+ All Categories
Home > Documents > Status and Future Plans for the MAX IV Light...

Status and Future Plans for the MAX IV Light...

Date post: 05-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
28
MAX IV – Status and Future Developments Plans Lund, August 2016 Status and Future Plans for the MAX IV Light Sources Pedro F. Tavares MAX IV Laboratory
Transcript
Page 1: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Status and Future Plans for the MAX IV Light Sources

Pedro F. Tavares

MAX IV Laboratory

Page 2: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Summary

●What is Synchrotron Radiation ?

●Why Synchrotron Radiation ?

●The MAX IV Light Sources: Status and Commissioning Highlights

●Future Perspectives

Page 3: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Electron source

Ring (528 m circumf)

Linear accelerator (ca 250 m)

Ring (96 m circumf)

Experimental stations

What is Synchrotron Light ?

Pictures and animation by S.Werin

Properties:

Wide band

High

intensity/Brilliance

Polarization

Time structure

Page 4: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Insertion Devices

Wiggler

Periodic arrays of magnets cause the beam to “undulate”

www.lightsources.org

Undulator

Photo E.Wallen

Page 5: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Using Light To Understand the World

Galileo 1564 - 1642

The telescope is presented to the Doge of Venice

Anton van Leeuwenhoek

1632-1723

Page 6: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Why Synchrotron Light ?

Image: Lawrence Berkely Lab

Page 7: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Photo: Vasa Museum

Sandstrom, M. et al. Deterioration of the seventeenth-century warship vasa by internal formation of sulphuric acid. Nature 415, 893 - 897 (2002)

J.Lindgren et al, Molecular preservation of the pigment melanin in fossil melanosomes, Nature Communications DOI: 10.1038/ncomms1819 (2012)

A.Malachias et ak, 3D Composition of Epitaxial Nanocrystals by Anomalous X-Ray Diffraction, PRL 99, 17 (2003)

OLIVEIRA, M. A. et al. Crystallization and preliminary X-ray diffraction analysis of an oxidized state of Ohr from Xylella fastidiosa. Acta Crystallographica. Section D, Biological Crystallography, v. D60, p. 337-339, 2004

Why Synchrotron Light ?

Page 8: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Equator

Under construction

Operational

Design

SR Light Sources WorldWide

Page 9: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

• Scientific Case calls for high brightness radiation

over a wide spectral and time range: IR to Hard R-

rays, Short X-Ray Pulses.

• Need for high brightness: low emittance and

optimized insertion devices.

• This is hard to achieve in a single machine:

• higher electron beam energy harder photons

• lower electron beam energy softer photons

One size does not fit all !

Conceptual Basis of the MAX IV Design

Page 10: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

●Different machines for different uses: • A high energy ring with ultra-low emittance for

hard X-ray users.

• A low emittance low energy ring for soft radiation users

• A LINAC based source for generating short pulses and allowing for future development of an FEL source.

The MAX IV Approach

Page 11: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

The MAX IV Light Sources

linac

SPF

3 GeV LINAC 250 m 100 Hz to SPF 10 Hz to rings 100 fs to SPF

1.5 GeV Ring 92 m 12 achromats 6 nmrad

3.0 GeV Ring 528 m 20 acrhomats 330 pmrad

Page 12: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

1. FemtoMAX fs dynamics in solid

2. NanoMAX Nano-imaging & - spectroscopy

3. BALDER Chemical spectroscopy: operando

4. BioMAX Protein crystallography

5. Veritas Electronic & magnetic excitations: solids

6. Hippie Photoemission: near ambient pressure

7. ARPES Electronic structure: solids

8. FinEstBeaMS Electronic structure: gases, aerosols

9. SPECIES Electronic & magnetic excitations: surfaces

10. Transfer_PEEM Microscopy: surfaces

11. Transfer_XPS Electronic structure: surfaces & gases

12. CoSAXS Geometric structure & correlation: (bio) liquids

13. SoftiMAX Microscopy & method development

14. DanMAX Powder diffraction & imaging: materials science

15. ForMAX Wood & paper: structure & processing

16. MicroMAX Most relevant (difficult) protein structures

17. DiffMAX Crystal structure of bulk & surface

18. iMAX Imaging of engineering materials

8

4 3

2

1 6

5

7

9

10

12

11

13

14

15

Slide by C. Quitmann

Page 13: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

MAX IV Project Timeline ● 2002 – First technical design note

● 2005 – Scientific Case/Conceptual Design Report

● 2009 – Funding secured

● 2010 – Detailed Design Report – Funding released

● Spring 2015 – Linear accelerator commissioned

● Autumn 2015 – 3 GeV ring commissioning

● June 2016 – Inauguration

● Autumn 2016 – 1.5 GeV ring commissioning

Page 14: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

3 GeV Ring Commissioning Timeline

Beam in TR3

Aug 11

2015

First Turn

Aug 25

2015

Stored Beam

0.1 mA

Sep 15

2015

Stacking

4 mA

Oct 08

2015

First Light

Nov 2

2015

Feb&March 2016

First IVUs

198 mA

July 9, 2016

Page 15: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Future Perspectives Higher Brightness and Coherence

LINAC

• Soft X Ray FEL (proposal User Community)

• Hard X Ray FEL

3 GeV Ring

• Brightness Improvements: current lattice and Ids (150 pm rad)

• Brightness Improvements: additional focussing (100 pm rad)

• Completely new lattice (diffraction limit at 10 keV)

1.5 GeV Ring

• Timing modes (requested by User Community)

Full Delivery of the DDR Parameters – User operations

Page 16: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Light Source Figures of Merit

Intensity/spectral range

Time structure Average vs Peak Values

Polarization

Stability

Brightness/Flux Density

Coherence

How do photon beam performance goals translate into electron beam performance requirements ?

Page 17: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Spectral Brightness

dxdydddtd

dNyxEB

),,,,(

dxdyBdF 0

Photon Phase Space

In an ideal optical transport system, brightness is conserved – a property of the source. Several derived quantities are often used

Density in photon phase space

Central Brightness Angular density of flux

H.Wiedemann, Part.Acc.Phys, Vol II

00

yxdxdydddtd

dNB

Page 18: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Brightness from a real beam

yTxTTyTx

nn

FB

202 22

22

rxxT

rxTx

Lr

4

1

Lr

Convolute the angular distribution of radiation from a single electron with the electron beam transverse spatial and angular distributions

For the nth harmonic of an undulator of length L

Spectral flux (E,I,B,n)

Effective source size and divergence

Electron beam

4rr

Diffraction Limit: xxx e-beam emittance

Page 19: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

0.0001

0.001

0.01

0.1

1

10

100

10001/[nm

-1]

2030202020102000199019801970

Emittance Evolution over 40 years

2nd Generation

1st Generation

3rd Generation

4th Generation

102

103

104

105

106

107

108

109

1010

1011

1012

[nm

-1]

101

102

103

104

Circumference [m]

1970´s - 1980´s 1990´s - 2014 2015 Under Construction/Planned

Page 20: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

ALS DLS BESSY III SLS 2.0 Tohoku U

Thailand Beijing PETRA IV

MAX IV: Forerunner of a new breed of accelerators

Slide by C.Quitmann

Page 21: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

How did we go from third to fourth generation ?

High Brightness

Accelerator Physics

New Lattica Design (MBA)

New Tools for Dynamic Analysis

Accelerator Engineering

Compact Magnets

Distributed Pumping – NEG

coating

Low Frequency RF

Long Bunches

Page 22: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

MAX IV - An integrated Solution

MBA Lattice Ultra-low emittance robust, high stability. large momentum aperture

Large

Number

of

Magnets

Small

Magnet

Apertures

Wake-Fields

Low RF frequency

Full Energy

Injector LINAC:

Short Pulses

Long

Bunches

Landau

Cavities

Compact

Magnet Design.

High precision,

High vibration

frequencies

Narrow

vacuum

Chambers

Multi-

purpose

Strong

Magnets

IBS

Low Vacuum

Conductance High Heat

Load

Density

Copper

Chambers

100 %

NEG

Coating

Page 23: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Compactedness is the key !

Picture by E. Aldmour

Page 24: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

How can we go even further ?

102

103

104

105

106

107

108

109

1010

1011

1012

[nm

-1]

101

102

103

104

Circumference [m]

1970´s - 1980´s 1990´s - 2014 2015 Under Construction/Planned

Page 25: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Diffraction Limited @ 10 keV within ~ 500 m

Novel Injection Schemes

High Gradient

Permanent Magnets

NEG coating very small apertures

Long(er) Bunches

Compact Design – Small Aperture

Enab

ling

Tec

hn

olo

gies

Page 26: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Beyond MAX IV – an exercise

Existing 7 BA

Future Lattice Candidate – 19 BA

Page 27: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Parameter Value Unit

Energy 3 GeV

Number of periods 20

Circumference 528 m

Straight section length 5 m

Natural Emittance 16 pm.rad

Natural energy spread 0.09 %

Horizontal Tune 101.2

Vertical Tune 27.28

Natural horizontal chromaticity -100.21

Natural vertical chromaticity -126.1

Momentum compaction 5.30E-05

Beyond MAX IV – an exercise

BH

SD SD SF

QF QF

BH

Unit cell phase advances: ∆𝜇𝑥 = 22𝜋

16 , ∆𝜇𝑦 =

𝜋

16

19-BA lattice in the MAX IV 3 GeV ring tunnel

Lattice design: OPA (A.Streun) Elegant (M.Borland)

Page 28: Status and Future Plans for the MAX IV Light Sourcescdworkshop.eit.lth.se/fileadmin/eit/group/71/2016/MAXIV_LundCircui… · Image: Lawrence Berkely Lab . Lund, August 2016 MAX IV

MAX IV – Status and Future Developments Plans Lund, August 2016

Conclusions

● A new generation of storage-ring based light sources has just come into operation opening a wide range of research opportunities.

● Many labs around the world are now following that trend.

● Future order-of-magnitude improvements in performance seem within reach if we just dare to go even further along the compactedness route.


Recommended