+ All Categories
Home > Documents > Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may...

Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may...

Date post: 23-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
24
Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk, Joshua Heyne, Frederick L. Dryer Multi Agency Coordination Committee for Combustion Research Fuels Summit Princeton University, September 20 th -22 nd 2010
Transcript
Page 1: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk, Joshua Heyne, Frederick L. Dryer

Multi Agency Coordination Committee for Combustion ResearchFuels Summit

Princeton University, September 20th-22nd 2010

Page 2: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

MURI concept to identify surrogate fuel components.

n-alkyl benzene oxidation.

Flow reactor oxidation of 1st/2nd generation surrogates vs POSF 4658.

1st generation surrogate kinetic model performance, future modeling direction.

Cycloalkanes in surrogate fuel formulations.

•Can surrogate performance be improved?

2

Page 3: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

Identify critical fuel properties which manifest in important practical gas phase combustion chemistry behaviour of target fuel: •Adiabatic flame temperature •Local air fuel stoichiometry•Enthalpy of combustion •Flame velocity •Fuel diffusive properties•Sooting propensity •Global chemical kinetics/ Overall radical production

Surrogate mixture must emulate these parameters, but how?Surrogate should represent distinct molecular class composition of real

fuel reacting flux => n-alkyl, alkenyl and aromatic.

Ratio of hydrogen to carbon (H/C)

Molecular Weight (MW)

Derived Cetane Number (DCN),macro ignition measure via Ignition Quality Tester

Threshold Sooting Index (TSI)via smoke point measurement

3

Page 4: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

Must identify distinct chemical functionalities.

4

Real fuels have many generic chemical functionalities

Much fewer distinct chemical functionalities after initial oxidation

Distinct chemical functionalities affect small species population which affect radical pool identity and population

Radical pool population controlling in combustion chemistry

+

+ CH3

MURI 1st and 2nd

Generation Surrogates

C2H5+

Page 5: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

C2H5+

5

n-propyl benzene oxidation and distinct functionality conceptn-propyl benzene (n-alkyl benzenes) exhibit(s) very weak C-C bond dissociation energies.This allows modeling of high temperature global combustion properties to be simplified.Construct model only considering oxidation of alkyl chain, divides high T and low T phenomena.

>1000K

Allowed in model => Good agreement against high T global phenomena 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

150

200

250

300

350

400

Won et al. n-propyl benzene experiment Won et al. n-propyl benzene model

Extin

ctio

n st

rain

rate

/ s-1

n-propyl benzene mole fraction, Xn-propyl benzene

Extinction Autoignition

Strain rates of extinction for counter flow diffusion flames at 1 atm, n-propyl benzene.

Shock tube Ignition delay times for n-propyl benzene, φ= 1.0 in air at ~20 atm.

High Temperature

S.H. Won, S. Dooley, F.L.Dryer, Y. Ju Proc. Combust, Inst. in press 2010,

H

H

H

H

HH

H

86.574.8 88.5

101.5

98.5

n-propyl benzene bond dissociation energies, kcal mol-1

See Presentation of M. Oehlschlaeger, this symposium

Page 6: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

6

n-propyl benzene oxidation and distinct functionality conceptn-propyl benzene (n-alkyl benzenes) exhibit(s) very weak C-C bond dissociation energies.This allows modeling of high temperature global combustion properties to be simplified.Construct model only considering oxidation of alkyl chain, divides high T and low T phenomena.

Flow reactor oxidation data. Experiment (symbols) and model computations (Lines).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

2000

4000

6000

8000

10000

Spe

cies

con

cent

ratio

n / p

pm

Time /sec

+ O2

OO

?R +O2 chemistry not allowed at fuel level in model leading to poor agreement at lower temperatures

Flow reactor Oxidation at 848K

H

H

H

H

HH

H

86.574.8 88.5

101.5

98.5

n-propyl benzene bond dissociation energies, kcal mol-1

Low Temperature

<950K

S.H. Won, S. Dooley, F.L. Dryer, Y. Ju Proc. Combust, Inst. in press 2010,

0.0 0.5 1.0 1.5 2.0 2.5

0

50

100

150

200

Spec

ies

conc

entra

tion

/ ppm

Time /sec

Page 7: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

Mole Fraction DCN H/C MW / g mol-1 TSIJet‐A POSF 4658 47.1 1.957 142.01 21.4

n-decane iso-octane Toluene0.4267 0.3302 0.2431 47.1 2.01 120.7 14.1

Surrogate FormulationMolecular weight may not be emulated with these components. (How important is that to combustion chemistry targets?)POSF 4658 vs Surrogate, C10.17H19.91 vs C8.61H17.27

H/C and TSI may not be emulated by the same mixture.

n-decane/iso-octane/toluene allows for assessment of current kinetic modeling capabilities and all range of conditions for JP fuels.

7

Page 8: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658 (symbols), Inset;ΔT.

500 550 600 650 700 750 800 850 900 950 1000

0

2500

5000

7500

10000

12500

15000

17500

20000

22500 CO CO2

O2

H2O n-Decane x 20

Spec

ies

conc

entra

tion

/ ppm

Temperature / K

•Fuel dilute conditions, 0.3% carbon as fuel allows heat release to be regulated.

8

500 600 700 800 900 1000

POSF 4658 CO CO2 O2 H2O

Spe

cies

con

cent

ratio

n / p

pm x

103

Temperature / K

1

2

3

4

5

500 600 700 800 900 10000

10

20

30

40

50 POSF 4658

Δ T

/ K

Temperature / K

Δ T

Page 9: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658 (symbols) and 1st

generation POSF-4658 surrogate (solid lines), Inset;ΔT.

•Fuel dilute conditions, 0.3% carbon as fuel allows heat release to be regulated.

•0.3 % carbon and φ=1.0

•POSF 4658 vs Surrogate294 vs 348 “ppm” fuel4548 vs 4496 ppm O2

•Heat release rate is well emulated

9

500 600 700 800 900 1000

1st Gen.POSF 4658 SurrogateCO CO2 O2 H2O

Spe

cies

con

cent

ratio

n / p

pm x

103

Temperature / K

1

2

3

4

5

500 600 700 800 900 10000

10

20

30

40

50 1st Gen.POSF 4658 Surrogate

Δ T

/ K

Temperature / K

Δ T

Page 10: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

500 600 700 800 900 1000

1st Gen. POSF 4658 Surrogate CO CO2 O2 H2O

Spe

cies

con

cent

ratio

n / p

pm x

103

Temperature / K

1

2

3

4

5

500 600 700 800 900 10000

10

20

30

40

50POSF 4658 Δ TSurrogate

Δ T

/ K

Temperature / K

0.8 1.0 1.2 1.4 1.640

100

1000

10000

100000 ST RCM

POSF 4658

1st Gen. Surrogate

Igni

tion

dela

y tim

e, τ

/ μs

1000K / T

1200 1000 800 600 Temperature / K

Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF 4658 and 1st generation POSF 4658 surrogate. Inset;ΔT.

0.02 0.04 0.06 0.08 0.10 0.12 0.14

100

200

300

400POSF 4658

1st Gen. Surrogate

Ext

inct

ion

stra

in ra

te, a

E /

s-1

Fuel mole fraction, XF

0.2 0.3 0.4 0.5 0.6

Fuel mass fraction, XY

Strain rates of extinction for counter flow diffusion flames at 1 atm, for POSF 4658 and 1st generation POSF 4658 surrogate.

Ignition delay times, φ= 1.0 in air at ~20 atm for POSF 4658 and 1st

generation POSF 4658 surrogate.

Mole Fraction DCN H/C MW / g mol-1 TSIJet‐A POSF 4658 47.1 1.957 142.01 21.4

n-decane iso-octane Toluene0.4267 0.3302 0.2431 47.1 2.01 120.7 14.1

Page 11: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

2nd Generation Surrogate FormulationMolecular weight may not be emulated with n-decane/iso-octane/toluene

and H/C and TSI may not be emulated simultaneously.Must use larger alkane to adjust DCN and alkylated aromatics to adjust H/C independent of TSI, as TSI ∝ aromatic content.More reactive aromatics may improve emulation of end of NTC region.=> n-dodecane/iso-octane/ propyl benzene / 1,3,5 trimethyl benzeneCan match all combustion property constraints.Parameterise DCN as before, 35 mixtures for 4 components versus 14 for 3 components.

11

.

Page 12: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

•Fuel dilute conditions, 0.3% carbon as fuel allows heat release to be regulated.

•0.3 % carbon and φ=1.0

•POSF 4658 vs 2nd gen Surrogate294 vs 300 “ppm” fuel4548 vs 4500 ppm O2

12

500 600 700 800 900 1000

1st Gen.POSF 4658 SurrogateCO CO2 O2 H2O

Spe

cies

con

cent

ratio

n / p

pm x

103

Temperature / K

1

2

3

4

5

500 600 700 800 900 10000

10

20

30

40

50 1st Gen.POSF 4658 Surrogate

Δ T

/ K

Temperature / K

Δ T

Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658 (symbols), 1st

generation surrogate (solid lines), Inset;ΔT.

Page 13: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

500 600 700 800 900 1000

2nd Gen.POSF 4658 SurrogateCO CO2 O2 H2O

Spe

cies

con

cent

ratio

n / p

pm x

103

Temperature / K

1

2

3

4

5

500 600 700 800 900 10000

10

20

30

40

50 2nd Gen.POSF 4658 Surrogate

Δ T

/ K

Temperature / K

Δ T

Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658 (symbols), 2nd

generation surrogate (solid lines), Inset;ΔT. RHS 1st generation surrogate versus 2nd generation surrogate.

13

500 600 700 800 900 1000

1st Gen. 2nd Gen. Surrogate SurrogateCO CO2 O2 H2O

Spe

cies

con

cent

ratio

n / p

pm x

103

Temperature / K

1

2

3

4

5

500 600 700 800 900 10000

10

20

30

40

50 1st Gen. 2nd Gen. Surrogate Surrogate

Δ T

/ K

Temperature / K

Δ T

•0.3 % carbon and φ=1.01st vs 2nd Gen. Surrogate

Page 14: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

500 600 700 800 900 1000

O2 CO CO2 H2O POSF 4658

2nd Gen. Surrogate

Sp

ecie

s co

ncen

tratio

n x1

03 / pp

m

Temperature / K

1

2

3

4

5

500 600 700 800 900 1000

0

10

20

30

40

ΔT

/ K

Temperature K

2nd Gen.POSF 4658 Surrogate

Δ T

0.8 1.0 1.2 1.4 1.640

100

1000

10000

100000 ST RCM

POSF 4658 2nd Gen. POSF 4658 Surrogate

Igni

tion

dela

y tim

e, τ

/ μs

1000K / T

1200 1000 800 600 Temperature / K

0.025 0.050 0.075 0.100 0.125

100

200

300

400 POSF 4658 2nd Gen. POSF 4658 Surrogate

Ext

inct

ion

stra

in ra

te, a

E / s

-1

Fuel mole fraction, XF

0.2 0.3 0.4 0.5 0.6

Fuel mass fraction, XY

14

Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF 4658, 1st generation POSF 4658 and 2nd generation POSF 4658 surrogate.

Strain rates of extinction for counter flow diffusion flames at 1 atm, for POSF 4658, 1st generation POSF 4658 surrogate and 2nd

generation POSF 4658.

Ignition delay times, φ= 1.0 in air at ~20 atm for POSF 4658, 1st

generation POSF 4658 surrogate and 2nd generation POSF 4658.

.

Page 15: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

n-decane/iso-octane/toluene detailed kinetic model.n-decane => Westbrook et al. (LLNL) 2008. => Overall good iso-octane => Mehl et al. (LLNL revision of Curran et al.) 2010. =>Overall good Toluene => Princeton, (Metcalfe, Dooley and Dryer) 2010.=> Extensive revision

Common C0-C4 assembled and tested by Princeton. H2/O2 from Li et al. and C1 chemistry of Zhao et al. to CH3+CH3(+M)=C2H6(+M). C2 to C4 of Healy et al.Laskin et al. for higher alkenyl type species.

Do not consider “cross reactions”(!), 1600/6600 species/reactions.Transport from literature review => aromatics, oxygenates, alkyl/alkenyls.

J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer, J.J. Scire Jr., Int. J. Chem. Kinet. 39 (2007) 109-136.Z. Zhao, M. Chaos, A. Kazakov, F.L. Dryer, Int. J. Chem. Kinet. 10 (2008) 1-18. D. Healy, H.J. Curran, J.M. Simmie, et al.Combust. Flame 155 (2008) 441-448.A. Laskin, H. Wang, C.K. Law, Int. J. Chem. Kinet. 32 (2000) 589-614.

F.M. Mourits, F.H.A. Rummens, Can. J. Chem. 55 (1977) 3007-3020.H. Wang, M. Frenklach, Combust. Flame 96 (1994) 163-170.

C.K. Westbrook, W.J. Pitz, O. Herbinet, H.J. Curran, E.J. Silke, Combust. Flame, 156 (2009) 181-199.Marco Mehl, Personal communication Nov 2009.H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 129 (2002) 253–280.W.K. Metcalfe, S. Dooley, Dryer F.L, in preparation 2010.R. Bounaceur, I. Da Costa, R. Fournet, F. Billaud, F. Battin-Leclerc, Int J. Chem. Kin. 37 (2005) 25-49.

available soon

15

Page 16: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

500 600 700 800 900 1000

1st Gen. 1st Gen. Surrogate

Surrogate Kinetic Model

CO

CO2

O2

H2O

Spe

cies

con

cent

ratio

n / p

pm x

103

Temperature / K

1

2

3

4

5

500 600 700 800 900 10000

10

20

30

40

50 1st Gen. 1st Gen. Surrogate Surrogate Kinetic Model

Δ T

/ K

Temperature / K

Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658, 1st generation POSF-4658 surrogate and model simulation of 1st

generation POSF-4658 surrogate, Inset;ΔT

Strain rates of extinction for counter flow diffusion flames at 1 atm, POSF-4658, 1st generation POSF-4658 surrogate and 1st generation POSF-4658 surrogate kinetic model simulation.

Ignition delay times, φ= 1.0 in air at ~20 atm for POSF-4658, 1st generation POSF-4658 surrogate and 1st

generation POSF-4658 surrogate kinetic model simulation

0.8 1.0 1.2 1.4 1.630

100

1000

10000

80000

ST RCM 1st Gen. Surrogate 1st Gen. Surrogate

Kinetic ModelIg

nitio

n de

lay

time,

τ /

μs

1000K / T

1400 1200 1000 800 600 Temperature / K

0.04 0.06 0.08 0.10 0.12 0.14

100

200

300

400 1st Gen. Surrogate 1st Gen. Surrogate

Kinetic Model

Extin

ctio

n st

rain

rate

, aE

/ s-1

Fuel mole fraction, XF

.

Page 17: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

50

100

150

200

250

4000

Spe

cies

con

cent

ratio

n / p

pm

Times / Seconds

Flow reactor oxidation data for 1st Generation surrogate.

• Model shows that n-decane is principally active in radical generation=> exclusively so at lowest temperatures.

•Excellent emulation of POSF 4658 at low Ts indicates quantity of n-alkyl fragments have been approx. correctly prescribed in surrogate.

•Aromatic/iso-alkanes can not produce radicals as competitively, slowing overall reaction.

•iso-octane/toluene start to contribute to radical generation above 800K and 900K respectively.

17

Page 18: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

18

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00

20

40

60

80

100

120

140

160

ΔT /

K

Time / seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Spe

cies

con

cent

ratio

n / p

pm

Time / seconds

Experimental data (symbols) versus simulation (lines) for n‐decane oxidation Time Shift = 0s

Analysis indicates n-alkane oxidation of huge importance.Current models have room for improvement.

Page 19: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

19

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

10

20

30

40

50

60

70

80

90

100

110

120

Spec

ies

conc

entra

tion

/ ppm

Time / seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0

20

40

60

80

100

120

140

160

ΔT /

K

Time / seconds

Experimental data (symbols) versus simulation (lines) for n‐decane oxidation. Time Shift = 0s

Analysis indicates n-alkane oxidation of huge importance.Current models have room for improvement.

1-olefin species Profiles

Page 20: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

Must identify distinct chemical functionalities.

20

Real fuels have many generic chemical functionalities

Much fewer distinct chemical functionalities after initial oxidation

Distinct chemical functionalities affect small species population which affect radical pool identity and population

Radical pool population controlling in combustion chemistry

+

+ CH3

MURI 1st and 2nd

Generation Surrogates

C2H5+

Page 21: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

flow reactor and shock tube oxidation of 1st generation surrogate versus1st generation surrogate + methyl cyclohexane. Model computations (lines),

experiments (symbols).

21

0.8 1.0 1.2 1.440

100

1000

10000

100000

POSF 4658

1st Gen. POSF 4658 Surrogate

Kinetic Modelling

1st Gen. POSF 4658 Surrogate

1st Gen. POSF 4658 Surrogate + methyl cyclohexane

1st Gen. POSF 4658 Surrogate + cyclohexane

Igni

tion

dela

y tim

e, τ

/ μs

1000K / T

1200 1100 1000 900 800 700 Temperature / K

500 600 700 800 900 1000

O2 CO POSF 4658

Kinetic Modelling O2 CO

1st Gen. Surrogate 1st Gen. Surrogate +cyclohexane 1st Gen. Surrogate +methyl cyclohexane

Spe

cies

con

cent

ratio

n / p

pm x

103

Temperature / K

1

2

3

4

5

1) E.J. Silke, W.J. Pitz, C.K. Westbrook, J. Phys. Chem. A 111 (2007) 3761-3775.2) W.J. Pitz, C.V. Naik, T.N. Mhaolduin, C.K. Westbrook, H.J. Curran, J.P. Orme, J.M. Simmie, Proc. Combust. Inst. 31 (2007) 267-275.3) S.Dooley, S. H. Won, M. Chaos, J.Heyne, Y. Ju F.L. Dryer, K. Kumar, C.-J. Sung, H. Wang,M.Oehlschlaeger, R. J. Santoro, T. A. Litzinger, Combust. Flame in press 2010.

Formulate 2 additional surrogates containing cycloalkanes: cyclohexaneand methyl cyclohexane.

Incorporate LLNL cyclohexane1 and methyl cyclohexane2 chemistries into Jet-A model3, is cylcoalkylfunctionality having a significant effect?

Model results say no.

Model!

Page 22: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

Flow reactor oxidation data for conditions of 12.5 atm, 0.3% carbon, φ= 1.0 and t =1.8s, for POSF-4658 (symbols), 1st generation surrogate (light lines), and

1st generation surrogate + methyl cyclohexane (solid lines). Inset;ΔT.

What does experiment say?Low temperature (<800K)

behaviour is almost identical to 1st

Generation surrogate.Observe a shift of approx. 25-30K

to cooler temperature in “hot ignition” condition.

How significant is this to the engine design scenario?

500 600 700 800 900 10000

1000

2000

3000

4000

5000

POSF 1st Generation 1st Generation4658 Surrogate MCH SurrogateCO CO2 O2 H2O

Spe

cies

con

cent

ratio

n / p

pm

Temperature / K

500 600 700 800 900 1000

0

10

20

30

40POSF 1st Generation 1st Generation4658 Surrogate MCH Surrogate

ΔT

Δ T

/ K

Temperature / K

Experiment!

22

Page 23: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

Surrogate formulation strategy is promising, tested surrogates closely emulate the chemical kinetic related behavior of real life Jet-A POSF 4658.Emulation quality improves with a richer chemical structural palette, cycloalkanes, weakly isomerised alkanes?=> Is it worth incorporating these given the kinetic modeling price to be paid?

To what level must constraining parameter be matched, likely dependent on condition of study and fuel? One surrogate one fuel? Intermediate species? 2-stage ignition?Kinetic modeling for n-decane/iso-octane/toluene is qualitatively accurate but not precise, promising “a priori” agreement. More detailed and quantitative understanding of n-alkyl fragment oxidation required to improve real fuel oxidation models.Paper is published in Combust. Flame, on line now.S. Dooley et al. Combust. Flame. in press 2010 doi:10.1016/j.combustflame.2010.07.001

23

Page 24: Stephen Dooley*, Saeed Jahangirian, Tanvir I. Farouk ...€¦ · `More reactive aromatics may improve emulation of end of NTC region. => n-dodecane/iso-octane/ propyl benzene / 1,3,5

This work was supported by the Air Force Office of Scientific Research under the 2007 MURI Grant No. FA9550-07-1-0515 (at PU, UCONN, PSU, and UIC) and under Grant No. FA9550-07-1-0114 (at RPI). Dr. Julian Tishkoff; Program Manager; Dr. Timothy Edwards AFRL, technical discussions, fuel samples.

Research Team Members

Fred Dryer, Stephen Dooley, Sang Hee Won, Marcos Chaos, Joshua Heyne, Yiguang Ju, Saeed Jahingarian,Wenting Sun, Francis Haas, Henry Curran, Wayne Metcalfe, Amanda Ramcharan, Timothy Bennett, John Grieb,Lisa Langelier-Marks, Joseph SivoMechanical and Aerospace Engineering, Princeton University, Princeton, NJ

Kamal Kumar, Chih-Jen Sung School of Engineering, University of Connecticut, Storrs, CT

Robert J. Santoro and Thomas A. Litzinger, Venkatesh Iyer, Suresh Iyer, Milton LinevskyThe Energy Institute, The Pennsylvania State University, University Park, PA

Kenneth Brezinsky, Thomas Malewicki, Soumya Gudiyella, Alex FridlyandMechanical Engineering, University of Illinois Chicago, IL

Matthew A. Oehlschlaeger, Haowei WangMechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY

We also wish to thank:• Dr. Marco Mehl, Dr. Bill Pitz and co-workers at LLNL; modeling contributions.• Dr. Cliff Moses, Dr. John Farrell, Prof. Hai Wang; technical discussions.

24


Recommended