+ All Categories
Home > Documents > Steel Project

Steel Project

Date post: 03-Nov-2015
Category:
Upload: hein-zin-han
View: 214 times
Download: 0 times
Share this document with a friend
Description:
Steel analysis and design
34
 ASIAN INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING TECHNOLOGY DESIGN OF STEEL STRUCTURES TERM PROJECT Sai Than Lwin (20000251)  Ni Ni Aung (20000238)  Nway Nandar Win (20000241) May Hnin Ou (20000231)
Transcript
  • ASIAN INSTITUTE OF TECHNOLOGY

    SCHOOL OF ENGINEERING TECHNOLOGY

    DESIGN OF STEEL STRUCTURES

    TERM PROJECT

    Sai Than Lwin (20000251)

    Ni Ni Aung (20000238)

    Nway Nandar Win (20000241)

    May Hnin Ou (20000231)

  • Introduction

    This project is about the design and analyze of a steel building which consists of four stores with

    one story below grade.

    i. LOCATION

    Williamsport, Pennsylvania

    41 N latitude and 77 W longitude.

  • ii. ARRANGEMENT OF THE STRUCTURE

    Floor Area for each floor = 25 500 ft2

    Floor total area =102 000 ft2

    Bays

    East west direction 30ft bays throughout

    North south direction 45ft, 30ft and 45ft

    14 6

    6 13

    13 6

    15 6

    4 th story

    3 rd story

    2 nd story

    1 st story - Below grade

  • Figure Schematic plan

    Figure Complete 3 dimensional computer model

  • iii. LATERAL LOAD RESISTING SYSTEM

    East west direction Moment frames

    North south direction Braced frames

    iv. OTHER FEATURES

    Faade is a lightweight metal curtain wall that extends above the roof surface.

    6 ft screen wall around the middle bay of the roof to conceal mechanical equipment and roof access.

    A two story atrium in the first floor

    An opening in the second floor (An area bounded by A C 4 5)

    Figure Lateral load resisting system

  • 1) LOADS ON COLUMNS BASED ON TRIBUTARY AREAS

    Figure - Arrangement of columns in the 1 st , 3 rd and 4 th floors

    Figure - Arrangement of columns in

    the 2nd floor

  • RC

    Column Tributary

    area

    (ft2)

    Dead load

    (D)

    (psf)

    Live load

    (Live

    roof)(psf)

    Snow load

    (psf)

    1.2D+0.5S

    (ksf)

    Load

    (Kips)

    Total

    load

    (kips)

    RC1 168.75 20 20 102 75 12.65 12.65

    RC2 675 20 20 102 75 50.62 50.62

    RC3 562.5 20 20 102 75 42.18 42.18

    RC4 337.5 20 20 102 75 25.3 25.3

    RC5 1380 20 20 102 75 103.5 103.5

    TC

    Column Tributary

    area

    (ft2)

    Dead load

    (D)

    (psf)

    Live load

    (Live

    roof)(psf)

    Reduced

    live load

    (Lred)(psf)

    1.2D+1.6Lred

    (ksf)

    Load

    (Kips)

    Total

    load

    (kips)

    TC1 168.75 80 80 66.46 202.39 34.15 46.80

    TC2 675 80 80 43.1 164.96 111.35 161.97

    TC3 562.5 80 80 45.3 168.48 94.77 136.95

    TC4 337.5 80 80 52.66 180.256 60.86 86.16

    TC5 1380 80 80 36.15 153.84 212.3 315.8

    RC

    TC

    SC

    BC

  • SC

    Column Tributary

    area

    (ft2)

    Dead load

    (D)

    (psf)

    Live load

    (Live

    roof)(psf)

    Reduced

    live load

    (Lred)(psf)

    1.2D+1.6Lred

    (ksf)

    Load

    (Kips)

    Total

    load

    (kips)

    SC1 168.75 80 80 66.46 202.39 34.15 80.95

    SC2 675 80 80 43.1 164.96 111.35 273.32

    SC3 562.5 80 80 45.3 168.48 94.77 231.72

    SC4 337.5 80 80 52.66 180.256 60.86 147.02

    SC5 1380 80 80 36.15 153.84 212.30 528.10

    FC

    Column Tributary

    area

    (ft2)

    Dead load

    (D)

    (psf)

    Live load

    (Live

    roof)(psf)

    Reduced

    live load

    (Lred)(psf)

    1.2D+1.6Lred

    (ksf)

    Load

    (Kips)

    Total

    load

    (kips)

    FC1 168.75 80 80 66.46 202.39 34.15 115.10

    FC2 675 80 80 43.1 164.96 111.35 384.67

    FC3 562.5 80 80 45.3 168.48 94.77 326.49

    FC4 337.5 80 80 52.66 180.256 60.86 207.88

    FC5 1380 80 80 36.15 153.84 212.30 740.40

    FC6 287.5 80 80 55.39 184.624 53.08 200.1

    FC7 168.75 80 80 66.19 201.904 34.07 562.17

    ** Reduced live load Lred = Live load * (0.25 + 15/(A KLL))

    K depends on the arrangement of the columns

    Values for k can be obtained by tables in ASCE 7-10

  • 2) Load on beams based on tributary areas

    B1 B1 B1 B1 B1 B1 B1

    B2 B2 B2 B2 B2 B2 B2

    B3 B3 B3 B3 B3 B3 B3

    B4 B4 B4 B4 B4 B4 B4

    B6

    B5

    B7

  • ROOF

    Joist/Column Tributary

    area

    (ft2)

    Dead

    load (D) (psf)

    Live load (Live roof)(psf)

    Snow load

    (psf)

    1.2D+0.5S

    (psf)

    Load

    (Kips)

    UDL

    (kips/ft)

    J1 270 20 20 102 75 20.25 0.45

    J2 180 20 20 102 75 13.5

    0.45

    B5 135 20 20 102 75 10.125

    0.225

    B6 90 20 20 102 75 6.75

    0.225

    For beams B1, B2, B3 & B4

    B4 10.125

  • For Floors 3,2,1

  • .

    Joist Tributary

    area (ft-sq)

    Dead load

    (D) (psf)

    Live load

    (psf)

    Reduced

    Live load

    (psf)

    1.2D+1.6L

    (ksf)

    Load

    (kips)

    UDL

    (kips/ft)

    J1 270 80 80 71.64 210.624 56.87 1.26

    J2 180 80 80 83.25 229.2 41.26 1.38

    B5 135 80 80 80 224 30.24 0.672

    B6 90 80 80 80 224 20.16 0.672

    Beam R

    B1 28.35

    B2 49.05

    B3 49.05

    B4 28.35

    2. Design lateral bracing

    L = 258 in Fy = 36 ksi Fu = 58 ksi A36 Steel

    Ag (req) = PU / FY = 242.3/0.9(36) = 7.47 in2

    Ae (req) = PU / FY = 242.3/0.75(58) = 5.57 in2

    L/300 = 258/300 = 0.86 in

    P U = 242.3 kips ( From Etabs )

  • 2nd Floor

    F = 88 kips h = 13 6

    From similar triangles

    PU = 1 x 88 x (21.57/15) = 126.54 kips

    3rd Floor

    F = 93 kips h = 14 6

    From similar triangles

    PU = 1 x 93 x (20.15/15) = 124.93 kips

    4th Floor

    F = 102 kips h = 15 6

    From similar triangles

    PU = 1 x 102 x (20.15/5) = 137.02 kips

    Roof

    F = 54 kips h = 14 6

    From similar triangles

    PU = 1 x 102 x (20.86/15) = 75.1 kips

  • Design brace frame for maximum PU

    Ag (min) = PU / FY = 137.02/0.9(36) = 4.23 in2

    Ae (min) = PU / FY = 137.02/0.75(58) = 3.15 in2

    Select L-section: L5 x 5 x (Ag = 4.75 in2 , rx =1.53 )

    Select C-section: C9 x 15 (Ag = 4.41 in2 , rx =3.40 )

    Select I-section: W6 x 16 (Ag = 4.74 in2 , rx = 2.60 )

    Ae / Ag = 0.745

    By using maximum L = 21.57 ft.

    L-section: L / rx = 169.18 300

    C-section: L / rx = 76.13 300

    W-section: L / rx = 99.55 300

  • 4. Design of columns

    As single columns

    In order to carry out a conservative design all end conditions were considered as pin supports.

    Hence the k value is taken as 1.

    RC

    Column Pu (Kips) KL(ft) Shape

    RC1 12.65 14.5 W8x31 (230 kips)- least weight section

    W10x33(233 kips)

    W12x40(280 kips)

    W14x48(332 kips)

    RC2 50.02 14.5 W8x31 (230 kips)

    RC3 42.18 14.5 W8x31 (230 kips)

    RC4 25.3 14.5 W8x31 (230 kips)

    RC5 103.5 14.5 W8x31 (230 kips)

    RC

    TC

    SC

    BC

    6 14

    6 13

    13 6

    15 6

  • TC

    Column Pu (Kips) KL(ft) Shape

    TC1 46.8 13.5 W8x31 (248 kips)- least weight section

    W10x33(253 kips)

    W12x40(304kips)

    W14x48(361 kips)

    TC2 161.97 13.5 W8x31 (248 kips

    TC3 136.95 13.5 W8x31 (248 kips

    TC4 86.16 13.5 W8x31 (248 kips

    TC5 315.8 13.5 W8x40 (322 kips)- least weight

    section w10x45(358 kips) w12x45

    (343 kips)

    W14x48(361 kips)

    SC

    Column Pu (Kips) KL(ft) Shape

    SC1 80.95 13.5 W8x31 (248 kips)- least weight section

    W10x33(253 kips)

    W12x40(304kips)

    W14x48(361 kips)

    SC2 273.32 13.5 W8x35 (280 kips) least weight section

    W10x39 (305 kips)

    W12x40 (304 kips)

    W14x 48 (361 kips)

    SC3 231.72 13.5 W8x31 (248 kips)

    SC4 147.02 13.5 W8x31 (248 kips)

    SC5 528.10 13.5 W8x67 (560 kips)- least weight

    section w10x60(581 kips) w12x58

    (553 kips) W14x61(572 kips)

  • FC

    Column Pu (Kips) KL(ft) Shape

    FC1 115.10 15.5 W8x31 (212 kips)- least weight section

    W10x33(213 kips)

    W12x40(257 kips)

    W14x48(304 kips)

    FC2 384.67 15.5 W8x58 (417 kips)

    W10x49(428 kips) - least weight section

    W12x53(452 kips)

    W14x61(515 kips)

    FC3 326.49 15.5 W8x48 (340 kips)

    W10x49(428 kips) - least weight section

    W12x53(452 kips)

    W14x53(338 kips)

    FC4 207.88 15.5 W8x31 (212 kips) - least weight section

    W10x33(213 kips)

    W12x40(257 kips)

    W14x48(304 kips)

    FC5 740.4 15.5 W8 none

    W10x88(789 kips)

    W12x79(781 kips) - least weight section

    W14x90(978 kips)

    FC6 200.1 15.5 W8x31 (212 kips)

    FC7 562.17 15.5 W8 none

    W10x68(602 kips)

    W12x65(639 kips) - least weight section

    W14x68(576 kips)

  • Design of two story columns from 2nd floor to the 4th floor

    Column Pu

    (Kips)

    KLx(ft) KLy(ft) Shape Checks

    C1 (Braced

    in both x

    and y

    direction)

    80.95 13.5 13.5 W8x31 (248 kips)-

    least weight section

    W10x33(253 kips)

    W12x40(304 kips)

    W14x48(361 kips)

    C2 (Braced

    in both x

    and y

    direction)

    273.32 13.5 13.5 W8x35 (280 kips)

    W10x39(305 kips) -

    least weight section

    W12x40(304 kips)

    W14x48(361 kips)

    C3 (Braced

    in both x

    and y

    direction)

    231.72 13.5 13.5 W8x31 (248 kips)-

    least weight section

    W10x33(253 kips)

    W12x40(304 kips)

    W14x48(361 kips)

    C4 (Braced

    only in y

    direction)

    147.02 27 13.5 W8x31 (248 kips)-

    least weight section

    W10x33(253 kips)

    W12x40(304 kips)

    W14x48(361 kips)

    KLx/[(rx/ry)]=27/1.72=15.69>kLy

    Therefore use KL=16.69 and

    W8x31to obtain Pn

    Pn = 212 > Pu (147.02)

    Therefore W8x31 is ok

    C5 (Braced

    in both x

    and y

    direction)

    528.10 13.5 13.5 W8 x67 (560kips)

    W10x60(581 kips)

    W12x58(553 kips) -

    least weight section

    W14x61(572 kips)

  • 5. Design of compression bracing members

    Compression(max) force is equal to Tension(max) force which are indcued in section (3). It is

    assumed, therefore, that the sections used to design the tension bracing will be same as

    the section used for compression.

    6. Design of Beams

  • If Wfloor is the floor load,

    W = 6(Wfloor) / 1000 = 0.006 kips/ft.

    R1 = R2 = 0.003 x 45W = 0.135 kips

    For joist type 2,

    If Wfloor is the floor load,

    W = 6(Wfloor) / 1000 = 0.006 kips/ft.

    R1 = R2 = 0.003 x 30W = 0.09 kips

    For beams B1, B2, B3 and B4

  • Bending Moment Diagram,

    Mmax = 18R

    Bending Moment Diagram

    Shear Force Diagram

  • Check for sections

    W 16 x 31 :

    Zx = 54.0 Lp = 4.13 Lr = 11.9 Lb = 6 ; Lp < Lb < Lr

    Mp = 0.9 x 50 x 54/12

    = 202.5 kips-ft

    Mu =MpBF(Lb-Lp)

    = 202.5 10.2 ( 6 4.13 )

    = 183.43 kips-ft ; OK

    Story Load (Psf) UDL (kips/ft) WL/2 (kips)

    Roof 75 0.45 10.125 J1

    75 0.45 6.75 J2

    Beam R (kips) Mmax (kips-ft) Vmax (kips) Sections

    RB1 10.125 182.25 20.25 W 16 x 31

    RB2 16.875 303.75 33.75 W 21 x 44

    RB3 16.875 303.75 33.75 W 21 x 44

    RB4 10.125 182.25 20.25 W 16 x 31

  • Shear check

    Vu = (1.0) (0.6Fy) (d) (tw) = 1.0 x 0.6 x 50 x 15.9 x 0.275 = 131.75 kips ; OK

    W 21x 44 :

    Zx = 95.4 Lp = 4.45 Lr = 13.0 Lb = 6 ; Lp < Lb < Lr

    Mp = 0.9 x 50 x 95.4/12 = 357.75 kips.ft

    Mu =MpBF(Lb-Lp) = 357.75 16.8 ( 6 4.45 ) = 331.71 kips.ft ; OK

    Shear check

    Vu = (1.0) (0.6Fy) (d) (tw) = 1.0 x 0.6 x 50 x 20.7 x 13 = 672.75 kips ; OK

    For Floors 3,2,1

  • Bending Moment Diagram

    10R 10R

  • Story Load (Psf) UDL (kips/ft)

    WL/2 (kips)

    Joist

    3 to 1

    210.624 1.26 28.35 J1

    224 1.34 20.1 J2

    Beam V(x) (kips)

    M(x) (kips.ft)

    Sections

    B1 47.475 475.75 W 21 x 68

    B2 33.6 336 W 21 x 48

    B3 33.6 336

    W 21 x 48

    B4 47.475 475.75 W 21 x 68

    Check for sections W 21 x 68 :

    Zx = 160 Lp = 6.36

    Mp = 0.9 x 160 x 50 /12= 600 kips.ft

    Mu =MpBF(Lb-Lp)

    = 600 18.8 ( 10 6.36 )

    = 531.56 kips.ft ; OK

    Lr = 18.7 Lb = 10 ; Lp < Lb < Lr

    Shear check

    Vu =273 kips ; OK

    W 21x 48 :

    Zx = 107, Lp = 6.09, Lr = 16.6, Lb =10 ; Lp < Lb < Lr

    Mp = 0.9 x 50 x 107/12= 401.25 kips.ft

    Mu =MpBF(Lb-Lp) = 401.25 14.7 (10 6.09) = 343.773 kips.ft ; OK

  • Story Beam Floor Load (Psf) UDL (kips/ft) Vx (kips)

    Mx (kips.ft)

    Sections

    Roof

    B5 75 0.225 2.53 14.24 W 8 x 28

    B6 75 0.225

    3.38

    25.31

    W 10 x 33

    3 to 1

    B5 210.624 1.05 11.81 66.44 W 8 x 31

    B6 224 1.12

    16.8

    126

    W 10 x 49

  • 7. Redesign section with beams spanning in opposite direction in AC67 area

    Dead load (D)

    (psf)

    Live load (L)

    (psf)

    Tributary area

    (At) (ft2)

    Lred (psf) 1.2D+1.6Lre

    d

    Wu (UDL)

    (Kips/ft)

    80 80 30 x 15 = 450 60 192 2.8

    Dead load (D)

    (psf)

    Live load (L)

    (psf)

    Tributary area

    (At) (ft2)

    Lred (psf) 1.2D+1.6Lre

    d

    Wu (UDL)

    (Kips/ft)

    80 80 45 x 10 = 450 60 192 1.92

    AC-6

    Maximum bending moment Mu= moment due to the two point loads + moment due to

    the uniform load = 43.2 x 15 + 0.96 x452/8

    = 243 + 648 = 891 kip-ft

  • Unbraced length =15ft Shape = W 30 x 99 (Mn=918 kip-ft > Mu)

    From the previous arrangement of joists the A67 =J1.

    It has a UDL of 1.26 kips/ft. Hence the maximum moment is 319 kip-ft.

    Therefore a lesser moment occurs when the joist are arranged in the previous way.

    A67

    Dead load (D)

    (psf)

    Live load (L) (psf) Tributary area

    (At) (ft2)

    Lred (psf) 1.2D+1.6Lred Wu (UDL)

    (Kips/ft)

    80 80 30 x (45/6) = 225 76.56 218.5 1.64

    Maximum Bending moment Mu =1.64 x 302/8 = 184.5 kips-ft

    Unbraced length = 30ft Shape=12x58(Mn >Mu)

    From the previous arrangement of beams the A67 beam =B2 W 21 x 48.

    It requires a more light section.

    C67

    Dead load (D)

    (psf)

    Live load (L) (psf) Tributary area

    (At) (ft2)

    Lred (psf) 1.2D+1.6Lred Wu (UDL)

    (Kips/ft)

    80 80 30 x (45/6) = 225 76.56 218.5 1.64

    Mu = moment due to the two point loads + moment due to the uniform load

    = 28.8 x 10 + 1.64 x302/8

    = 288 + 184.5 = 472.5 kip-ft

    Unbraced length = 10 ft Shape=W18x97 (Mn =782kipft>Mu)

    From the previous arrangement of beams the C67 beam =B1 W 21 x 68.

    Hence, more heavy section is required.

  • 8. JOIST SECTION (KCS)

    Required moment for L = 45 ft. span 1366 kips.in 20kcs4 1371 kips.in

    Bridging section no.10 Required moment for L = 30 ft. span 607.5 kips.in 14kcs3 642 kips.in

    Bridging section no.6

    Both joists for spacing 30

    5 = 6 ft.

    9. SHEAR CONNECTIONS FOR BEAMS

    pply 34 449()

    = v= 68 0.441 = 30 ips

  • Yield Failure

    = 0.9 36 14.3 = 463.325 ips

    Rupture Failure

    = 0.75 58 14.03 = 610.3 ips

    For Single Angle Bearing and Tearout For the edge

    For the middle

    lc = 2 (0.8125) = 1.19 n

    Tearout governs

    = 1.2 lctFu = 0.75 1.2 [1.2 + 1.19] 5/46 58

    = 48.78 ips >

  • Block Shear

    = 0.6 58 0.53 + 58 0.8 = 69.84 ips

    = 0.6 36 0.53 + 58 0.8 = 66.70 ips

    = 0.75 64.84 = 48.63 ips > K

    The block shear & tear out was done for single angle however since > for both cases the L section passes.

  • Plate Design

    We considered the plate to have similar bolt arrangement.

    If yield governs

    tw 6 n = 1.37 n2

    tw = 0.23 n

    If rupture governs

    tw 6 n 0.875t = 1.02 n2

    t= 0.20 n

    From available thickness,

    t=

  • Check For Tearout and

    Bearing

    lc (from center) = 2 (0.8125) = 1.1875 in < 2

    Tearout governs

    Therefore use a greater

    thickness, consider t = 3/8

    Block Shear Check

    v = 3 7/16 = 1.3125 n2

    v = 1.3125 1.5(0.875) 7/16 = 0.738 n2

  • t= 7/16 3 0.5(0.875)] 7/16 = 1.12 n2

    = 0.6 58 0.738 + 58 1.12 = 90.64 ips

    = 0.6 36 1.3125 + 58 1.12 = 93.31 ips = 0.75 90.64 = 67.98 ips > K

    FINAL DESIGN

    Double Angle: 2Lx6x6x5/16

    Rectangular Plate: 4x6x7/8

    STEEL Page 1 to 18Mid partLast PDF


Recommended