+ All Categories
Home > Documents > Steady and Unsteady CFD Analysis of a Half-Span Delta...

Steady and Unsteady CFD Analysis of a Half-Span Delta...

Date post: 03-Jul-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
10
1 Steady and Unsteady CFD Analysis of a Half-Span Delta Wing Simone Crippa Dept. of Aeronautical and Vehicle Engineering Royal Institute of Technology (KTH) Symposium on Hybrid RANS-LES Methods Rica City Hotel, Stockholm 14-15 July 2005
Transcript
Page 1: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

1

Steady and Unsteady CFD Analysis of a Half-Span Delta Wing

Simone CrippaDept. of Aeronautical and Vehicle Engineering

Royal Institute of Technology (KTH)

Symposium on Hybrid RANS-LES MethodsRica City Hotel, Stockholm 14-15 July 2005

Page 2: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

2

Outline• Constrains / Environment

• Case selection

• Steady-state computations

• DES, “small” time-scales time-step

• DES, “large” time-scales time-step

• Comparison

• Conclusions

Page 3: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

3

Constrains / Environment• New cluster at KTH, Lenngren

442 Dell PowerEdge 1850 nodes• 2 x 3.4GHz "Nocona" Xeon processors (EM64T)• 8GB main memory • 6TFlop/s peak performance

• First application of• Edge 3.3.1• New postprocessing program, Paraview• Detached Eddy Simulation

... but ...

• Existing knowledge on delta-wing aerodynamics (Prof. Arthur Rizzi, Stefan Görtz, Yann Lemoigne)

• Mesh was given

Page 4: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

4

Case selection• Extensive database of surface pressure

measurements from NASA's NTF. [Luckring & Chu, NASA-TM-4645, 1996]

• interchangeable LE segments: sharp + 3 bluntness

• Remac= 6E6 – 60E6 (120E6, blunt LE)

• M = 0.4 – 0.85 (0.9)

• AoA = 0º – 25º • Computational mesh available in native

Edge FFA-format• sharp LE, croot = 0.3048 m (12'')• 7.89E6 tetrahedral, prismatic & pyramidal

cells• prismatic layer for Remac= 6E6

• M=0.4; AoA=23º; Remac= 6E6; sharp LE

Page 5: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

5

Steady-state computations Short comp. of RANS turb. models:

• W&J EARSM + standard k-ω (Edge 3.2)

• W&J EARSM + Hellsten k-ω (Edge 3.3)

• W&J CC-EARSM + Hellsten k-ω

W&J EARSM + Hellsten k-ω most accurate → DES initialization

Page 6: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

6

DES, “small” time-scales time-step• implicit time-stepping

“appropriate” ?∆t = ∆0/umax or ∆t = l/(u∞ · res) ∆t = 5E-6 s → ∆t* = 2.3E-3

• 7800 it ≅ 0.039 s• 0 – 2300 it @ 50 inner-it

• 2300 – 3600 it @ 70 inner-it

• 3600 it – 7800 it @ 100 inner-it

• mean, 5000 it – 7800 it• video, t = 0.036 s – 0.038 s

Page 7: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

7

DES, “large” time-scales time-step• implicit time-stepping

“bigger” ?∆t = 10 · ∆tsmall

∆t = 5E-5 s → ∆t* = 2.3E-2

• 860 it ≅ 0.043 s• 0 – 600 it @ 50 inner-it

• 600 it – 860 it @ 100 inner-it

• mean, 700 it – 860 it• video, t = 0.036 s – 0.038 s• video, t = 0.038 s – 0.041 s

Page 8: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

8

ComparisonVortex Burst LocationCPUh

RANS: 138DES, Dt=5E-5: 357DES, Dt=5E-6: 3360

Vortex burst location moves by ca. 20% c (RANS → DES-6)

O[Dxburst(DES-5-DES-6)]=

O[Dxburst(RANS-DES-5)]

Dxburst(RANS-DES-5

Dxburst(DES-5-DES

Page 9: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

9

ComparisonSurface pressure• DES predict strong secondary

vortex, RANS predicts weaker secondary vortex

• DES resolve primary vortex strength and burst better than RANS

• DES capture second vortex pair

Page 10: Steady and Unsteady CFD Analysis of a Half-Span Delta Wingcfd.mace.manchester.ac.uk/desider/symposium/symp05/All_Papers_… · Microsoft PowerPoint - Simone_Crippa_KTH_DESider.ppt

10

Conclusions• Strong secondary vortex predicted by DES might be due to

different free-stream turbulence levels (DES: 0.001%, RANS: 0.1%)

→ Assess turbulence level influence

• Improvement between DES with smaller and bigger time-step is as big as between RANS and DES with big time-step

→ DES with smaller time-step


Recommended