+ All Categories
Home > Documents > Strength of Energy Engineering Materials

Strength of Energy Engineering Materials

Date post: 05-Jan-2016
Category:
Upload: rea
View: 35 times
Download: 1 times
Share this document with a friend
Description:
Strength of Energy Engineering Materials. Abdel-Fatah M HASHEM Professor of materials science South Valley University, EGYPT. April 2009, Japan. Collaborative Research Centre SFB 651 at the AU and SVU. Turbines Fluid dynamics Phys. chemistry Metal physics Materials Casting Coating - PowerPoint PPT Presentation
Popular Tags:
63
Strength of Energy Engineering Materials Abdel-Fatah M HASHEM Professor of materials science South Valley University, EGYPT April 2009, Japan
Transcript
Page 1: Strength of Energy Engineering Materials

Strength of Energy Engineering Materials

Abdel-Fatah M HASHEM

Professor of materials scienceSouth Valley University, EGYPT

April 2009, Japan

Page 2: Strength of Energy Engineering Materials
Page 3: Strength of Energy Engineering Materials
Page 4: Strength of Energy Engineering Materials
Page 5: Strength of Energy Engineering Materials
Page 6: Strength of Energy Engineering Materials
Page 7: Strength of Energy Engineering Materials
Page 8: Strength of Energy Engineering Materials
Page 9: Strength of Energy Engineering Materials
Page 10: Strength of Energy Engineering Materials
Page 11: Strength of Energy Engineering Materials

Collaborative Research Centre SFB 651 at the AU and SVU

%65

%58

Page 12: Strength of Energy Engineering Materials
Page 13: Strength of Energy Engineering Materials
Page 14: Strength of Energy Engineering Materials

TurbinesFluid dynamicsPhys. chemistryMetal physicsMaterialsCastingCoatingWeldingMetal formingLaser techn.

12 years15 Professors and their co- workers20 Million € =150 Million Egypt. pounds

Page 15: Strength of Energy Engineering Materials

Inlet Temperature of Gas turbines: from 1230 °C to 1320 °C

Page 16: Strength of Energy Engineering Materials
Page 17: Strength of Energy Engineering Materials

Inlet Temperature of Steam Turbines: from 600 °C to

700 °C

Steam turbine (Siemens)

<1990 560 °C 12% Cr, 1% Mo (X20CrMoV12-1)>1990 600 °C 9% Cr-Steels P91 +0% W

E911 +1% W P92: +2% W>2000 625 °C NF12: 12% Cr, 3% W, 3% Co Goal 700 °C Nickel-Base-Alloys

E9110.40

0.42

0.44

0.46

0.48

150 200 250 300

650 °C

700 °C

450°C

500 °C

550 °C

600 °C

Pressure, bar

The

rmal

Effi

cie

ncy

T

h

Page 18: Strength of Energy Engineering Materials

Steam Turbine: Increase of efficiency

X20CrMoV12-1 12C1Mo-VP91: 9Cr-1Mo-VNbE911 X12CrMoWVNbN10-1-1P92 (NF616) 9Cr-0,5Mo-1.8W-V-NbNF12: 12Cr-2.6W-2.5Co-0.5Ni-V-Nb

Page 19: Strength of Energy Engineering Materials

Steam Turbine: Cooling system

Page 20: Strength of Energy Engineering Materials

Laboratory experimentsReality: Multi-axial stress state with stress components varying with timeData available: Uni-axial experiments with simple time functionsTherefore, Modelling is essential

Strain

Str

ess

Low cycle fatigue test

= const.T = const.

Time

Cre

ep

Str

ain

Creep test

= const.T = const.

Time

Str

ess

Relaxation test

= const.T = const.

Strain rate

Str

ess

Tensile Test

d/dt = const.T = const.

Page 21: Strength of Energy Engineering Materials

Influence of Temperature on the Stress strain Curve

200 °C - 700 °C Intercrystalline damage

< 700° C Dynamic recrystallisation

0

100

200

300

400

500

600

700

0 10 20 30

b)

AA7075-T7351

250 °C

200 °C

150 °C

100 °C

20 °C

300 °C

Engineering Strain , %

Eng

inee

ring

Str

ess

, M

Pa

0

200

400

600

800

1000

0 20 40 60

a)

- 50

/ °C =

X6CrNi18-11

1000900

- 100- 150

400

800

700650

500600

200100

23

Engineering Strain , %

Eng

inee

ring

Str

ess

, M

Pa

23 °C – 150 °C Dynamic recovery

200 °C - 300 °C Intercrystalline damage

Page 22: Strength of Energy Engineering Materials

Flow curve: Description and Influence of strain rate

4321

2

21

/exp(1:

MagdEl)1(/

KocksMecking/

CCCCaGb

kckdd

kkdd

?10nKK

0

200

400

600

800

1000

0 0.1 0.2 0.3

293 K373 K473 K573 K873 K923 K773 K973 K1073 K1173 K

X6CrNi18-11

True Strain

Tru

e S

tre

ss,

M

Pa

0

100

200

300

400

500

0 0.1 0.2 0.3

1.7 10-5

1.7 10-6

1.7 10-4

1.7 10-3

d/dt / s-1

=

True StrainT

rue

Sre

ss ,

MP

a

Power law ?

Page 23: Strength of Energy Engineering Materials

Creep curves and creep rate curves

)]/(exp[),(min RTQSf

10-4

10-3

10-2

10-1

100

10-2

100

102

104

106

200190180160140130120110100 90 70

X6CrNi18-11: 700 °C

/MPa=

Time , h

Cre

ep

Str

ain

10-5

10-4

10-3

10-2

10-1

100

10-2

100

102

104

106

200190180160140130120110100 90 70

b)

/MPa=

Time , h

Cre

ep

Ra

te ,

h

-1

Page 24: Strength of Energy Engineering Materials

Minimum creep rate as stress function and creep fracture curve

10-5

10-4

10-3

10-2

10-1

100

100 200 300

C [sinh(/*)]N

C exp( )

C ( /*)N

X6CrNi18-11 = 700 °C

Creep Stress, MPa

Min

imum

Cre

ep

Rat

e ,

h-1

50

100

150

200

250

0.1 10 1000

X6CrNi18-11 = 700 °C

Fracture time , h S

tres

s ,

MP

a

Garofallo*

sinh

)exp(

BailyNorton

min

min

min

N

N

Soderberg

Up to 10000 h University laboratoryUp to 200000 h Industry, Standards

Page 25: Strength of Energy Engineering Materials

Proof stress and creep strength as Loading limitsDesign limits: with a factor of safety of 1.5

1 .Low Temperatures: 0,2% Proof Stress

2 .High Temperatures: Creep Strength= Stress for a fracture time of 100000 h

0

200

400

600

200 400 600 800 1000

Ni-Base Alloyaustenitic Steel12% Cr-SteelLA 2.25%Cr-SteelLA 1%Cr-SteelLA Mo-SteelLA Mn-Steelunalloyed Steel

Rp0,2

Rm 100000 h

Temperature oC

Rp

0,2

,

Rm

10

00

00

h ,

M

Pa

0

50

100

150

200

500 550 600 650 700

NF 616(9Cr-0.5Mo-1.8W-VNb)

X20CrMoV12-1(12Cr-1Mo-V)

E 911(10Cr-1Mo -1W-VNb)

T 91(9Cr-1Mo-VNb)

Temperature , °C

Cre

ep

Ste

ng

th

Rm

10

0 0

00

,

MP

a

Maximum service temperature: Creep strength for 100000 h = 100 MPa

Page 26: Strength of Energy Engineering Materials

Increase of creep strength1. Reducing grain boundary area per unit volume

Coarce grains Directional Single solidification crystals

10-8

10-7

10-6

10-5

10-4

10 20 50 100 200

Ilschner

= 704 oC

65

85

105130

0 / MPa =

austenitic Steel

Grain Size , µm M

inim

um

Cre

ep

Ra

te

, 1

/s

Page 27: Strength of Energy Engineering Materials

Increase of creep strength2. Precipitation hardening Barriers for the dislocation

10-7

10-5

10-3

10-1

10-1

101

103

105

/ MPa =

100110

130140

Alloy 800HT, solution annealed

=700°C

Time , h

Min

imu

m C

ree

p R

ate

, 1

/h

Influence of nitrides0.05 m% N

[Abe, F.: Sol.State.Phys. 8(2004)305 ]

Page 28: Strength of Energy Engineering Materials

Increase of creep strength3. Reinforcement by continuous fibres

10-7

10-6

10-5

10-4

10-3

10-2

100

101

102

103

FibreComposite

0

10.660.450.24

Vf=

Stress, MPa

Min

imu

m C

ree

p R

ate

, 1

/h

Not for cyclic compression !

Page 29: Strength of Energy Engineering Materials

Creep under stresses and temperatures

varying with time The Creep rate depends on the effective stress i.e. on the difference between Applied stress and internal back stress

niC )(

0

50

100

0 2 4 6 8

X6CrNi18-11690 °C

i

Time , h

App

lied

and

Bac

k S

tess

, M

Pa

0

50

100

0 2 4 6 8

X6CrNi18-11690 °C

i

Time , h

Page 30: Strength of Energy Engineering Materials

Concept of the internal back stress

i

niC

0

)(

10-5

10-4

10-3

10-2

10-1

5 10 20 50 100

/ °C =

800710

650

X6CrNi18-11

Effective Stress ( - is) , MPa

Min

imum

Cre

ep R

ate

,

h-1

-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0 200 400 600 800 1000

X22CrMoV12-1T = 700 °C

30

50

60

80

90

95R / MPa =

0 = 100 MPa

Time , s

Cre

ep

Str

ain

aft

er

Str

ess

dro

p

Page 31: Strength of Energy Engineering Materials

Internal back stress

)/(exp1 11

1

1

C

C

d

d

is

i

iisi

/1

/1 ississis )/exp()( 0 TkTiss

0

100

200

800 900 1000 1100 1200

X8CrNi18-11X22CrMoV12-1X8CrNiMoNb16-16

iss

=k0exp(/T)

Temperature, K

Sat

urat

ion

Bac

k S

ress

is

s , M

Pa

0

100

200

0 100 200 300 400

700 °C

650 °C

710 °C

650 °CX22CrMoV12-1

X6CrNi18-11

Applied Stress , MPa

Inte

rna

l Bac

k st

ress

is ,

MP

a0

0.25

0.50

0.75

1.00

0 0.2 0.4 0.6 0.8 1.0

Pure AluminiumX8CrNiMoNb16-16X6CrNi18-11X22CrNiMoV 12 1

Relative Creep Strain / 1

Rel

ativ

e In

tern

al B

ack

Str

ess

i /

is

Page 32: Strength of Energy Engineering Materials

Cyclic creep: Life assessment

L= 0.6 under pulsating stressL= 0.8 under pulsating Temperature

10-5

10-4

10-3

10-2

10-1

0 200 400 600

= 150 MPa changing periodically

X6CrNi18-11

650 °C

635 °C

time , h

10-5

10-4

10-3

10-2

10-1

0 200 400 600

changing periodically650 °C

X6CrNi18-11

150 MPa

125 MPa

Time , h

Cre

ep

Ra

te,

h-1

Lt

t

f

Page 33: Strength of Energy Engineering Materials

Stress Relaxation: Basic equation

tt0

L0

elL

0

cL

0

el 0 L

0

),,(0

)()(

)()(

.00

tTE

tE

t

tt

const

cr

cr

crel

el

• Creep strain increases with time• Total strain remains constant• The elastic strain decreases• Stress decreases with time

Page 34: Strength of Energy Engineering Materials

Stress relaxation curves

Nickel-base alloy :Crystalline order changes around 550°C increases the specific volume And hence reduces relaxation

0

100

200

300

400

0 1000 2000 3000

X22CrMoV12-1

550 °C

600 °C

500 °C

Time , h

Str

ess

, M

Pa

0

100

200

300

0 10 20 30 40

0 / MPa =T = 650 °C

X6CrNi18-11

100150200250

300

Str

ess

,

MP

a

0

100

200

0 20 40 60 80

650 °C

600 °C

700 °C

X6 CrNi 18 11

0 = 200 MPa

0

100

200

300

400

500

0 1000 2000 3000

NiCr20TiAl

750 °C

650 °C

600 °C550 °C

500 °C

Time , h

Page 35: Strength of Energy Engineering Materials

Low Cycle Fatigue: Modelling

-400

0

400

-0.008 0 0.008

6

5

43

2

1

Total Strain tot

Str

ess

, M

Pa

-2000

-1000

0

1000

2000

-0.02 -0.01 0 0.01 0.02

1 tot

Tool Steel = 20 °CN=1

Re

Re

/

Total Strain

Str

ess

, M

Pa

-300

-150

0

150

300

-0.008 -0.004 0 0.004 0.008

50 20 10 9 8 7 6 5 4 3 2 1

N=X8CrNi18-10650 °C

Total Strain

Str

ess

, M

Pa

-1x105

0

1x105

2x105

3x105

-300 -150 0 150 300

6

5 4

3

21

2F

i

Stress , MPa

d/d to

t , M

Pa

Page 36: Strength of Energy Engineering Materials

Low Cycle Fatigue: Life assessment

0.002

0.005

0.01

0.02

0.05

101

102

103

104

105

106

t=0.18 N

- 0.6 + 0.026 N

- 0.14

pl=0.18 N

- 0.6 el=0.026 N

- 0.14

Schwingspielzahl N

Sch

win

gb

reite

de

r D

ehn

un

g

-2000

0

2000

-0.02 0 0.02

-2000

0

2000

-0.02 0 0.02

-2000

0

2000

-0.02 0 0.02

-2000

0

2000

-0.02 0 0.02

,

M

Pa

0

0

el/2

pl

el/2

t

Total strain

Str

ess

,

MP

a

Number of cycles at fracture

Page 37: Strength of Energy Engineering Materials

Voids: Growth by diffusion and by creep deformation

Void growth by Diffusion

Void growth by creep deformation of the surrounding materials

Page 38: Strength of Energy Engineering Materials

Wedge type micro-cracks

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8

X8CrNiMoNb16-16

X6CrNi18-11

T = 700 °C = 80 MPa

Crack length classF

ract

ion

of

Cra

ck le

ng

th c

lass

X

n

61000 Cracks in X6CrNiMoNb16-1650000 Cracks in X6CrNi18-11

Page 39: Strength of Energy Engineering Materials

Material: Ni-based superalloy

Page 40: Strength of Energy Engineering Materials
Page 41: Strength of Energy Engineering Materials
Page 42: Strength of Energy Engineering Materials
Page 43: Strength of Energy Engineering Materials
Page 44: Strength of Energy Engineering Materials
Page 45: Strength of Energy Engineering Materials
Page 46: Strength of Energy Engineering Materials
Page 47: Strength of Energy Engineering Materials
Page 48: Strength of Energy Engineering Materials
Page 49: Strength of Energy Engineering Materials
Page 50: Strength of Energy Engineering Materials
Page 51: Strength of Energy Engineering Materials
Page 52: Strength of Energy Engineering Materials
Page 53: Strength of Energy Engineering Materials
Page 54: Strength of Energy Engineering Materials
Page 55: Strength of Energy Engineering Materials
Page 56: Strength of Energy Engineering Materials
Page 57: Strength of Energy Engineering Materials
Page 58: Strength of Energy Engineering Materials
Page 59: Strength of Energy Engineering Materials
Page 60: Strength of Energy Engineering Materials
Page 61: Strength of Energy Engineering Materials

Thank you for your attention

Page 62: Strength of Energy Engineering Materials
Page 63: Strength of Energy Engineering Materials

Recommended