+ All Categories
Home > Documents > Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

Date post: 04-Jun-2018
Category:
Upload: moe-aldirdeery
View: 216 times
Download: 0 times
Share this document with a friend

of 39

Transcript
  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    1/39

    1

    Steel Work design (1) toBS 5950- 1:2000

    Dr Mustafa Batikha

    The University of Damascus-Syria

    References

    BS 5950-1(2000). Structural use of steel work in building, Part 1,Code of practice for design rolled and welded section , BSI ,London.

    Way, A. G. J. , Salter, P. R. (2003). Introduction to steelworkdesign to BS 5950-1:2000 , the steel construction institute, SCI , UK.

    Case, J., Chilver, L., Ross, C.T.F. (1999). Strength of materials andstructures , John Willy & Sons Inc ., fourth edition, London.

    McKenzie, W.M.C. (2006). Examples in structural analysis , Taylorand Francis , London.

    ).2003( .

    ).2006( . .

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    2/39

    2

    Design of Compression Members

    )The concept of stress(

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    3/39

    3

    )Axial stresses(

    topt

    t toptop y

    I Z

    Z M

    y I

    M :

    I M M

    )Bending stresses(

    bottomb

    bbottombottom y Z I

    Z : Elastic Section Modulus

    I Z

    y I

    M

    max

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    4/39

    4

    F c =F T

    = =

    Plastic Section Modulus, S

    c . c

    M p =p y S

    )(21

    T c y y AS

    S: Plastic Modulus

    S

    Z High Shape Factor

    Early Yielding

    Permanent Deformation

    )The concept of plastic hinge(

    M W

    LW M p p

    4

    )1(4

    )(

    4

    4

    )(

    p

    y p

    p

    p

    y p

    p p y M

    M L L

    L

    M

    L L

    M W

    L LW M

    Z S

    f f

    L L p :)1

    1(

    For rectangular section L L f p 31

    5.1

    For I section of f=1.13 L L f p 12.013.1

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    5/39

    5

    Shear( stresses(

    b I sV

    r M T

    S =First moment of area

    J =Torsion constant.

    Final stresses

    Normal stress x I

    M y

    I M

    A N

    y

    y

    x

    x

    Shear stress

    Principal stresses yy xx

    xy

    22tan

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    6/39

    6

    Principal stresses and the failure

    Mohrs circleand cracking

    Crack is expected when the principal stresses have reached a critical strength

    )The concept of Buckling(

    Buckling of columns

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    7/39

    7

    Lateral Torsional buckling of beams

    Buckling of Frames

    Local Buckling of yielding

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    8/39

    8

    Buckling of plates and shells

    Concept of Bifurcation Buckling

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    9/39

    9

    Concept of Snap-Through Buckling

    )Buckling of an Euler strut(P

    yP M .

    EI P

    K yK y y EI P

    y EI M

    y 22""" :00

    P

    kx Bkx A y sincos General solution forthe deflected shape

    Using the Boundary Conditions0sin0

    sin000

    kL B y L x

    kx B y A y x

    If KL 0 B=0 always y=0 No Buckling wrong assumption KL=0 or KL=n

    2

    22

    2

    222222000

    L EI n

    P EI P

    Ln

    n Lk nkL y Alwaysk kL E

    2

    2

    1)( L EI

    Pnload Criticalload smallest For E

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    10/39

    10

    The concept of restraints

    Column types

    Horizontal Ties ) 2.4.5.2&2.4.5.3) Figure 1 & Figure 2

    ,75),(5.0max[ kN Tieonload vertical factored q N uut

    4.7.1.2 Compressed N restraint =1% N compression member

    4.7.3-a r yr r u S p M M M :%90

    No directional restraint 5.0)/12.0( r r N k

    N r =3 ](%1 columnedgeof forceecompressiv N uc

    Critical buckling load of different deflection modes

    2

    22

    L EI n

    Pcr

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    11/39

    11

    Columns under other boundary conditions and the

    concept of the effective length

    yP M .

    PP M 22""" EI EI EI

    kx Bkx A y sincos General solution forthe deflected shape

    sin000 dy

    kx B y A y x

    dx

    2

    22

    2

    222222

    )2(4420cos0,0

    L EI n

    P EI P

    Ln

    n Lk nkLkLk B cr

    Note: The critical buckling load of a cantilever length L is as the critical loadof simply-supported ends of 2L

    The Effective Length, L E

    2

    22

    E

    cr L

    EI nP

    LE=Ke .L

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    12/39

    12

    Major and Minor axis of buckling

    2

    2

    2

    22

    2

    2

    2

    2

    2

    22

    1

    E L Er

    A L EI

    L

    EI Pn

    L

    EI nP

    E E cr

    E cr

    E cr

    2

    r sSlendernescr

    :2 x y x y I I r r

    y is the minor axis x is the major axis

    Buckling about y-axis is more critical than buckling about x-axis for thesame length because the smallest radii of gyration is about y

    Short ElementIntermediate Element Slender Element

    )Buckling of a perfect column(

    Intermediate

    Slender

    r sSlendernes E

    2

    2

    ,

    E stress Euler E

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    13/39

    13

    Empirical buckling of a perfect column

    Rankine formula is the simplest safe empirical formula from test data

    Y E F PPP111 P F = the real buckling failure strength

    P E = the ideal Euler buckling loadP Y = the squash load Y E

    Y E F

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    14/39

    14

    31:111

    nor n n

    Y n

    E

    Y E F n

    Y

    n

    E

    n

    F

    For less conservative treatments

    The effect of material non-linearity on buckling load

    The non-linearity of material causesthe drop in results between Euler theoryand experiment data for intermediatecolumns

    Tangent modulus theory is thesimple safe estimate of buckling

    strength in Elastic-Plastic region

    T cr T E

    r L

    x positionat sslendernes Modified E

    2

    2

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    15/39

    15

    )Buckling of a imperfect column(

    Perry Formula (1886)

    Perr Formula BS 5950-1:2000 Annex C

    2

    0:))((r

    zec E c yc E

    2

    2

    2,

    2

    )1(:

    E E

    E y y E c

    z: the distance of the extreme fiber from the neutral axis of buckling.r : Radii of gyration

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    16/39

    16

    constant:01000/)(, 0 RobertsonisaaFactor Perry

    0 is the limiting slenderness (short column)= 0.2( 2E/p y)0.5

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    17/39

    17

    )Classification of sections(

    )3.5.2(

    Local Buckling

    ) / (

    Stress distribution

    Support conditions

    Yield strength

    Table 11&12

    Element Geometry (b/T, d/t (Figure 5 & 6 :

    Stress distribution r 1, r 2: (Section 3.5.5)

    Yield strength :

    Element Type Outstand element (External : ,(Internal element ( ( (3.5.1)

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    18/39

    18

    Example 1:

    S275, UB 45715252, Bending moment only about the major axis

    ( )

    UB 45715252 t=7.6, T=10.9

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    19/39

    19

    Effective section properties

    Sections (3.5.6&3.6)

    Semi-Compact Slender

    S eff

    3.5.6

    CHS

    3.6.6

    Aeff , Z eff

    Equal-legangle

    3.6.4

    Aeff , Z eff

    section

    3.6.2

    Pure CompressionPure Bending

    Fig. 8-a (A eff )Non-slender web slender web

    Fig. 8-b (Z eff ) Fig. 9&Fig.8-b if flange is slender as well (Z eff )

    Alternative method ( :(for slender section (3.6.5 ( y yr p p23 )(

    Notice: Compression + Bending Compression only (A eff )+ Bending only (Z eff )

    Example:

    S275, Welded section pure Bending , ,Plastic flange ,slender web

    f cw =f tw b eff =60 t=6018=480mm

    0.4b eff =192, 0.6b eff =288

    Try x=40mm First moment= a i y i 0

    Try x=28mm First moment= a i y i 0

    I x =95285cm 4 , y max =52cm

    Z eff =95285/52=1832cm 3

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    20/39

    20

    Effective length to BS 5950-1:2000

    Angle, Channel orT sections

    LE (4.7.3)

    Simple structures GenerallyContinuousStructures

    (4.7.10)

    Single angles,Double angles,single channels

    or single T-sections

    Annex DTable 22

    Single Storybuildings (D1)

    Figures D1,

    Supportinginternal platform

    floors (D2)

    Annex E

    Table 25D2, D3, D4

    and D5Table D.1

    Notes: (4.7.10.1)Slenderness1.2

    Conditions (4.7.13&4.7.9)

    50vv

    vvc r

    L

    yy

    Eyymccmb r

    L :4.122

    L

    4.7.9

    max r

    ).e.4.7.13.1( .

    . 16mm ). f.4.7.13.1(

    ).g.4.7.13.1( 300mm 32t t

    4.7.13 . . . . ..

    300mm 16t t )4.7.13.2.b.2(.

    0.25Q c:Q=2.5%N cu

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    21/39

    21

    Mohrs Circle

    Anticlockwise rotation is positive

    In Eqs, I xy is always to beused as positive. The

    clockwise rotation is taken

    Compressive strength, p c (4.7.5)Perry and Robertson formula (Annex C)

    The formula was developed by an assumption that practical imperfections may exist

    Note (4.7.5): For Welded section in compression only

    Table 23, Figure 14

    py= p y(table9)-20

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    22/39

    22

    Compression Design Summary (4.2)

    Rolled Section Welded Section

    Section classification

    py (Table 9)

    py py=p y-20

    LE

    Slender section Non-Slender section

    Aeff or p yr L E

    g

    eff E

    A

    A

    r

    L (4.7.4)P c=min(p cx, p cy) [table 23,24]

    P c=min(p cx, p cy) [table 23,24]

    P c =p c Aeff

    P c =p c Ag

    Design of Fully Restrained Beams

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    23/39

    23

    Lateral Torsional Buckling of beam

    Lateral Torsional Buckling of Beams

    Lateral torsional buckling ( = (Lateral deflection ( ) Twisting + ( (

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    24/39

    24

    For bending about x axis

    2

    2

    0 dzvd

    EI M x

    For bending about y axis

    20 dzu

    EI M y

    From Torsion

    dzdu

    M dzd

    GJ GJ

    dzdzdu

    M d

    GJ L M

    d T 00

    020

    2

    2

    2

    2

    02

    2

    yGJEI M

    dzd

    dzud M

    dzd GJ

    yGJEI M

    k kz Bkz A202:sincos

    kL L z A z 0,000 ycr o GJEI L M

    ,

    Other load cases

    cr cr M m M ,0max, .

    1

    In BS 5950-1:2000 for steelwork design

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    25/39

    25

    Lateral Torsional Buckling of an I beam

    3

    3iit bGGJ C

    flange Euler flange y

    y

    cr P L

    EI

    L

    I E

    P ,2,

    2

    2

    2 )2

    (

    Buckling of flange

    The effect of load level

    cr cr M m M ,0max, .

    1 m is dependent on the ratio L 2 GJ/EI w

    4

    2 D I I yw

    Example for

    concentrated load atmid span

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    26/39

    26

    Fully restrained beams

    4.2.2 & 4.3.2.2

    The restraint should resist a lateral force more than: 2.5% F fc

    %2.5

    Frictional force

    Force in compression flange F fc

    q1=2.5%(Load coefficient of friction)/LF fc=Mumax /D

    q2=2.5% F fc/L q=q 1+q 2

    5.0)/12.0( r r N k

    N r =3

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    27/39

    27

    Restrained beam Design Summary

    y p275

    70t d

    Rolled section 70t d

    Rolled section

    62t d

    Welded section

    Plate girders (4.4.5)

    62t d Welded section

    Section Classifications

    Av (Shear area, (4.2.3) (

    (4.2.3)

    vv PF

    v yv A pP 6.0

    Webs vary in thickness

    yv p

    b I

    S F 7.0max

    Shear verification

    NoYes

    Section is not ok on shear

    To be continued

    Restrained beam Design Summary-continued

    Yes on shear

    vv PF 6.0vv PF 6.0 S v=Dt2/4 for equalled-flange sections

    . . . . . .

    Plastic

    or

    Compact

    Semi-compact

    Z p M yc Or

    eff yc S p M

    Slender

    eff yc Z p M

    Z p M yr c Or

    2]1)(2[ v

    v

    P

    F S v =S-S f (or for A v )

    PlasticSemi-compactSlender

    S p M yc

    Conservatively

    Compact

    )( v yc S S p M

    )( veff yc S S p M

    Or

    )5.1

    ( v ycS

    Z p M

    )5.1

    ( veff ycS

    Z p M Z p M yc 5.1

    Z p M yc 2.1 4.2.5.1

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    28/39

    28

    unrestrained beams (4.3)

    Effective length L E ) (4.3.5) (

    Destabilizing load ( ) increasing the twist =( (

    Beams

    Llt

    a)b)Llt

    Llt

    =

    Cantilevers

    Table 14

    c4 or d4 (Table 14)

    Normal loada e

    Normal load L E = 1.L lt

    Destabilizing load L E = 1.2L lt

    E

    Note: Bending at tip

    LE =max (1.3 Table14,Table14+0.3L)

    LltL

    LE=Llt

    Destabilizing load

    LE=1.2L lt Table 14 for L

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    29/39

    29Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    30/39

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    31/39

    31

    Compared between the design curve and research data

    Mb

    mLT (4.3.6.6)

    Destabilizing loading

    mLT=1

    Cantilevers withoutintermediate lateral

    restraint

    mLT=1

    Plates and flats

    mLT=1

    Others

    Table 18

    LT

    b x m

    M M

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    32/39

    32

    Web subject to concentrated load

    Web Bearing (4.5.2.1) Figure 13

    n At the end 56.02 k b

    n e

    Away from the end 5n

    kRolledK=T+r

    WeldedK=T

    load ed Concentrat tpnk bP ywbw )( 1

    Web subject to concentrated load

    Web Buckling (4.5.3.1)

    Rotationanges

    Movement

    No rotation and no movementLE=0.7d

    bw x Pd nk b

    t P

    )(

    25

    1

    yw p275

    ae 0.7d

    P x =P x

    a e

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    33/39

    33

    Deflection (2.5)

    Serviceability loads a) LL

    b) 0.8LL+0.8WL

    c) WL

    . .

    e) CV

    f) CH

    Deflection limits (Table 8)

    82

    Table EI

    ML

    Members with Combined Momentand Axial force

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    34/39

    34

    Tension members with moment (4.8.2)

    a d neglected moment

    pure tension design

    a 10%d neglected tensionload

    Pure bending design

    Tension members with moment design

    y p275

    Section classification

    General Case For plastic& compact sections

    Simplified method (4.8.2.2)

    1cy

    y

    cx x

    t t

    M

    M

    M

    M

    P

    F

    More exact method (4.8.2.3)

    Tension with major

    axis moment only

    Tension with minor

    axis moment only

    Tension with

    biaxialmoments

    rx yrx

    rx x M M

    ry yry

    ry y M M Continued

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    35/39

    35

    Tension members with moment design-continued

    Tension with biaxial moments

    I and H sectionswith equal flanges All others

    Z1=2

    Z2=1

    Z1=Z 2=2Z1=Z 2=5/3Z1=Z2=1

    21 Z Z M M

    1 ryrx M M

    Note : In all cases of tension members withmoment, lateral-torsional buckling should bechecked (4.8.2.1) LT

    b

    m

    M M

    Compression members with moment (4.8.3)

    a d neglected moment

    pure compression design

    a 10%d neglected compression load

    Pure bending design

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    36/39

    36

    Compression members with moment design

    y p275 Section classification

    General Case For plastic& compact sections

    Simplified method (4.8.3.2)

    1cy

    y

    cx

    x

    yg

    c

    M

    M

    M

    M

    p A

    F

    More exact method (4.8.3.2)

    Compression withmajor axis momentonly

    Compression withminor axis momentonly

    Compressionwith biaxial

    moments

    Slender section: A g=Aeff rx yrx

    rx x M M ry yry

    ry y M M Continued

    Compression members with moment design-continued

    Compression with biaxial moments

    I and H sectionswith equal flanges All others

    Z1=2

    Z2=1

    Z1=Z 2=2Z1=Z 2=5/3Z1=Z2=1

    21 Z Z M M

    1 ryrx

    x

    M M

    Note : In all cases of compression members with moment, member bucklingresistance should be checked (4.8.3.3)

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    37/39

    37

    Compression members with moment design-continued

    Member buckling resistance (4.8.3.3)

    Flexural buckling: ( )

    Lateral-torsional buckling: (

    )

    Compression members with moment design-continued

    Member buckling resistance (4.8.3.3)

    : m x )Mx( )Lx( x)p cx) .(Table 26( Mxmax =Mx

    : m y )My( )Ly( y)p cy) .(Table 26( Mymax =My

    : m yx )My( )Lx( x)p cx) .(Table 26) (m yx :To be used with out-of-plane buckling.(

    m LT(unrestrained beam), P c =Min(p cx ,p cy ), MLT=Mxmax in the segment where Mb occurs

    Simplified method (4.8.3.3.1)

    General buckling

    1 y y

    y y

    x y

    x x

    c

    c

    Z P

    M m

    Z p M m

    PF

    Minor axis buckling

    1 y y

    y y

    b

    LT LT

    cy

    c

    Z p

    M m

    M M m

    PF

    For plastic& compact sections

    More exact method (4.8.3.3.2-4)

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    38/39

    38

    Notes

    Slender Section: Z=Z eff

    = =t c , x .is according to compression with moments case with F c =0

    In sway mode : m x,m y and m yx 0.85

    Columns in simple structures (4.7.7)

    Simple structures= pinned columns + bracing or shear wall for horizontal resistance

    Dr Mustafa Batikha Damascus University

  • 8/13/2019 Steel Work Design 1 Dr Mustafa Batikha Lectures 2010 2011

    39/39

    Columns in simple structures

    100mm

    Nominal moment=M

    ii

    iii

    L I

    L I

    /

    /

    2/5.1: 21max M M M Note

    min

    1 y y

    y

    bs

    x

    c

    c

    Z P

    M

    M

    M

    P

    F LE (Table 22), Typically=(0.85L or L)

    P c=min(P cx, P cy)

    Mbs as unrestrained beam, LT=0.5L/r y for simplicity


Recommended