+ All Categories
Home > Documents > Statistical Approaches to Combining Models and Observations · 2012. 4. 16. · (Berliner & Kim...

Statistical Approaches to Combining Models and Observations · 2012. 4. 16. · (Berliner & Kim...

Date post: 10-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
42
Statistical Approaches to Combining Models and Observations Mark Berliner Department of Statistics The Ohio State University [email protected] SIAM UQ12, April 5, 2012 Outline I. Bayesian Hierarchical Modeling II. Examples: Glacial dynamics; Paleoclimate III. Using Large-scale Models IV. Example: Ocean Forecasting
Transcript
  • Statistical Approaches to Combining Models andObservations

    Mark Berliner

    Department of Statistics

    The Ohio State University

    [email protected]

    SIAM UQ12, April 5, 2012

    Outline

    I. Bayesian Hierarchical Modeling

    II. Examples: Glacial dynamics; Paleoclimate

    III. Using Large-scale Models

    IV. Example: Ocean Forecasting

    1

  • I. Bayesian Hierarchical Modeling (BHM)

    • Bayesian Analysis:(1) UQ via prob. modeling;

    (2) update via Bayes’ Theorem;

    (3) infer, predict & make decisions via prob. (“risk”) analysis

    • Hier. Model: Sequence of conditional probability distributions(corresponding to a joint distribution)

    • Framework for modeling:Observations Y Processes (State Variables) X Parameters θ

    1. Data Model [Y | X, θ]

    2. Prior Process Model [X | θ]

    3. Prior Parameter Model [ θ ]

    • Bayes’ Theorem: [X, θ | Y]

    2

  • Strategies

    1. Incorporating physical models

    Physical-statistical modeling (Berliner 2003 JGR)

    From “F=ma” to process model [ X |θ ]

    2. Qualitative use of theory

    (e.g., Pacific SST model (Berliner et al. 2000 J. Climate)

    ******************************************************

    3. Incorporating large-scale computer model output

    4. Combinations

    5. Alternate Approaches

    3

  • Ex) Glacial Dynamics (Berliner et al. 2008 J. Glaciol)

    • Steady Flow of Glaciers and Ice Sheets

    – Flow: gravity moderated by drag (base & sides) & stuff

    – Simple models: flow from geometry

    • Data

    – Program for Arctic Climate Regional Assessments

    – Radarsat Antarctic Mapping Project

    ∗ surface topography (laser altimetry)∗ basal topography (radar altimetry)∗ velocity data (interferometry)

    4

  • North East Ice Stream, Greenland

    5

  • Physical Modeling: Surface: s, Thickness: H, Velocity: u

    • Basal Stress: τ = −ρ g H ds/dx (+ ”stuff”)

    • Velocities: u = ub + b0 H τ n where ub = k τ p + (ρgH)−q

    Our Model

    • Random Basal Stress: τ = −ρ g H ds/dx + ηwhere η is a “corrector process” (“model error”)

    • Random H: wavelet smoothing prior

    • Random s: parameterized model from literature

    • Random Velocities: u = ub + b H τ n + ewhere ub = kτ

    p + (ρgH)−q or a constant (change-point)

    b is unknown parameter, e is a noise process

    • Process Model :[u | s, H, η] [η] [s, H]

    6

  • 7

  • 8

  • 9

  • Ex) Paleoclimate: Temperature Reconstruction(Brynjarsdóttir & Berliner 2010 Ann. Applied Stat)

    • Use of proxies:

    – Inverse problem:

    proxy ≈ f(climate) → climate ≈ g(proxy)– Inverse probability problem:

    [proxy data | climate] → [climate | proxy data]

    • Boreholes: earth stores info about surface temp’s

    – Inverse: borehole data ≈ f(surface temp’s)– Model:

    ∗ Heat equation∗ Infer boundary condition

    10

  • De

    pth

    [m

    ]

    Relative temperature [ºC]

    60

    05

    00

    40

    03

    00

    20

    01

    00

    0

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    SRD−1

    14.51●

    SRD−2

    15.73●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    SRD−3

    16.00●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    SRD−4

    16.17●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    SRD−7

    13.86●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    SRS−3

    11.30●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    SRS−4

    12.54●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    SRS−5

    12.08●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    WSR−1

    13.54

    San Rafael Desert San Rafael Swell

    1ºC

    11

  • Page 1 of 1

    5/19/2010http://farm4.static.flickr.com/3580/3330922136_4b2c40edec_b.jpg

    Page 1 of 1

    5/19/2010http://hellforleathermagazine.com/images/San_Rafael_Swell.jpg12

  • Data Model : ~Y | ~Tr, q ∼ N(~Tr + T0 ~1 + q ~R(k), σ2y I)

    • ~Tr: reduced temperatures (literature: ~Tr = ~T−T0 ~1− q ~R(k))

    • T0: reference surface temperature

    • q: surface heat flow

    • ~R: thermal resistances (∝ k−1, thermal conductivities, adjustedfor rock types, etc.)

    Process Model :

    • Heat equation applied to ~Tr• B.C.: Surface temp history ~Th (assumed piecewise constant)

    • Easy to solve the heat equation~Tr | ~Th, q ∼ N(A ~Th, σ2 I)

    ~Th | q ∼ N(~0, σ2h I)Parameter Model : next

    13

  • Spatial Hierarchy

    • Nine boreholes: 5 in desert region, 4 in swell region

    • Extend the hierarchy: for j = 1, . . . , 9

    Data Model : ~Yj | ~Trj, qj ∼ N(~Trj + T0j ~1 + qj ~Rj(kj), σ2yj I)Process Model :

    ~Trj|~Thj, qj ∼ N(Aj ~Thj, σ2j I)

    ~Thj|qj ∼ N(~0, σ2hj I)Parameter Model

    • ~Th1, . . . , ~Th5 conditionally independent N(~µd, γ2d I)

    • ~Th6, . . . , ~Th9 conditionally independent N(~µs, γ2s I)

    • ~µd & ~µs ∼ N(~µ0, γ20 I)

    • q1, . . . , q5 conditionally independent N(νd, η2d)q6, . . . , q9 conditionally independent N(νs, η

    2s )

    • etc.

    14

  • ● ● ●●

    ● ●●

    1600 1700 1800 1900 2000

    −2−1

    01

    2

    Year

    Anom

    aly [º

    C]SRD−1, SR Desert

    ● ● ● ●●

    ●●

    ● ●

    1600 1700 1800 1900 2000

    −2−1

    01

    2

    Year

    Anom

    aly [º

    C]

    SRD−2, SR Desert

    ● ● ●●

    ●●

    ●●

    ●●

    1600 1700 1800 1900 2000

    −2−1

    01

    2

    Year

    Anom

    aly [º

    C]

    SRD−3, SR Desert

    ● ● ●●

    ●●

    ● ●

    ●●

    1600 1700 1800 1900 2000

    −2−1

    01

    2

    Year

    Anom

    aly [º

    C]

    SRD−4, SR Desert

    ● ●●

    ● ●

    ● ●

    1600 1700 1800 1900 2000

    −2−1

    01

    2

    Year

    Anom

    aly [º

    C]

    SRD−7, SR Desert

    ● ●● ●

    ●●

    ● ●

    1600 1700 1800 1900 2000

    −2−1

    01

    2

    Year

    Anom

    aly [º

    C]

    SRS−3, SR Swell

    ●●

    ●●

    ●●

    1600 1700 1800 1900 2000

    −2−1

    01

    2

    Year

    Anom

    aly [º

    C]

    SRS−4, SR Swell

    ●●

    1600 1700 1800 1900 2000

    −2−1

    01

    2

    Year

    Anom

    aly [º

    C]

    SRS−5, SR Swell

    ●● ● ●

    1600 1700 1800 1900 2000

    −2−1

    01

    2

    Year

    Anom

    aly [º

    C]

    WSR−1, SR Swell

    15

  • ● ● ●●

    ●●

    1600 1700 1800 1900 2000

    −1.5

    −0.5

    0.5

    1.5

    Year

    Anom

    aly

    [ºC]

    µD

    ● ●●

    ●●

    ● ●

    1600 1700 1800 1900 2000

    −1.5

    −0.5

    0.5

    1.5

    Year

    Anom

    aly

    [ºC]

    µS

    16

  • 1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRD−1, SR Desert

    1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRD−2, SR Desert

    1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRD−3, SR Desert

    1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRD−4, SR Desert

    1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRD−7, SR Desert

    1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRS−3, SR Swell

    1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRS−4, SR Swell

    1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRS−5, SR Swell

    1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    WSR−1, SR Swell

    Multi−site Single−site

    17

  • 1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRD−2, SR Desert

    Multi−site Single−site

    1600 1700 1800 1900 2000

    −2

    −1

    01

    2

    Year

    An

    om

    aly

    [ºC

    ]

    SRS−5, SR Swell

    Multi−site Single−site

    18

  • III. Incorporating Large-Scale Computer Models

    Ensembles ~O = O1 = M(T1), . . . , On = M(Tn)

    (T’s include “controls, model names, etc.)

    • Data Model Treat ~O as ”observations”

    – [Y, ~O | X, θ] (include ”bias, offset, model error ..”)– Convenient for design of collection of Y, ~O

    • Process Model Use ~O to develop [X | θ]

    – Kernel density estimate

    Σi αik(x | Oi)

    – Gaussian process models; emulators; UQ

    Model Output: ~O = (O1 = M(T1), . . . , On = M(Tn))

    [O | θ, ~O]→ [X | θ]

    • Parameter Model from model output(eg: Berliner, Levine, & Shea 2003 J. Climate)

    • Combinations

    19

  • A Bayesian Multi-model Climate Projection(Berliner & Kim 2008 J. Climate)

    • Themes

    – “climate” = parameters of prob. dist. of “weather”

    – build or “parameterize” scales into dynamic model for X

    • Future climate depends on future, but unknown, inputs.

    • IPCC: construct plausible future inputs, ”SRES Scenarios”(CO2 etc.)

    • Assume a scenario and find corresponding projection

    20

  • Hemispheric Monthly Surface Temperatures (X)

    • Observations (Y) for 1882-2001.

    • Two models (~O): PCM (n=4), CCSM (n=1) for 2002-2197

    • 3 SRES scenarios (B1,A1B,A2).

    21

  • Hierarchical Data Model for Model Output

    • Scalar climate variable X; m = 1, . . . , M models (time fixed)

    • ~Om: ensemble of size nm of estimates of X from model m.

    1. Given means µm and variances σ2Ym

    , m = 1, . . . , M;~Om are independent and

    ~Om | µm ∼ Gau(µm~1nm, σ2Ym Inm)

    2. Given β, model biases bm and variances σ2µm;

    µm are independent and

    µm | β, bm ∼ Gau(β + bm, σ2µm)

    3. Given X,

    β | X ∼ Gau(X, σ2β) and bm | X ∼ Gau(b0m, σ2bm

    )

    22

  • Remarks

    • Implied marginal dist.: “~O given X”:Integrating out β induces dependence within & across ensembles

    • Modify intuition about value of increasing ensemble size:“Infinite” ensembles do not give perfect forecasts:

    If all biases = 0, infinite ensembles give the value of β, not X

    • Extensions to different model classes (more β’s)and richer models are feasible.

    23

  • Model Overview

    1. [Y | X, θ]: measurement error modelGaussian with mean = true temp.

    & unknown variance (with a change-point)

    2. [X | θ]: Time series models with time varying parameters

    Xt = µi(t) +

    ηnj(t) 00 ηsj(t)

    (Xt−1 − µi(t−1)) + et3. [θ] Climate = parameters of distribution of weather

    • Climate-weather: multiscale phenomena• Time evolution: µi(t) slow; ηj(t) moderate;

    et fast, but variances of et are slow

    • µi = A + B CO2i + noise• Obs period: ηj = C + D |SOI|j + noise

    Fore. period: AR model (i.e., SOI not observed)

    • Variances of et: AR-like prior

    24

  • 1900 1950 2000 2050 210014

    14.5

    15

    15.5

    16

    16.5

    17

    17.5

    18

    year

    mea

    n

    1900 1950 2000 2050 210014

    14.5

    15

    15.5

    16

    16.5

    17

    17.5

    18

    18.5

    year

    annu

    al te

    mpe

    ratu

    re

    25

  • 1900 1950 2000 2050 210012.5

    13

    13.5

    14

    14.5

    15

    15.5

    year

    mea

    n

    1900 1950 2000 2050 210012.5

    13

    13.5

    14

    14.5

    15

    15.5

    16

    year

    annu

    al te

    mpe

    ratu

    re

    26

  • 1900 1950 2000 2050 21000

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    year

    syst

    em

    variance

    27

  • Model Adapted to Decadal Forecasting

    (Kim & Berliner 2012)

    1994 1996 1998 2000 2002 200413

    13.5

    14

    14.5

    15

    15.5

    16

    Year

    Tem

    pera

    ture

    (Cel

    cius

    )

    1994 1996 1998 2000 2002 200413

    13.5

    14

    14.5

    15

    15.5

    16

    Year

    Tem

    pera

    ture

    (Cel

    cius

    )

    28

  • IV. Combining Approaches:Mediterranean Ocean Forecasting

    1. Winds as a boundary condition for the ocean surface

    (Milliff et al. & Bonazzi et al. 2011 Quart. J. Roy. Met. Soc.)

    2. Bayesian Multi-model Ensembling for Ocean Forecasting

    (Berliner et al. 2012)

    Observations

    Initial – Boundary conditions

    BHMWinds

    Model 1

    Model 2

    BHM Oceans

    BHM Ocean Post. Dist.

    29

  • Bayesian Hierarchical Models to Augment The Mediterranean Forecast System (MFS)

    Ralph Milliff CoRA Chris Wikle Univ. Missouri Mark Berliner Ohio State Univ.

    Nadia Pinardi INGV (I'Istituto Nazionale di Geofisica e Vulcanologia) Univ. Bologna (MFS Director) Alessandro Bonazzi, Srdjan Dobricic INGV, Univ. Bologna

    30

  • Overview:

    • MFS: deterministic operational forecasting

    system

    • Boundary condition/forcing: Surface Winds

    • Bayesian Hierarchical Model (BHM) to

    quantify Surface Vector Wind (SVW)

    distributions

    • Ocean Ensemble Forecasting (OEF) using 10

    member BHM-SVW ensembles

    Key: Exploit abundant, “good” satellite wind

    data combined with physical modeling

    31

  • Building

    wind dist. (BHM-SVW)

    1. Data Stage:

    Satellite

    (QSCAT)

    and

    Numerical

    Weather

    Pred.

    Analyses

    (ECMWF)

    QSCAT

    ECMWF

    32

  • 2. Process Model: Rayleigh Friction Model

    (Linear Planetary Boundary Layer Equations)

    Theory (neglect second

    order time

    derivative)

    discretize:

    Our

    model

    33

  • BHM Ensemble Winds

    10 m/s

    10 members selected from the Posterior Distribution (blue)

    Ensemble mean wind (green); ECMWF Analysis wind (red)

    34

  • BHM-SVW-OEF initial condition spread:

    Uncertainty is

    concentrated at

    mesoscales

    Sea Surface Temperature

    Sea Surface Height

    Initial condition spread

    Initial condition spread

    35

  • Sea Surface Height

    BHM-SVW-OEF 10 day forecast spread

    Initial condition ensemble

    spread has

    amplified at the 10 day fcst

    in mesoscales

    Initial condition spread

    10-th fcst day spread

    36

  • Th

    e f

    ore

    cast

    sp

    read

    at

    10 d

    ays

    EEPS forced ensemble BHM-SVW ensemble

    ECMWF EPS forcing

    Ineffective at

    producing flow

    field changes

    at mesoscales

    37

  • Discussion:

    • BHM methods produce realistic distributions of surface winds (SVW)

    (Milliff et al. 2011 J Roy Met Soc)

    • BHM-SVW results used to in a new ocean ensemble forecasting method:

    BHM-SVW-OEF

    (Bonazzi et al 2011 J Roy Met Soc)

    • The BHM-SVW-OEF produces 10-day-forecast spreads at mesoscales and in the upper thermocline

    38

  • 2. Bayesian Multi-model Ensembling forOcean Forecasting (Berliner et al. 2012)

    • profiles of wintertime (60 days) of temperature T(z,t) (& salinity)(Rhodes Gyre region in Eastern Mediterranean Sea)

    • 16 vertical levels z = 0 m to z = 300 m

    • BHM Winds produce ensembles from two models:1) Ocean PArallelise (OPA)

    2) Nucleus for European Modeling of the Ocean (NEMO)

    • Model as in climate example: model-specific biases

    • Prior: Analyzed fields

    39

  • 40

  • 41

  • 42


Recommended