% Fan Shaped81 "Brahmssaal, Wien" 100,00% Shoe Box82 "Konzerthaus, gr. Saal, Wien" 100,00% Shoe Box83 "Musikvereinssaal, gr. Saal, Wien" 100,00% Shoe Box84 "Staatsoper, Wien" 100,00% Horse Shoe85 "Mechanics Hall, Worcester" 100,00% Shoe Box86 "Tonhalle, kl. Saal, Zuerich" 100,00% Shoe Box87 "Tonhalle, gr. Saal, Zuerich" 100,00% Shoe Box88 Seminar Room HFT616 TU Berlin 100,00% Shoe Box89 Chamber Music Hall of Konzerthaus Berlin 100,00% Shoe Box90 Renaissance Theatre 100,00% Horse Shoe

Page 45: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

44

 

100 Wigmore Hall 100,00% Shoe Box101 Eroicasaal Palais Lobkowitz 100,00% Shoe Box102 Kammersaal_1 100,00% Shoe Box103 Kammersaal 2 100,00% Shoe Box111 Yachiyo-Za 100,00% Shoe Box112 Marakuni-Za 100,00% Shoe Box113 Hako-Gekijo 100,00% Shoe Box114 Kanamaru-Za 100,00% Shoe Box115 Houou-Za 100,00% Shoe Box120 Frosinone 100,00% Shoe Box121 G4 100,00% Shoe Box123 Kammermusiksaal 100,00% Shoe Box125 San Cebrian de Mazote 100,00% Church126 San Juan de Banos 100,00% Shoe Box129 Seminarraum_ITA 100,00% Shoe Box130 Studio 100,00% NaN131 "Bloomington, Indiana" 100,00% Fan shaped132 "Severance Hall, Cleveland" 100,00% Horse Shoe133 "Mc Dermott Concert Hall, Dallas" 100,00% Horse Shoe134 "Minneapolis Orchestra Hall" 100,00% Shoe Box135 "Carnegie Hall, New York" 100,00% Horse Shoe136 "Rochester Eastman Theatre, New York" 100,00% Fan Shaped137 "Concert Hall,Sydney" 100,00% vineyard138 "Northern Alberta Jubilee, Edmonton" 100,00% Fan Shaped139 "Tivoli Koncertsal, Copenhagen" 100,00% Fan Shaped140 "Colston Hall, Bristol" 100,00% Shoe Box141 "Usher Hall, Edinburgh" 100,00% Horse Shoe142 "Philharmonic Hall, Liverpool" 100,00% Fan Shaped143 "Free Trade Hall, Manchester" 100,00% Shoe Box144 Gewandhaus Leipzig 100,00% Vineyard145 "Amager Bio, Copenhaguen" 100,00% Fan Shaped146 "Forbraendingen, Copenhaguen" 100,00% Shoe Box147 "Godset, Kolding" 100,00% Shoe Box148 "Vega, Lille" 100,00% Shoe Box149 "Loppen, Copenhaguen" 100,00% Shoe Box151 "Palletten, Viborg" 100,00% Hexagonal152 "Pumpehuset, Copenhaguen" 100,00% Shoe Box153 "Rytmeposten, Odense" 100,00% Shoe Box154 "Musikhozet, Ronne" 100,00% Fan Shaped156 "Slagelse Musikhus, Älborg" 100,00% Shoe Box

Page 46: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

45

 

157 "Stars, Vordinborg" 100,00% Shoe Box158 "Store Vega, Copenhaguen" 100,00% Shoe Box159 "Sonderborghus, Sonderborg" 100,00% Shoe Box161 "Torvehallerne, Vejle" 100,00% Shoe Box162 "Train, Aarhus" 100,00% Fan Shaped164 "Voxhall, Aahrus" 100,00% Shoe Box165 "AB, Brussels" 100,00% Shoe Box167 "L'Alcatraz" 100,00% Shoe Box168 "Apolo, Barcelona" 100,00% Shoe Box169 "Apolo la [2] 100,00% Shoe Box170 "Astra, Berlin" 100,00% Shoe Box171 "Bikini" 100,00% NaN172 "The Cavern Club, Liverpool" 100,00% Shoe Box173 "Le Chabada, Angers" 100,00% NaN174 "Cirkus" 100,00% NaN176 "La Coopeérative de Mai" 100,00% Shoe Box182 "Grosse Freiheit" 100,00% Fan Shaped183 "Kaiser Keller" 100,00% NaN185 "Heineken Hall" 100,00% Shoe Box186 "HMV Hammersmith Apollo" 100,00% Horse Shoe188 "Live Music Club" 100,00% NaN190 "Melkweg" 100,00% Shoe Box195 "O13 Tilburg" 100,00% Shoe Box198 "Sala Barcelona" 100,00% NaN199 "Paradiso" 100,00% NaN200 "Porsche Arena" 100,00% Eliptical201 "Razzmatazz" 100,00% Shoe Box202 "Razzmatazz 2" 100,00% Shoe Box206 "Rote Fabrik 2" 100,00% NaN207 "Hans Martin Schleyer Halle" 100,00% Eliptical210 "Tunnel" 100,00% NaN213 "Werk Backstage" 100,00% Horse Shoe214 "Zeche" 100,00% NaN218 "Vega" 100,00% NaN252 "Benaroya Hall, Seattle" 100,00% Shoe Box253 "Euskalduna Jauregia Main Saal, Bilbao" 100,00% Vineyard254 "Sala A1 600, Bilbao" 100,00% Shoe Box257 "Benedict Music Tent, Aspen" 100,00% Vineyard258 "SanShan Clubhouse in Shanghai" 100,00% Shoe Box259 "KunShan" 100,00% Shoe Box260 "Quanjin Clubhouse, SuZhou" 100,00% Shoe Box261 "Jixiao, Yang Zhou" 100,00% Shoe Box262 "DaGuanYuan, Shanghai" 100,00% Shoe Box263 "Tianyi, NingBo" 100,00% Shoe Box264 "Pavilion for Drama" 100,00% Shoe Box

Page 47: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

46

 

 

 

 

265 "Fangchien Studio" 100,00% Shoe Box266 "Petruzzelli Theatre, Bari" 100,00% Horse Shoe269 "The Maily Theatre, Moscow" 100,00% Horse Shoe270 "MHAT, Moscow" 100,00% Horse Shoe271 "The Bolshoy Drama Theatre, Moscow" 100,00% Horse Shoe272 "Ostankino Palace, Moscow" 100,00% Horse Shoe273 "Festhalle, Landau" 100,00% Shoe Box274 "Wiemar Hall, Germany" 100,00% Shoe Box275 "Tapiola Hall, Espoo" 100,00% Fan Shaped276 "Helsinki Konservatorio" 100,00% NaN277 "Järvenpää" 100,00% Shoe Box278 "Kaukamestä" 100,00% Fan Shaped279 "Kaustinen" 100,00% NaN280 "Kuopio" 100,00% Fan Shaped281 "Laurentius" 100,00% Fan Shaped282 "Mikaeli" 100,00% NaN283 "Promenaadi" 100,00% Fan Shaped284 "Tampere Large Hall" 100,00% Fan Shaped285 "Tampere Chamber Hall" 100,00% NaN286 "Sigyn" 100,00% Shoe Box287 "Martinus" 100,00% Shoe Box290 "Galina Vishnevskaja's Theatre, Moscow" 100,00% Horse Shoe291 "The State Ballet Large Hall, Moscow" 100,00% Horse Shoe292 "The State Ballet Small Hall, Moscow" 100,00% Horse Shoe293 "Moscow Novaja Opera" 100,00% Horse Shoe294 "Tainan Municipal Cultural Center Auditorium" 100,00% Fan Shaped295 "Gran Teatre el Liceu, Barcelona" 100,00% Horse Shoe296 "Auditorium Barcelona" 100,00% Fan Shaped297 "Kursaal Auditorium, San Sebastian" 100,00% Fan Shaped298 "Auditorio Ciudad de León" 100,00% Fan Shaped299 "Auditorio Baluarte, Navarra" 100,00% Fan Shaped300 "Palau Congressos Catalunya" 100,00% Shoe Box268 "The Mariinsky Theatre, St. Petersuburg" 99,90% Horse Shoe17 "Erkel Theater, Budapest" 99,90% Fan Shaped

203 "Rockefeller" 99,90% NaN177 "Debaser Medis" 99,90% Fan Shaped178 "Elysée Montmartre" 99,90% NaN

Page 48: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

47

 

 

189 "LKA Langhorn" 99,90% NaN50 "Opera Garnier, Paris" 99,90% Horse Shoe93 Audimax TU-Berlin 99,90% Fan Shaped94 Kammersaal_Auditorio_Nacional 99,90% vineyard

124 Santa Maria de Melque 99,90% Church150 "Magasinet, Odense" 99,90% Shoe Box216 "Zenith Paris" 99,80% Fan Shaped228 "Concert Hall ATM, Tokyo" 99,80% Fan Shaped240 "Toppan Hall" 99,80% Shoe Box116 Aula 1 99,80% Shoe Box267 "The Bolshoy Theatre, Moscow" 99,80% Horse Shoe109 Teatro Olimpico 1 99,70% NaN256 "Teatro Olimpico, Sabbioneta" 99,50% Horse Shoe222 "The Bay Side Pocket" 99,50% Shoe Box223 "Calarts Theatre, LA" 99,40% Shoe Box250 "Asahikawa Taisetsu Crystal Hall" 98,40% Shoe Box196 "Olympia" 97,50% NaN92 Konzertsaal_Charkow 97,00% Shoe Box95 Cloitre du Couvent des Cordeliers 96,90% Shoe Box

106 Konzertsaal 2 96,80% Shoe Box205 "Rote Fabrik" 96,70% NaN288 "Taipei National University of Arts, Taiwan" 96,10% Shoe Box243 "The Harmony Hall, Matsumoto" 96,00% Shoe Box96 Cultuurzentrum 95,70% Fan Shaped

249 "Akiyoshidai International Art Village Hall" 95,00% NaN220 "Art Sphere, Tokyo" 94,40% Horse Shoe242 "Kioi Hall" 93,50% Shoe Box236 "Calderwood Hall" 93,50% NaN224 "Muriel Kauffman Theatre, Kansas" 92,70% Horse Shoe227 "Nagaoka Lyric Hall" 91,30% Eliptical255 "Teatro Olimpico, Vicenza" 90,80% Horse Shoe235 "Museo del Violino" 90,60% Vineyard233 "Auditorium Maison de la Radio" 88,70% Vineyard60 "Mozarteum, gr. Saal, Salzburg" 88,60% Shoe Box

239 "Danish Radio Concert Hall" 88,40% Vineyard248 "Walt Disney Concert Hall" 88,40% Vineyard289 "Symphony Hall, Las Palmas" 88,00% Fan Shaped232 "Shanghai Symphony Hall" 87,90% Shoe Box

9 "Jesus Christus Kirche, Berlin" 87,80% Church234 "Nospr Katwoice Hall" 86,60% Vineyard246 "Helzberg Hall" 86,20% Horse Shoe

Page 49: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

48

!!!!!!!!!!!!!!!!!!!!!!!CLASS!2ID ROOM!NAME PROBABILITY! SHAPE180 "Mediolanum Forum, Milano" 100% Shoe Box209 "Oslo Spectrum Arena" 100% Fan Shaped211 "Forest National" 100% Horse Shoe212 "Wembley Arena" 100% Eliptical217 "Zenith Strasbourg" 100% Horse Shoe184 "Hallen Stadion" 99% Eliptical179 "Festhalle" 99% Eliptical

!!!!!!!!!!!!!!!!!!!!!!!CLASS!3ID ROOM!NAME PROBABILITY! SHAPE191 "Men Arena" 100,0% Eliptical192 "O2 World Hamburg" 100,0% Eliptical193 "O2 World Berlin" 100,0% Eliptical194 "O2 World London" 100,0% Eliptical197 "Palau Sant Jordi" 100,0% Eliptical181 "Globe Arenas" 99,9% Eliptical208 "Scala, Milano" 97,5% Shoe Box187 "Jyske Bank Boxen" 63,6% Fan Shaped

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

226 "Nara Centennial Hall" 85,40% Shoe Box238 "Helsinki Music Concert Hall" 85,30% Vineyard99 Teatre Jean Vilar 84,60% Hexagonal

237 "New World Center Concert Hall" 83,70% Fan Shaped119 Eurogress 83,60% Fan Shaped98 Gulbenkian Hall 82,20% Fan Shaped

245 "Stanford Hall" 80,90% Eliptical215 "Zeche Carl" 77,20% Shoe Box110 Teatro Olimpico 2 72,40% NaN231 "Katsushika Symphony Hills" 70,30% Fan Shaped244 "Fukushima Concert Hall" 61,50% Shoe Box

Page 50: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

49

 

 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!CLASS!4ID ROOM!NAME PROBABILITY! SHAPE91 Basilica of Eberbach Monastery 100,00% Church

108 Teatro Farnese 100,00% Horse Shoe128 Sejong Concert Hall 100,00% Fan Shaped163 "Biften, Rodovre" 100,00% Shoe Box219 "Notsuri" 100,00% NaN247 "Shenzhen Concert Hall" 100,00% Vineyard105 Konzertsaal 1 99,90% vineyard225 "Ishikawa Ongakudo Concert Hall" 99,90% Shoe Box127 Kursaal 99,90% NaN175 "Le Confort Moderne, 99,80% Shoe Box166 "L'Aeronef, Lille" 99,50% Shoe Box107 Oper 99,40% Nan117 Dortmund 99,20% Shoe Box104 Kirche 99,10% Church229 "Kumamoto Prefectural Theatre" 98,40% Fan Shaped241 "Harmony Hall, Fukui" 98,20% Shoe Box230 "Sumida Triphony Hall" 98,00% Shoe Box251 "Okoyama Symphony Hall" 97,60% Shoe Box155 "Skráen, Älborg" 96,00% Shoe Box160 "Tobakken, Esbjerg" 95,90% Shoe Box97 Eglise du College St.Michel 93,90% Church

204 "Rockhall" 93,10% NaN221 "Yokosuka Arts Theatre" 88,00% Horse Shoe122 Haus fuer Musik 82,60% Shoe Box118 Elmia 76,20% Fan Shaped

Page 51: STATISTICAL AND ACOUSTICAL ROOM ANALYSIS THROUGH ...

50

Glossary  

AIC:  Akaike  Information  Criterion  

BIC:  Bayesian  Information  Criterion  

CFA:  Common  Factor  Analysis  

EFA:  Exploratory  Factor  Analysis  

FMM:  Factor  Mixture  Model  

LPA:  Latent  Profile  Analysis.  

 

 


Recommended