+ All Categories
Home > Documents > Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George...

Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George...

Date post: 10-May-2020
Category:
Upload: others
View: 9 times
Download: 0 times
Share this document with a friend
41
Stochastic (Random) Demand Inventory Models George Liberopoulos 1 G. Liberopoulos: Production Systems 29/11/2018
Transcript
Page 1: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

Stochastic (Random) Demand Inventory Models

George Liberopoulos

1G. Liberopoulos: Production Systems29/11/2018

Page 2: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Assumptions/notation

– Single-period horizon– Uncertain demand in the period: D (parts) assume continuous random variable

Density function and cumulative distribution function of D: f(x) and F(x)

– Infinite production/replenishment rate (instantaneous replenishment)– Zero lead time– Overage cost rate: cost per unit of positive inventory remaining at the end of

the period: co (€ per left-over part)– Underage cost rate: cost per unit of unsatisfied demand (negative ending

inventory) : cu (€ per missing part or unsatisfied demand)– No fixed setup production/order cost

• Decision– Order quantity at the beginning of the period: Q (parts)

2G. Liberopoulos: Production Systems29/11/2018

0

( )( ) ( ) ( ) ( )a

x ax

dF xF a P D a f x dx f adx ==

= ≤ = =∫

Page 3: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Definitions

– (Positive) inventory remaining at the end of the period: I +

– Unsatisfied demand (negative inventory) at the at the end of the period: I –

– Total overage and underage cost at the end of the period: G(Q, D)

– Expected cost: G(Q)

3G. Liberopoulos: Production Systems29/11/2018

( ) max( ,0)( ) max( ,0)

I Q D Q DI D Q D Q

+ +

− +

= − ≡ −

= − ≡ −

( , ) ( ) ( )o u o uG Q D c I c I c Q D c D Q+ − + += + = − + −

0

0 0

0

( ) [ ( , )] ( , ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Dx

o ux x

oQ

u

Q

x x

G Q E G Q D G Q x f x dx

c Q x f x dx c x Q f x dx

c Q x f x dx c x Q f x dx

=

∞ ∞

= =

=

+

=

+

= =

= − + −

= − + −

∫ ∫

∫ ∫

Page 4: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model

4G. Liberopoulos: Production Systems29/11/2018

( ) max( ,0)I Q QD D+ += ≡ −−

( ) ( )uQx

f xx Q dxc∞

=

−∫

( ) max( ,0)I D DQ Q− += ≡ −−

0

( ) ( )Q

ox

f xc dxQ x=

−∫

( )f x

Q Dμ = Ε[D]

Page 5: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Problem

• First derivative of cost function

5G. Liberopoulos: Production Systems29/11/2018

0

0

00

1( ) ( ) 0( ) (

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1 ( ) ( 1) ( )

(

)

0( ) ( ) 1( ) ( )

) [

Q

o ux x Q

Q

ox

ux

x Q x

x xQ

Q

o ux x Q

o u

Q

dG Q d c Q x f x dx c x Q f x dxdQ dQ

dc Q x f x dxdQ

dc x Q f x dxd

Q x f x Q

Q

c f x dx c f x dx

c F Q

x f x

x Q f x x Q f x

c

=

= =

=∞ =

=

=

=

= =

= − + −

= − + +

− +

+ −

= −

− − −

− − −

=

∫ ∫

∫ ∫1 ( )]F Q−

Minimize ( )Q

G Q

Page 6: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• In deriving the previous formula, we used Leibnitz’s rule for taking the

derivative of an integral whole limits are functions of the variable with respect to which the derivative is taken. Leibnitz’s rule is:

6G. Liberopoulos: Production Systems29/11/2018

( ) ( )

( ) ( )

( , ) ( ) ( )( , ) ( ( ), ) ( ( ), )b y b y

a y a y

d df x y db y da yf x y dx dx f b y y f a y ydy dy dy dy

= + −∫ ∫

Page 7: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Second derivative

• First-order condition for minimization

Note:– F(Q) is the fill rate, i.e. the probability that a demand will be satisfied!

– Recall: EOQ model with backorders:

7G. Liberopoulos: Production Systems29/11/2018

[ ]2

2

( ) ( ) [1 ( )] ( ) ( ) 0o u o udG Q d c F Q c F Q c c f Q

dQ dQ= − − = + ≥

0

* * * 1

( ) 0 ( ) [1 ( )] 0 ( ) ( )

: ( )

o u o u uQ

u u

o u o u

dG Q c F Q c F Q c c F Q cdQ

c cQ F Q Q Fc c c c

=

= ⇒ − − = ⇒ + =

⇒ = ⇒ = + +

* bFh b

=+

Page 8: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Special case: D ∼ Normal(μ, σ)

8G. Liberopoulos: Production Systems29/11/2018

( )

( )

Normal(0,1) standardized Normal cumulative distribution function

( ) ( )

( ) ,

and hence ( ) can be evaluated from standardized Normal t s(

able

D Q QF Q P D Q P

Q

z

F Q z z

z F Q

µ µ µσ σ σ

µσ

− − − = ≤ = ≤ = Φ

−⇒ =Φ =

⇒ Φ

Φ

0 0.5000 0.00000.85 0.8023 0.30231.19 0.9015 0.40151.65 0.9505 0.45052.33 0.9901 0.49013.09 0.9990 0.49

) ( )

9

0.5

0

z zΦ −

Page 9: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Special case: D ∼ Normal(μ, σ) cont’d

• ExampleD ∼ Normal(120, 45) buying price c = 30selling price S = 110salvage price s = 10

9G. Liberopoulos: Production Systems29/11/2018

( )

* ** * 1: ( )

c c cu o u

u u u

o u o u o u

z

c c cQ QQ F Qc c c c c c

µ µσ σ

+

− − −= ⇒ Φ = ⇒ =Φ + + +

0.80

*0.80

80 0.80 0.8520 80

120 45 0.85 120 38.25 158.85 159

u

o u

c zc c

Q zµ σ

⇒ = = ⇒ =+ +

⇒ = + = + ⋅ = + = ≈

*( )u o uc c cQ zµ σ +⇒ = +

110 30 8030 10 20

u

o

c S cc c s= − = − =

⇒ = − = − =

Page 10: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Extension: Discrete demand

– Uncertain demand in the period: D (parts) assume discrete random variableProbability mass function and cumulative distribution function of D: p(x) and F(x)

– Expected cost: G(Q)

– Problem:

– First-order difference

– First-order condition for minimization

10G. Liberopoulos: Production Systems29/11/2018

( ) ( ) ( ) ( ) ( ) ( 1)x a

F a P D a p x p a F a F a≤

= ≤ = = − −∑1

0( ) [ ( , )] ( , ) ( ) ( ) ( ) ( ) ( )

Q

o uD x x x QG Q E G Q D G Q x p x c Q x p x c x Q p x

− ∞

= =

= = = − + −∑ ∑ ∑

*

* *

: smallest such that ( 1) ( ) 0 ( ) [1 ( )] 0

: smallest such that ( )

o u

u

o u

Q Q G Q G Q c F Q c F Q

cQ Q F Qc c

+ − ≥ ⇔ − − ≥

⇒ ≥+

0 1( 1) ( ) ( ) ( ) ( ) [1 ( )]

Q

o u o ux x Q

G Q G Q c p x c p x c F Q c F Q∞

= = +

+ − = − = − −∑ ∑

Minimize ( )Q

G Q

Page 11: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Extension: Staring inventory y > 0

– Still want to be at Q* after ordering, because Q* is the minimizer of G(Q)– Order quantity: U– Optimal policy now depends on starting inventory:

Note: – U* ≡ optimal order quantity– Q* ≡ optimal “order-up-to” point ≡ inventory target level ≡ base stock level

11G. Liberopoulos: Production Systems29/11/2018

* **

*

, if ( )

0, if Q y y Q

U yy Q

− <=

Page 12: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Interpretation of co and cu for the single-period model

– S = selling price (€ per part)– c = variable cost (€ per part)– h = holding cost (€ per part per period)– p = loss-of-goodwill cost (€ per part short per period)

12G. Liberopoulos: Production Systems29/11/2018

order cost leftover inventory cost shortage cost

sales reven

sal

e

e

u

s

( , ) ( ) ( min( , ))G Q D cQ h Q D p D Q S Q D+ += + − + − −

0

( ) ( ) ( ) ( ) ( )Q

Q

cQ h Q x f x dx p S x Q f x dx Sµ∞

= + − + + − −∫ ∫

*

( ) 0 ( ) ( )(1 ( )) 0

: ( ) ,u o

dG Q c hF Q p S F QdQ

p S cQ F Q c p S c c h cp S h

= ⇒ + − + − =

+ −⇒ = ⇒ = + − = +

+ +

0 0

(

[( ) ]

)

( ) ( )

( ) [ ( , )] ( ) ( ) ( ) ( ) [ ( ) ( ) ]

Q

Q

Q Q

DQ

E D

Q

xf x dx

x Q Qf x dx

G Q E G Q D cQ h Q x f x dx p x Q f x dx S xf x dx Qf x dx

µ

µ

µ

∞+

∞ ∞

− = − −−

= = + − + − − +

∫ ∫ ∫ ∫

Page 13: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Extension: infinite periods (infinite horizon) with backorders

Same assumptions as single-period model except that:– Dt = demand in period t; D1, D2, D3, … are i.i.d. with distribution f(x), F(x)– Ut = amount ordered in period t– Optimal policy in each period is “order-up-to” Q– In the long-run, the inventory can never be higher than Q

⇒ In steady-state (long run): Ut = Dt–1

13G. Liberopoulos: Production Systems29/11/2018

Inventory/backorders

time t

Q

Transient Ut = Dt–1

Steady state

Page 14: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Extension: infinite periods (infinite horizon) with backorders (cont’d)

– Total cost in a period with demand D

– Expected average cost per period

– First-order condition for minimizing G(Q)

Note: – c and S play no role in determining Q*, because in the long run, all demands are

satisfied regardless of Q; therefore, the expected average ordering cost minus revenue per period is (c – S)μ regardless of Q.

14G. Liberopoulos: Production Systems29/11/2018

order cost sales revenue inventory holding cost backorder cost

( , ) ( ) ( ) ( )G Q D c S D h Q D p D Q+ +

= − + − + −

* *

( ) 0 ( ) (1 ( )) 0

: ( ) Newsventor formula: ,u o

dG Q hF Q p F QdQ

pQ F Q c p c hp h

= ⇒ − − =

⇒ = ⇒ = =+

( ) [ ( , )] ( ) [( ) ] [( ) ]D

G Q E G Q D c S hE Q D pE D Qµ + += = − + − + −

Page 15: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Extension: infinite periods (infinite horizon) with lost sales

Same assumptions as infinite horizon with backorders except that:– Unmet demand is not backordered but is lost– In steady-state (long run): Ut = min(Q, Dt–1)

15G. Liberopoulos: Production Systems29/11/2018

Inventory/lost sales

time t

Q

Transient Ut = min(Q, Dt–1)

Page 16: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

The Newsvendor model• Extension: infinite periods (infinite horizon) with lost sales (cont’d)

– Total cost in a period with demand D

– Expected average cost per period

– First-order condition for minimizing G(Q)

Note: – c and S now play a role in determining Q*, because in the long run, the demand

satisfied and the orders are min(Q, D), so they depend on Q; therefore, the expected average ordering cost minus revenue per period is (c – S)E[min(Q, D)].

16G. Liberopoulos: Production Systems29/11/2018

* *

( ) 0 ( ) ( )(1 ( )) 0

: ( ) Newsvendor formula: ,u o

dG Q hF Q p S c F QdQ

p S cQ F Q c p S c c hp S c h

= ⇒ − + − − =

+ −⇒ = ⇒ = + − =

+ − +

( , ) ( ) ( ) ( )min( , )Q DG Q D c S h Q D p D Q+ += − + − + −

[( )( ) [ ( , )] ( ) [( ) ] [( ]] )D

G Q E G Q D c S hE Q D pE DE D Q Qµ + + + − = = − + − + − −

Page 17: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

Lot size – Reorder point (Q, R) model• Assumptions

– Infinite horizon– Continuous review (as opposed to periodic review)– Dt: random stationary demand per unit time (e.g., daily demand)

mean λ ≡ Ε[Dt], variance σt2 = E[(Dt – λ)2]

– Unmet demand is either backordered or lost– τ: Fixed replenishment order lead time – Costs:

• Variable unit production/order cost: c (€ per part)• Fixed setup production/order cost: K (€ per production run/order)• Inventory holding cost rate: h (€ per part per unit time)• Stock-out (shortage/penalty) cost rate (2 cases / 4 situations: see next)

• Order policy– (Q, R) policy: order Q when inventory position falls below R

• Decision variables– Q: lot size (reorder quantity)– R: reorder point

17G. Liberopoulos: Production Systems29/11/2018

Page 18: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model• Assumptions on stock-outs and stock-out cost rate

– Case 1: Backordered demand• p1 (€ per stock-out occasion)• p2 (€ per part short )• p3 (€ per part short per unit time)

– Case 2: Lost sales• pL (€ per lost sale)

18G. Liberopoulos: Production Systems29/11/2018

Page 19: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demand

19G. Liberopoulos: Production Systems29/11/2018

R

time

R+Q

τ

Q

Inventory position

On-hand inventory

Backorders

Page 20: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demand• Analysis

– D: demand during lead time τ• Density function and cumulative distribution function of D: f(x) and F(x)• D = D1 + D2 + …+ Dτ

• Mean: μ ≡ E[D] = Ε[D1 + D2 + …+ Dτ ] = τ Ε[Dt] = τ λ• Variance: σ2 ≡ Var[D] = Ε[(D – μ)2] = Var[D1 + D2 + …+ Dτ] = τ Var[Dt] = τ σt

2

20G. Liberopoulos: Production Systems29/11/2018

τ

x

Inventory /backorders

time

f(x)

μR

Page 21: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demand• Inventory holding cost

– Safety stock ss ≡ R – μ = R – λ τ– Expected average inventory approximation Ī ≈ ss + Q/2 = R – λ τ + Q/2

(underestimates true value)– Expected average inventory hold cost = h Ī = h(R – λ τ + Q/2)

21G. Liberopoulos: Production Systems29/11/2018

R

ss = R – λ τ

ss + Q = R – λ τ + Q

μ = λ τ

Inventory /Backorders

time

τ –λ

Page 22: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demandTo see why expected average inventory approximation underestimates true expected average inventory:

22G. Liberopoulos: Production Systems29/11/2018

0

0 0

[ ] 2 ( ) 2

[( ) ] 2 ( ) ( ) 2 ( ) ( ) 2

(1 ( )) ( )

( ) ( )

( ) ( )

( ) ( )

[( ) ] 0

appr

R R

true

appr true R

R R

R R

R

appr tr

I R E D Q R xf x dx Q

I E R D Q R x f x dx Q RF R xf x dx Q

I I R F R xf x dx

R f x dx xf x dx

Rf x dx xf x dx

R x f x dx

E D R

I I

+

∞ ∞

∞ ∞

+

≈ − + = − +

= − + = − + = + +

− = − −

= −

= −

= −

= − ≤

⇒ ≤

∫∫ ∫

∫∫ ∫∫ ∫∫

ue

Page 23: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demand• Setup cost

– Expected average order frequency = λ/Q– Expected average setup cost per unit time = K λ/Q

• Stock-out (penalty) cost– Assumption: τ << Q/λ ⇒ stock-out per cycle depends only on R– B(R) : Expected stock-out cost per cycle (depends on definition of stock-

out cost rate)– Expected average stock-out cost per unit time = B(R) λ/Q

• Total expected average cost per unit time

23G. Liberopoulos: Production Systems29/11/2018

( , ) ( )2

R R Rh K BQQQ Q

G λ λλτ = + − + +

Page 24: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demand• Optimization problem

• Optimality conditions

24G. Liberopoulos: Production Systems29/11/2018

22 2

( , ) ( ) 2 [ ( )]02

2 [ ( )] (1)

( , ) ( ) 0

( ) (2)

G R h K B R K B RQQ Q h

K B RQh

G Q dBhQ

R RR d

dB hQ

R

Q

dR

R

Q λ λ λ

λ

λ

λ

∂ += − − = ⇒ =

+⇒ =

∂= + =

⇒ = −

,Minimize ( , ) ( )

2RQ

QQQ

R R RG KQ

h Bλ λλτ = + − + +

Page 25: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demand• Optimality condition (2): 3 cases

– Case 1: Stock-out cost p1 € per stock-out occasion

– Case 2: Stock-out cost p2 € per part short

25G. Liberopoulos: Production Systems29/11/2018

1 1

probabilty of stock-out per cycle

11

( )( ) [1 ( )] ( )

Condition (2) : ( ) ( )

dBB R p F R p f Rd

hQ hQp f R f Rp

RR

λ λ

= − ⇒ = −

− = − ⇒ =

2 2 2

( ) expected numberof stock-outs per cycle ( )

22

( )( ) [( ) ] ( ) ( ) [1 ( )]

Condition (2) : [1 ( )] ( ) 1

x Rn Rn R

dBB R p E D R p x R Rf x dx p F Rd

hQ hQp F R F Rp

R

λ λ

∞+

=≡

= − = − ⇒ = − −

− − = − ⇒ = −

Page 26: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demand– Case 3: Stock-out cost p3 € per part short per unit time

26G. Liberopoulos: Production Systems29/11/2018

2

2

3

expected total w

Average waiting time per backorder when the demand is : ( )

2Average total waiting time of all backorders when the demand is :

( ) [( ) ]( )2 2

( )( ) ( )2x R

DD R

DD R D RD R

x RB R p f x dx

λ

λ λ

λ

+

+ ++

=

− −− =

−= ∫ 23

aiting timeof all backorders per cycle

3 3 3

3

3

( ) ( )2

( ) ( ) ( ) [( ) ] ( )

Condition (2) : ( ) ( )

x R

x R

px R f x dx

p p pdB x R f x dx E D R n Rd

p hQ hQn R

RR

n Rp

λ

λ λ λ

λ λ

=

∞+

=

= −

= − − = − − = −

− = − ⇒ =

Page 27: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demand

• Simultaneous solution of conditions (1) and (2)Solve by fixed-point iteration: 1. Given R, solve (1) to find Q2. Given Q, solve (2) to find R3. Repeat until convergence

27G. Liberopoulos: Production Systems29/11/2018

Page 28: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demandIllustration for case 2: Stock-out cost p2 € per part short– Optimality conditions for case 2

– Assumption: D~Normal(μ, σ) Use standardized cumulative distribution function (cdf) Φ(z) to compute F(R)

– Φ(z) and hence F(R) can be evaluated from standardized Normal cdf tables

28G. Liberopoulos: Production Systems29/11/2018

2

2

2 [ ] (1( ) ) 1 (2)( )F RK p hQQh p

n Rλλ

+= = −

( )

Normal(0,1)

( ) ( )

( ) ,

D R RF R P D R P

RF R z z

µ µ µσ σ σ

µσ

− − − = ≤ = ≤ = Φ

−⇒ = Φ =

Page 29: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demandUse standardized loss function L(z) to compute n(R)

L(z) and hence n(R) can be evaluated from standardized loss function tablesIt can be shown that

29G. Liberopoulos: Production Systems29/11/2018

Normal(0,1)density function

~ Normal(0,1) ( ) [( ) ] ( ) ( )y z

Y L z E Y z y z y dyϕ∞

+

=

⇒ ≡ − = −∫

( ) ( ) [1 ( )]

( ) ( ) ( ) ( )[1 ( )],

L z z z zRn R L z z R z z

ϕµσ σϕ µ

σ

= − −Φ−

⇒ = = + − −Φ =

Normal(0,1)

( ) [( ) ]

( ) ( ),

D R Rn R E D R E L

Rn R L z z

µ µ µσ σσ σ σ

µσσ

+

+

− − − = − = − =

−⇒ = =

Page 30: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demandUnder the assumption D~Normal(μ, σ) , the optimality conditions become

30G. Liberopoulos: Production Systems29/11/2018

2

2

2 [ ( )] (1)

( ) 1 (2)

(3)

K p L zQh

Qhzp

Rz

λ σ

λ

µσ

+=

Φ = −

−=

Page 31: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Backordered demandFixed point iteration algorithm for case 2 under the assumption D~Normal(μ, σ)

31G. Liberopoulos: Production Systems29/11/2018

1 00 0 0 0

2 1

1

1 1

Step 1

Step 2

Step 3Step

2 , 1 , , 1

2 [ ( )]:

: 1

:: OR 1, GOTO Ste4 p 1

nn

nn

n n

n n n n

Q hKQ z R z nh p

K p L zQh

Q hzp

R zQ Q R R n n

λ µ σλ

λ σ

λµ σ

ε ε

− −

= = Φ − = + =

+=

= Φ −

= +

− ≥ − ≥ ⇒ ← +

Page 32: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Lost sales

32G. Liberopoulos: Production Systems29/11/2018

R

time

R+Q

τ

Q

Inventory position

On-hand inventory

Lost sales

Page 33: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Lost salesModify total expected average cost per unit time function

Optimality conditions

33G. Liberopoulos: Production Systems29/11/2018

expected lostsales per cycle

expected lostsales per unit time

( , ) (2

( ) )LnQG Q R h R K p n RQ Q

R λ λλτ = + − + + +

( ) 1

2 [ ( )] (1) (same as case 2 of backordered demands)

( , ) ( ) ( )1 0 1 0

1 [1 ( )] 0

( ) 1 (2) (Newsvendor formula:

1

L

L L

L

Lo

L L

K p n RQh

p pG Q R dn R dn RhR Q

dn RdR dR Qh dR

p F RQh

pQhF R cpQh Qh p

λ

λ λ

λ

λλ λ

+=

∂ = + + = ⇒ + + = ∂

⇒ − + − =

⇒ = − =+ +

, )

( same as case 2 of backordered demands)

u L

L

Qh c p

Qh p

λ

λ

= =

<< ⇒

Page 34: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Lost salesNote

– G(Q, R) is an approximation, because it overestimates the order frequency

– In the lost sales model, not all demand is met; on average, Q demands are met and n(R) demands are not met

⇒Average number of demands per cycle = Q + n(R) parts per cycle– Number of demands per unit time = λ parts per unit time⇒ Order frequency = λ/[Q + n(R)] instead of λ/Q⇒A more accurate expression for G(Q, R) is:

– Usually, n(R) << Q, so the order frequency can still be approximated by λ/Q

34G. Liberopoulos: Production Systems29/11/2018

( ) (( , ) ( ) ( )

2 )LQG

nQ R h R n R K p n R

Q R n RQλ λλτ = + − + + + + +

Page 35: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Summary

35G. Liberopoulos: Production Systems29/11/2018

Situation D~Normal(μ,σ) Eq. (2) Eq. (2) D~Normal(μ,σ)

p1 (€ per stock-out occasion)

p2 (€ per part short)p3 (€ per part short per unit time)

pL (€ per lost sale)

( )B R

1[1 ( )]p F R−1

( ) hQf Rp λ

=

2

( ) 1 hQF Rp λ

= −2 ( )p n R

23 ( ) ( )2 x R

p x R f x dxλ

=

−∫3

( ) hQn Rp

=

( ) L

L

pF RQh p

λλ

=+

( )Lp n R

1

( ) hQzpσϕ

λ=

2

( ) 1 hQzp λ

Φ = −

3

( ) hQL zpσ

=

( ) L

L

pzQh p

λλ

Φ =+

2 [ ( )]Eq. (1): K B R RQ zh

λ µσ

+ −= =

1[1 ( )]p z−Φ

2 ( )p L zσ

( )Lp L zσ

( )B R

Page 36: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Service Levels• Service levels in (Q, R) systems

– Type 1 Service (replaces stock-out cost p1 € per stock-out occasion)S1 ≡ Probability of not stocking out during the lead timeS1 = P(D ≤ R) = F(R)

– Optimization problem

– Solution

36G. Liberopoulos: Production Systems29/11/2018

,

1

Minimize ( , )2

subject to ( ) (i.e., subject to )

Q RG hR QQ

QF R

R K

S

λλτ

α α

= + − +

≥ ≥

*

*

* 1

2 EOQ

= minimum such that ( )

continuous r.v. ( )

KQh

R R F R

D R F

λ

α

α−

= =

⇒ =

Page 37: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Service Levels– Type 2 Service (replaces stock-out cost p2 € per part short)

S2 ≡ Proportion of demands met from stockS2 = 1 – n(R)/Q

– Optimization problem

– Note: Now the constraint depends on both R and Q

37G. Liberopoulos: Production Systems29/11/2018

,

2

Minimize ( , )2

( )subject to 1 (i.e., subject to )

RQG h K

n

QQQ

R

SQ

R

R

λλτ

β β

= + − +

− ≥ ≥

Page 38: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Service Levels– Type 2 Service (cont’d)

Approximate solution

38G. Liberopoulos: Production Systems29/11/2018

*

* *

* *

* * *

** * * 1

2 EOQ

= minimum such that ( ) (1 )

continuous r.v. ( ) (1 )

~ Normal( , ) ( ) ( ) (1 )

(1 ),

KQh

R R n R Q

D n R Q

D n R L z Q

QR z z L

λ

β

β

µ σ σ β

βµ σσ

≈ =

≤ −

⇒ = −

⇒ ≡ = −

−⇒ = + =

Page 39: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Service Levels– Type 2 Service (cont’d)

More accurate solutionConsider first-order conditions (1) and (2) for case 2

39G. Liberopoulos: Production Systems29/11/2018

2

2 [ ( )] (1), ( ) 1 (2)

(2) imputed stock-out cost[1 ( )]

2 { ( ) [1 ( )] }(1) quandratic function in

( ) 2 ( )positive root: (3)1 ( ) 1 ( )

(1 )( ) (4)

K pn R QhQ F Rh p

QhpF R

K hn R F R Qh

n R K n RQF R h F

R

Q

n

Q

R

Q

λλ

λ

λ λ

λ

βσ

+= = −

⇒ = ≡−

+ −⇒ = ≡

= + + − −

−=

Page 40: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Random Lead Time• Extension: Random lead-time

– L: random lead time– Mean: τ ≡ Ε[L], variance σL

2 ≡ Ε[(L– τ)2]– D: demand during lead time L

• Density function and cumulative distribution function of D: f(x) and F(x)• D = D1 + D2 + …+ DL, where L is a random variable• It can be shown (see next page) that:

Mean: μ ≡ E[D] = τ λVariance: σ2 ≡ Var[D] = Ε[(D – μ)2] = τ σt

2 + λ2σL2

Everything else holds!!

40G. Liberopoulos: Production Systems29/11/2018

Page 41: Stochastic (Random) Demand Inventory ModelsStochastic (Random) Demand Inventory Models George Liberopoulos 29/11/2018 G. Liberopoulos: Production Systems 1 The Newsvendor model •

(Q, R) model: Random Lead Time• Derivation of μ and σ2

41G. Liberopoulos: Production Systems29/11/2018

2

2 2 2

|

2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

|

2

| |

Mean: [ ] [ [ | ]] [ ]

Variance: [ ] [( ) ] [ 2 ] [ ] 2 [ ] [ ][ [ | ]] 2

where we used:[ | ] [

L D L L

t L t LL D L

D L D

t L

L

E D E E D L E L

Var D E D E D D E D E D EE E D L

E D L E Va

λ

µ

µ τλ

σ µ µ µ µ

µ µ τσ λ σ λ τ µ τσ λ σ λ

τ

λ

λ

τ τ

σ σ

≡ = = =

≡ = − = − + = − +

= − + = + + − = + + −

=

=

+

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

|

[ | ] [ | ] ]

[ [ | ]] [ ] ( [ ] ) ( )

t

t t t L t LL D L L

r D L E D L L L

E E D L E L L Var L

σ λ

σ λ τσ λ τ τσ λ σ τ τσ λ σ λ τ

+ = +

= + = + + = + + = + +


Recommended