+ All Categories
Home > Documents > Stroke prevention in AF: Insights from Clinical Trials and ... · A. John Camm St. George’s...

Stroke prevention in AF: Insights from Clinical Trials and ... · A. John Camm St. George’s...

Date post: 30-Nov-2018
Category:
Upload: duongcong
View: 214 times
Download: 0 times
Share this document with a friend
24
A. John Camm St. George’s University of London and Imperial College London, UK Stroke prevention in AF: Insights from Clinical Trials and Real Life Experience Approval Number G.MA.GM.XA.10.2015.0723
Transcript

A. John Camm St. George’s University of London and Imperial College London, UK

Stroke prevention in AF: Insights from Clinical Trials and Real Life Experience

Approval Number G.MA.GM.XA.10.2015.0723

Disclosure Statement: John Camm

u Chairman: ESC Guidelines on Atrial Fibrillation 2012 and Update 2012, ACC/AHA/ESC Guidelines on VAs and SCD; 2012 NICE Guidelines on ACS and NSTEMI; 2008 NICE Guidelines on Heart Failure; 2006 NICE Guidelines on Atrial Fibrillation

u Steering Committees: multiple trials u DSMBs: multiple trials including AVERROES, SIGNIFY and INOVATE-

AF u Events Committees: one trial of novel oral anticoagulants and multiple

trials of miscellaneous agents with CV adverse effects u Consultant/Advisor/Speaker: AstraZeneca, ChanRX, Gilead, Merck,

Menarini, Otsuka, Sanofi, Servier, Xention, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Pfizer, Boston Scientific, Biotronik, Medtronic, St. Jude Medical, Actelion, GlaxoSmithKline, InfoBionic, Incarda, Johnson and Johnson, Mitsubishi, Novartis, Takeda

Tolerability of Warfarin During First Year of Therapy: Elderly Patients in the US

u 58% time in therapeutic range u Major haemorrhage 7.2%; ICH 2.5% •  Rates were 2.75× higher in patients ≥80 years

u 28% of patients discontinued warfarin at 1 year

CHADS2 score

Major bleeding event Taken off therapy Rate (per 100 person-years) Rate (per 100 person-years)

0 3.1 15.6 1 4.3 17.1 2 2.0 12.9 3 19.5 32.6 ≥4 23.4 35.1

Hylek EM et al, Circulation 2007;115:2689‒2696

GARFIELD AF: AF Patients Are Not Treated According to Current Guidelines

Undertreatment with anticoagulants in 38% of patients with CHADS2 score ≥2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

100%

Overall (n=10,607)

0 (n=857)

1 (n=3688)

2 (n=3302)

3 (n=1716)

4 (n=757)

5 (n=238)

6 (n=49)

Patie

nts

(%)

CHADS2 score

VKA + AP VKA FXa/DTI AP None

14.3 13.9 8.6 10.5 12.6 16.7 24.4

14.4

30.8

25.3

Bayer is supporting GARFIELD AF with an unrestricted educational grant

Kakkar AK et al, PLoS One 2013;8:e63479

27.9 23.4 21.9 22.2

26.1 22.4

43.2 47.8 50.1

42.4 32.7 45.7

35.1

45.2

14.7 16.3 16.2 8.4 7.1 10.6 11.5 12.2

7.3 2.9 14.3 3.9

4.6 5.2

4.5

2.6

NOACs vs. Warfarin: Overall Outcomes Risk ratio (95% CI)

Absolute risk

reduction, %

Risk ratio (95% CI) p-value

Ischaemic stroke 0.21 0.92 (0.83–1.02) p=0.10

Haemorrhagic stroke 0.46 0.49 (0.38–0.64) p<0.0001

Myocardial infarction 0.07 0.97 (0.78–1.20) p=0.77

All-cause mortality 0.78 0.90 (0.85–0.95) p=0.0003

0.2 0.5 1 2 Favours NOAC

Favours warfarin

Ruff CT et al, Lancet 2014;383:955–962

HR 0.79 (95% CI 0.66–0.96) p<0.001 (non-inferiority)

0 120 240 480 600 720 0

1

2

3

4

5

840 360

ROCKET AF: Effective Stroke Prevention in Patients With Non-valvular AF vs Warfarin (PPP)

Primary efficacy endpoint: stroke/SE

Rivaroxaban Warfarin

PPP, per-protocol population on-treatment (all ITT patients without major predefined protocol violations)

Patel MR et al, N Engl J Med 2011;365:883–891

Days since randomization

Cum

ulat

ive

even

t rat

e (%

)

Number of subjects at risk Rivaroxaban 6958 6211 5786 5468 4406 3407 2472 1496 Warfarin 7004 6327 5911 5542 4461 3478 2539 1538

52%

48%

ENGAGE AF4 edoxaban

AF Patients in ROCKET AF Had a Higher Risk of Stroke than Patients in Other Phase III Trials

CHADS2 score patient distribution

13%

87%

ROCKET AF1 rivaroxaban

≤1 2 3–6

1. Patel MR et al, N Engl J Med 2011;365:883–891; 2. Connolly SJ et al, N Engl J Med 2009;361:1139–1151; 3. Granger CB et al, N Engl J Med 2011;365:981–992; 4. Giugliano RP et al, N Engl J Med 2013;369:2093–2104.

34%

30%

36%

ARISTOTLE3 apixaban

32%

32%

36%

RE-LY2 dabigatran

CHADS2 score

Older Age: Stroke and Systemic Embolism Intention-to-Treat Analysis

HR 0.95 (0.76–1.19) HR 0.80 (0.63–1.02)

Interaction p=0.3131

Halperin JL et al, Circulation 2014;130:138–146

0

1

2

3

4

5

6

0 180 360 540 720 St

roke

or S

E (%

) Days following randomization

Age ≥75 years n=6229

0

1

2

3

4

5

6

0 180 360 540 720

Stro

ke o

r SE

(%)

Days following randomization

Age <75 years n=8035

2.10%/year

2.00%/year

2.85%/year

2.29%/year

Warfarin Rivaroxaban

0

1

2

3

4

5

6

<75 years ≥75 years

Even

t rat

e (%

per

yea

r)

Older Age: Major Bleeding On-Treatment Analysis

Halperin JL et al, Circulation 2014;130:138–146

Major bleeding

interaction p=0.336

Haemorrhagic

stroke interaction p=0.365

HR 1.1 (95% CI 0.92–1.34)

HR 0.96 (95% CI 0.78–1.19)

Major bleeding Haemorrhagic stroke

Major bleeding Haemorrhagic stroke

0.49 0.41 0.34 0.20

2.69 2.79

4.40 4.86

ROCKET AF: Primary Efficacy Endpoint: Patients with Stroke or non-CNS Embolism and CrCl 30–49 ml/min vs ROCKET AF overall

Days since randomization 0 120 240 480 600 720

0

1

2

3

4

5

6

840 360

Cum

ulat

ive

even

t rat

e (%

)

*HR 0.79 (95% CI 0.66‒0.96) p<0.001 (non-inferiority)

Warfarin, overall*1

Rivaroxaban overall*1

Warfarin, renally impaired#2

Rivaroxaban renally impaired#2

#Among patients with CrCl 30–49 ml/min: HR 0.84 (95% CI 0.57‒1.23)

Per-protocol population on-treatment

1. Fox KA et al, Eur Heart J 2011;32:2387–2394; 2. Patel MR et al, N Engl J Med 2011;365:883–891

ROCKET AF: Safety Outcomes among AF Patients with CrCl 30–49 ml/min

Clinical endpoint (% per year)

Rivaroxaban (N=7111)

Warfarin (N=7116)

HR (95% CI) rivaroxaban vs warfarin

p-value (interaction)

Principal safety outcome*

14.24 17.82

13.67 18.28

1.04 (0.96‒1.13) 0.98 (0.84‒1.14) 0.45

Major bleeding 3.39 4.49

3.17 4.70

1.07 (0.91‒1.26) 0.95 (0.72‒1.26) 0.48

Haematocrit or haemoglobin drop

2.54 3.76

2.03 3.28

1.25 (1.03‒1.52) 1.14 (0.83‒1.58) 0.65

Transfusion 1.49 2.34

1.16 2.00

1.28 (0.99‒1.65) 1.17 (0.77‒1.76) 0.71

Critical organ 0.83 0.76

1.13 1.39

0.74 (0.55‒0.99) 0.55 (0.30‒1.00) 0.39

Fatal bleeding 0.23 0.28

0.43 0.74

0.55 (0.32‒0.93) 0.39 (0.15‒0.99) 0.53

Intracranial haemorrhage

0.44 0.71

0.71 0.88

0.62 (0.42‒0.92) 0.81 (0.41‒1.60) 0.51

GI bleeding (upper, lower, rectal)

1.79 2.88

1.12 1.77 not reported

CrCl ≥50 ml/min# CrCl 30–49 ml/min‡

Based on safety population on treatment. *Composite of major plus non-major clinically relevant bleeding; #rivaroxaban 20 mg od; ‡rivaroxaban 15 mg od

Fox KAA et al, Eur Heart J 2011;32:2387–2394

0.01 0.1 1 10

Favours warfarin Favours rivaroxaban

ROCKET AF: Rivaroxaban in Patients with AF and Prior Myocardial Infarction

Mahaffey KW et al, Eur Heart J 2014;35:233–241

u  17% had prior MI u  Primary efficacy and safety

outcomes in patients with prior MI were consistent with overall ROCKET AF results

u  OveralI: 14% reduction in CV death, MI or UA with rivaroxaban vs warfarin (p=0.051)

With prior MI (%/year)

Without prior MI (%/year)

p-value (int.) Riva. Warf. Riva. Warf.

Major/NMCR bleeding 18.84 15.51 14.20 14.31 0.035

Major bleeding 4.75 3.61 3.38 3.42 0.112

CV death, MI, UA

0

3

6

9

12

15

18

0 900 180 360 540 720 Days from randomization

6.80%/yr

1.94%/yr

6.57%/yr

2.45%/yr

HR (95% CI) rivaroxaban vs. warfarin:

With prior MI: 1.04 (0.81–1.33); Without prior MI: 0.79 (0.65–0.96)

Cum

ulat

ive

even

t rat

e (%

)

Warf. with prior MI

Warf. without prior MI Riva. without prior MI

Riva. with prior MI Results

Conclusions

u Many high-risk patients remain untreated or inadequately treated with anticoagulants

u NOACs are recommended by guidelines as they reduce the rate of stroke and intracranial haemorrhage vs. VKAs

u NOACs are effective in high-risk cohorts with favourable benefits compared with risks

u Rivaroxaban once daily is an effective treatment option in many higher-risk cohorts, including in those with moderate renal dysfunction, older age, prior MI etc.

Why is Real World Evidence Needed Given the Positive Outcomes of Phase III trials?

u Phase III studies •  Gold standard for evaluating efficacy and safety against the current

standard of care •  Support marketing approval by regulatory authorities

u However… •  Strict protocols and inclusion/exclusion criteria may exclude some patients

–  Limit translation of results from phase III studies to real world populations –  Event rates, patient characteristics (i.e. co-morbidities), and adherence/

persistence may not fully reflect real world settings

u Real world studies •  Unselected patient populations typical of those seen in routine

clinical practice •  Observational design with little interference in patient management •  Provide additional information on rare safety events or routine clinical

practice such as management of serious bleeding

XANTUS: Study Objective and Design

u To collect real world data on adverse events in patients with NVAF treated with rivaroxaban to determine the safety profile of rivaroxaban across the broad range of patient risk profiles encountered in routine clinical practice •  Primary outcomes: major bleeding (ISTH definition), all-cause mortality,

any other adverse events

Final visit: 1 year#

Data collection at initial visit, hospital discharge

(if applicable) and quarterly*

Population: Adult patients with NVAF receiving rivaroxaban for stroke/non-CNS SE prevention

Rivaroxaban; treatment

duration and dose at

physician’s discretion

*Exact referral dates for follow-up visits not defined (every 3 months recommended); #for rivaroxaban discontinuation ≤1 year, observation period ends 30 days after last dose. Observational design means no interference with clinical practice was allowed

1. Camm AJ et al, Vasc Health Risk Manag 2014;10:425–434; 2. Camm AJ et al, Eur Heart J 2015; doi: 10.1093/eurheartj/ehv466

Prospective, single-arm, observational, non-interventional phase IV study Statistical analyses were descriptive and exploratory in nature

1 year

N=6,784

. Camm AJ et al, Eur Heart J 2015; doi: 10.1093/eurheartj/ehv466

XANTUS: Baseline Demographics – Clinical Characteristics

Rivaroxaban (N=6784)

Age (years) Mean ± SD 71.5±10.0 Age <65, n (%) 1478 (21.8) Age ≥65–≤75, n (%) 2782 (41.0) Age >75, n (%) 2524 (37.2)

Gender (male): n (%) 4016 (59.2) Weight (kg): mean ± SD 83.0±17.3

BMI (kg/m2): mean ± SD 28.3±5.0 BMI >30 kg/m2, n (%) 1701 (25.1)

AF, n (%) First diagnosed 1253 (18.5) Paroxysmal 2757 (40.6) Persistent 923 (13.6) Permanent 1835 (27.0) Missing 16 (0.2)

Rivaroxaban (N=6784)

Creatinine clearance, n (%) <15 ml/min 20 (0.3) ≥15–<30 ml/min 75 (1.1) ≥30–<50 ml/min 545 (8.0) ≥50–≤80 ml/min 2354 (34.7) >80 ml/min 1458 (21.5) Missing 2332 (34.4)

Existing co-morbidities, n (%) Hypertension 5065 (74.7) Diabetes mellitus 1333 (19.6) Prior stroke/non-CNS SE/TIA 1291 (19.0)

Congestive HF 1265 (18.6) Prior MI 688 (10.1)

Baseline hospitalization, n (%) 1226 (18.1)

XANTUS: Cumulative Rates (Kaplan–Meier) for Treatment-Emergent Primary Outcomes

1. Camm AJ et al, Eur Heart J 2015; doi: 10.1093/eurheartj/ehv466

XANTUS: Event-Free Rate (Kaplan–Meier) for Treatment-Emergent Primary Outcomes

u  In total, 6522 (96.1%) patients did not experience any of the outcomes of treatment-emergent all-cause death, major bleeding or stroke/SE

1. Camm AJ et al, Eur Heart J 2015; doi: 10.1093/eurheartj/ehv466

Comparison of Main Outcomes: XANTUS versus ROCKET AF

0,8 0,7

1,9 2,1

0,4

0,9

0,0

0,5

1,0

1,5

2,0

2,5

Stroke/SE All strokes

Death Major bleeding

ICH GI bleeding

XANTUS

Xarelto

CHADS2 Prior stroke#

ROCKET AF1 3.5 55%

XANTUS2 2.0 19%

#Includes prior stroke, SE or TIA; *Events per 100 patient-years

1.  Patel MR et al, N Engl J Med 2011;365:883–891; 2. Camm AJ et al, Eur Heart J 2015; doi: 10.1093/eurheartj/ehv466

1,7 1,7 1,9

3,6

0,5

2,0

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Stroke/SE All strokes

Death Major bleeding

ICH GI bleeding

ROCKET AF

Xarelto

Rivaroxaban Safety Profile in Real Life was Consistent with Findings from ROCKET AF

0

1

2

3

4

Major bleeding*

Rivaroxaban

ROCKET AF1 Mean CHADS2 score 3.5

Even

t rat

e (%

/yea

r)

Results are not intended for direct comparison *Major bleeding definitions according to ISTH; #major bleeding was defined by the Cunningham algorithm3 1. Patel MR et al, N Engl J Med 2011;365:883–891; 2. Tamayo S et al, Clin Cardiol 2015;38:63-68; 3. Cunningham A et al, Pharmacoepidemiol Drug Saf 2011;20:560–566

Clinical endpoint % (n) ICH 0.8 (55)

Fatal bleeding 0.4 (27)

Major GI bleeding 3.2 (224)

Clinical endpoint % (n) ICH 0.1 (36)

Fatal bleeding <0.1 (14)

Major GI bleeding 1.5 (423)

0

1

2

3

4

Major bleeding

US DoD PMSS2

Mean CHADS2 score 2.2

Even

t rat

e (%

/yea

r)

Median duration of treatment exposure was 590 days Rivaroxaban users were followed for 455 days

#

3.6 2.9

N=7111

N=27,467

Similar Risk of Gastrointestinal Bleeding with Novel OACs Compared with Warfarin in Real Life

u  Patients: 4907 dabigatran, 1649 rivaroxaban, 39,607 warfarin

u  Results are similar to a recent observational study from the US that reported no statistically significant differences in real-life rates of bleeding between rivaroxaban and warfarin (HR for major bleeding 1.08, 95% CI 0.71–1.64)2

Analysis (reference group warfarin) Dabigatran Rivaroxaban

All patients:

Adjusted HR (95% CI) 1.21 (0.96–1.53) 0.98 (0.36–2.69)

Patients <65 years:

Adjusted HR (95% CI) 1.34 (0.98–1.83) 1.03 (0.33–3.18)

Patients >65 years:

Adjusted HR (95% CI) 1.07 (0.75–1.53) 0.62 (0.18–2.08)

Population based retrospective cohort study1

1. Chang HY et al, BMJ 2015;350:h1585; 2. Laliberté F et al, Curr Med Res Opin 2014;30:1317–1325

u  Most MB cases could be treated conservatively, rarely requiring procoagulants1

0

10

20

30

40

50

60

70 C

onse

rvat

ive

Sur

g/In

terv

RB

C

Vit K

FFP

only

PC

C o

nly

FFP

+ P

CC

rFV

II

Conservative = no treatment/ compression/ tamponade/ transfusion

MB

Man

agem

ent A

ppro

ach

(%)

0

1

2

3

4

5

6

7

8

9

10

VKA Rivaroxaban

MB

Cas

e fa

talit

y ra

te (%

)

u  With Rivaroxaban Case-fatality rate was 6.3% at day 90 after bleeding-related hospitalization compared to 9.1% with VKA

u  Different studies report Case fatality rates of VKA-related major bleeding of 15% - 20%3–5

2 1

Dresden NOAC Registry: Outcomes of Major Bleedings May Be Better with Rivaroxaban than Those Reported for VKAs

1. Beyer-Westendorf J et al, Blood 2014;124:955–962; 2. Michalski F et al, Thromb Haemost 2015;114 [epub ahead of print]; 3. Gomes et al, CMAJ 2013;185:E121–E127: 4. Linkins et al, Ann Intern Med 2003;139:893–900; 5. Halbritter et al, J Thromb Haemost 2013;11:651–659

0% 1000% 2000% 3000% 4000% 5000% 6000% 7000% 8000% 9000%

10000%

0 30 60 90 120 150 180

HR 0.66 (95% CI 0.60–0.72)

p<0.0001

Rivaroxaban Warfarin

Time to non-persistence (days)

Patie

nt p

ersi

sten

ce (%

)

u  Matched sample included 3654 rivaroxaban and 14,616 warfarin patients1

u  7259 rivaroxaban patients were matched 1:1 with warfarin patients2

In Real Life AF Patients Stayed Longer on Rivaroxaban Than on Warfarin

Two retrospective U.S. database analyses

Patients were significantly more persistent with Rivaroxaban than with Warfarin

0% 1000% 2000% 3000% 4000% 5000% 6000% 7000% 8000% 9000%

10000%

0 60 120 180 240 300 360

Patie

nt p

ersi

sten

ce (%

)

Time to non-persistence (days)

1. Laliberté F et al, Curr Med Res Opin 2014;30:1317–1325; 2. Nelson WW et al, Curr Med Res Opin 2014;30:2461–2469

HR 0.63 (95% CI 0.59–0.68)

p<0.001

Rivaroxaban Warfarin

Conclusion

u Real life evidence of novel OACs is important to delineate effectiveness and safety in patients with AF1-3

u  In XANTUS, rivaroxaban demonstrated low rates of stroke/SE and major bleeding, including intracranial and GI bleeding4

u Major bleedings in Real Life can normally be conservatively managed3 u Rivaroxaban once daily in real life is associated with higher patient

persistence compared with warfarin 5–8

1. Patel MR et al, N Engl J Med 2011;365:883–891; 2. Tamayo S et al, Clin Cardiol 2015;38:63–68; 3. Beyer-Westendorf et al, Blood 2014;124;955–962; 4. Camm AJ et al, Eur Heart J 2015; doi: 10.1093/eurheartj/ehv466; 5. Laliberté F et al, Curr Med Res Opin 2014;30:1317–1325; 6. Nelson WW et al, Curr Med Res Opin 2014;30:2461–2469; 7. Beyer-Westendorf J et al, Europace 2015;17:530–538; 8. Beyer-Westendorf J et al, Thromb Haemost 2015;113:1247–1257


Recommended