+ All Categories
Home > Documents > Stealth - bemil.chosun.com

Stealth - bemil.chosun.com

Date post: 09-Feb-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
40
Defence Research and Dev elopment Canada Recherche et dév eloppement pour la défense C anada Canada Stealth: Materials and Techniques for Signature Reduction Paul Saville DRDC Atlantic / Dockyard Laboratory Pacific DRDC Symposium April 14-15
Transcript

Defence Research andDevelopment Canada

Recherche et développementpour la défense Canada Canada

Stealth:Materials and Techniques for Signature Reduction

Paul Saville

DRDC Atlantic / Dockyard Laboratory PacificDRDC Symposium April 14-15

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

How is Stealth a Disruptive Technology?

• Improved Survivability– Makes enemy work harder to detect your assets

thus disrupting the way they carry out operations.

• Tactical– Allows operation at closer ranges with

increased impunity.• Counter Stealth

– With increasing numbers of countries developing stealth technology we will need to work harder at detecting them.

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Signature Reduction Talk Overview

• Radar

– RAM and RCS Reduction

• Thermal

– Solar Reflective Paints

• Visual

– Adaptive Camouflage

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Atmospheric Absorption

Visible Thermal IR Radar

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Signature and Wavelengths

• Visible– 400 - 720 nm (0.4 - 0.72 um)

• Near Infrared (NIR)– 700 - 2300 nm (0.7 - 2.3 um)

• Thermal Infrared (TIR)– 2.5 - 15 um– 3-5 um and 8-14 um are the bands of interest for thermal missile

and surveillance

• mm Wavelengths– Battlefield Surveillance radars

• Microwaves– 1 to 30 cm, Fire Control radars to Early Warning radars

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Rule of Balanced Observables

• A Stealth object should be designed so that every detection system arrayed against it has roughly the same range.– There is no point in having a plane

that is invisible to radar at 5 km if it

can be seen at 10 km.

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Radar Absorbing Materials

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Radar Absorbing Materials

• Airplanes

• Ships

• Camouflage Nets

• Radar Camouflage

• Electromagnetic Interference Suppression

– false echoes from ship’s own superstructure

• Antenna Performance Enhancement

– Side and back lobes

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

RadarAntenna

Flat Sides

Angle Reflectors

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Detection Range vs Radar Cross Section

1099.99%, 40 dB1899.9%, 30 dB3299%, 20 dB5690%, 10 dB

100 (arbitrary)0%, 0 dBDetection RangeRCS Reduction

-40

-30

-20

-10

0

RC

S R

educ

tion

/ dB

10080604020% Detection Range

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

RCS Reduction Techniques

• Shaping

• Radar Absorbing Materials

• Passive Cancellation

• Active Cancellation

¼ λ

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Shaping

< 0.01 m2F-1170.01 m2Bird

25 m2F-151000 m2B-52

RCSPlane

Jones, Stealth Technology: The Art of Black Magic

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

RCS Reduction

• Optimum

– Software optimization based on material properties, RCS reduction and platform design.

• Current

– One-off calculations of RCS on platform by platform basis.

• Future

– RCS modelling software based on a design.

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

The complex ship model.

Dr Satish Kashyap, DRDC OttawaDrs Robert Paknys and Christopher Trueman, Concordia University

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Detail of the Frigate Model

How is this disruptive?

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

How Radar Absorption Works

• Conducting Materials…..

– Electric Field Induces a Current in a Conductor.• Resistance, Capacitance and Inductance in the

conductor converts the electrical energy into heat.

• Carbon, Conducting Polymers, Metal Powder

• Magnetic Materials……

– Electric Field Interacts with Magnetic Domains• Carbonyl Iron, Ferrites

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Types of RAM

Dallenbach Layer

Graded Interface Tuned Layer Magnetic Material Salisbury Screen

Jaumann Layers

Impedance Matching Resonant Absorbers

Absorber Metal

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Frequency Selective SurfacesCircuit Analog Material

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Bandwidth

Salisbury Screen Jaumann Layers

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

RAM Development

RAM Fabrication

Material Synthesis

Conducting Polymers-Polypyrrole-Polyaniline-Polythiophene

Material Characterization Modelling

Optical Properties-Complex permeability-Complex permittivity-Reflectivity

Programs-RAM optimization-RAM placement

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Jaumann Absorber Optimization by the Genetic Algorithm

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Optimized Structure

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

RCS and RAM Summary

• Materials Synthesis

– Drs Trisha Huber and Paul Saville, DRDC Atlantic

– Professor Robin Hicks, University of Victoria

• Materials Characterization and Device Modelling

– Professor Maria Stuchly, University of Victoria

• Radar Cross Section

– Dr Satish Kashyap, DRDC Ottawa

– Professors Paknys and Trueman, Concordia University

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Thermal Camouflage

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Solar Reflective Paint

Stealth?

Dr Terry Foster, DRDC AtlanticTTCP

•Reduce excessive heating of equipment due to absorption of solar radiation•By reducing the heating of the equipment the thermal signature is reduced

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Distribution of Solar Energy

• 5% ultra-violet (less than 400 nm)

• 45% in the visible region

• 50% in the solar infrared region.

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Visible and IR Radiation of Coatings

• The solar radiation striking a coated surface is either reflected, absorbed or transmitted at each interface

• The reflected radiation can be either specular (mirror-like) or diffuse (scattered) and is dependent on the pigments used in the coating and/or the texture of the surface.

• Radiation not reflected from the film is converted into heat or chemical energy.

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Solar IR Reflective Coatings

20

30

40

50

60

70

80

90

400 500 600 700 800 900 1000 1100Wavelength (nm)

% R

efle

ctiv

ity

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Ambient and Surface Temperatures

Ambient temperature, and surface temperatures of HMAS Whyalla and HMAS Ipswitch in the sea off Cairns during six successive days in December, 1997.

Whyalla - Ipswich Temperature Comparison

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

0:00:0016/12/97

0:00:0017/12/97

0:00:0018/12/97

0:00:0019/12/97

0:00:0020/12/97

0:00:0021/12/97

D ate/Time

Deg

rees

C

Whyalla Bridge Roof Surface Ipswich Bridge Roof S urface Ambient

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Comparison of Coatings

A false-color image of reflected infrared energy in the 8-12 micrometer band from two US mine countermeasure (MCM)-class ships with (left) and without (right) the low solar absorbance paint. The reduction in radiated energy achieved by this paint has important survivability benefits.

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Adaptive Camouflage

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Variable Camouflage

• Reduced Detection and Increased Survivability through Adaptation

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Variable Camouflage

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Variable Camouflage

• Soldiers

– Photochromic

• Tanks

– Thermal/Visible, Peltier cooling and Liquid Crystals

• Planes

– Lights, Photochromic B52, Electrochromic SR71

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Project AimTo increase survivability of CF assets through reduced risk of detection.

NASA

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Electrochromic Materials

+ -

Gla

ss

Gla

ss Electrolyte

Elec

troch

rom

ic fi

lm

Cou

nter

ele

ctro

de

Tran

spar

ent c

ondu

ctor

Tran

spar

ent c

ondu

ctor

WO3 + xM+ + xe- MxWO3

Colourless Blue

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Liquid Crystal Devices

V +

Fabric

Protective Topcoat Transparent Top Electrode

Conductive Mesh

Base Electrode

Coloured /Patterned Layer

Polymer Dispersed Liquid Crystal

Defence R&D Canada – Atlantic • R & D pour la défense Canada – Atlantique

Electrochromic

Bodycote

State 1 State 2


Recommended