+ All Categories
Home > Documents > Structural Analysis_Sapphire Italian (2)

Structural Analysis_Sapphire Italian (2)

Date post: 11-Feb-2016
Category:
Upload: william-lim
View: 218 times
Download: 0 times
Share this document with a friend
Description:
structural analysis of sapphire italian. sample procedure should be done prior to the submission of the file.
33
STRUCTURAL DESIGN AND ANALYSIS REPORT MODEL C-91 PROJECT A TWO-STOREY RESIDENTIAL BUILDING PHILIPPINES PREPARED FOR: CAMELLA COMMUNITIES A VISTA LAND COMPANY PREPARED BY: ROY MARTIN D. CASUMPANG, MSCE STRUCTURAL ENGINEER LICENSE NO. 0104459 PTR NO. 0825106 PLACE ISSUED: DAVAO CITY DATE ISSUED: 01-04-2012 JUNE 14, 2012
Transcript
Page 1: Structural Analysis_Sapphire Italian (2)

STRUCTURAL DESIGN AND ANALYSIS REPORT

MODEL C-91 PROJECT A TWO-STOREY RESIDENTIAL BUILDING

PHILIPPINES

PREPARED FOR:

CAMELLA COMMUNITIES

A VISTA LAND COMPANY

PREPARED BY:

ROY MARTIN D. CASUMPANG, MSCE STRUCTURAL ENGINEER

LICENSE NO. 0104459

PTR NO. 0825106

PLACE ISSUED: DAVAO CITY

DATE ISSUED: 01-04-2012

JUNE 14, 2012

Page 2: Structural Analysis_Sapphire Italian (2)

MATERIAL PROPERTIES

The following material properties were used as a design parameter for the main structural system.

Concrete:

Structural Element 28-day Compressive Strength, fc’

Footing 21 MPa (3,000 psi)

Column 21 MPa (3,000 psi)

Slab 21 MPa (3,000 psi)

Beam 21 MPa (3,000 psi)

Reinforcing Bars (longitudinal and ties): ASTM 615

Minimum yield strength, fy = 230 MPa (Grade 33)

Minimum tensile strength, ft = 400 MPa

DESIGN CRITERIA

Floor Dead Load:

� Self-weight of the material:

Reinforced concrete unit weight: 23.5 kN/cu.m

� Floor Finish – 1.20 kPa

� 100mm thk. Chb wall – 10 kPa

Floor Live load:

� Floor – 2.40 kPa (Residential)

Roof Dead load:

� Roof finish and Purlins – 0.30 kPa

Roof Live load:

� Floor – 0.60 kPa

Wind Load:

� Exposure Category – C

� Importance Factor, Iw – 1.0

� Basic Wind Speed, V – 200 kph

� Gust Effect factor, G – 0.85 (3-sec)

� Topographic factor, Kzt – 1.0

� Directionality factor, Kd – 0.85

Earthquake Load:

� Seismic Use Group – I

� Importance Factor, Ie – 1.0

� Site Class type - D

� Seismic Zone, Z – 0.4

� Response Modification factor, R – 8.5

� Near Source factor, Na – 1.0

� Near Source factor, Nv – 1.0

� Seismic Coefficient, Ca – 0.44

� Seismic Coefficient, Cv – 0.64

� Damping – 0.05

Page 3: Structural Analysis_Sapphire Italian (2)

Framing Model:

Second Floor Framing Plan

Page 4: Structural Analysis_Sapphire Italian (2)

Roof Framing Plan

ANALYSIS

Beam Forces:

STORY BEAM ITEM P V2 V3 T M2 M3

(kN) (kN) (kN) (kN-m) (kN-m) (kN-m)

STORY2 B1 Min Value -1.29 -5.87 -0.17 -0.537 -0.519 -4.846

Min Case UDCON2 UDCON4 UDCON13 UDCON5 UDCON6 UDCON3

Max Value -0.5 8.14 0.51 0.564 0.698 2.045

Max Case UDCON11 UDCON2 UDCON6 UDCON10 UDCON6 UDCON3

STORY2 B2 Min Value -5.23 -12.88 -0.07 -0.174 -0.216 -8.525

Min Case UDCON2 UDCON2 UDCON6 UDCON14 UDCON9 UDCON2

Max Value -1.95 11.92 0.11 0.433 0.277 6.046

Max Case UDCON11 UDCON2 UDCON9 UDCON5 UDCON9 UDCON2

STORY2 B3 Min Value -3.51 -5.31 -0.08 -0.945 -0.644 -5.758

Min Case UDCON6 UDCON5 UDCON11 UDCON2 UDCON4 UDCON6

Max Value -0.79 6.84 0.26 -0.092 0.26 2.105

Page 5: Structural Analysis_Sapphire Italian (2)

Max Case UDCON13 UDCON2 UDCON4 UDCON12 UDCON4 UDCON6

STORY2 B4 Min Value -0.89 -5.5 -1.2 -0.699 -0.995 -3.827

Min Case UDCON4 UDCON5 UDCON4 UDCON4 UDCON4 UDCON5

Max Value -0.24 2.26 -0.11 0.559 1.384 1.469

Max Case UDCON11 UDCON6 UDCON11 UDCON11 UDCON4 UDCON9

STORY2 B5 Min Value -2.56 -6.36 -0.44 -0.503 -0.497 -4.33

Min Case UDCON2 UDCON5 UDCON3 UDCON3 UDCON6 UDCON5

Max Value -1.08 3.39 -0.05 0.566 0.451 2.745

Max Case UDCON13 UDCON6 UDCON12 UDCON8 UDCON3 UDCON9

STORY2 B6 Min Value -7.32 -6.33 0.09 -0.984 -0.955 -4.579

Min Case UDCON5 UDCON2 UDCON12 UDCON4 UDCON2 UDCON5

Max Value -2.55 5.46 0.39 0.067 0.431 1.869

Max Case UDCON14 UDCON2 UDCON2 UDCON11 UDCON3 UDCON2

STORY2 B7 Min Value -5.03 -11.78 -2.3 -0.164 -1.957 -10.002

Min Case UDCON3 UDCON2 UDCON2 UDCON10 UDCON2 UDCON2

Max Value -1.34 13.54 1.32 0.04 2.477 6.382

Max Case UDCON12 UDCON2 UDCON2 UDCON5 UDCON2 UDCON2

STORY2 B8 Min Value -3.62 -1.41 0.04 -0.238 -0.159 -4.382

Min Case UDCON2 UDCON9 UDCON13 UDCON11 UDCON10 UDCON6

Max Value -1.48 5.3 0.12 0.767 0 0.623

Max Case UDCON14 UDCON2 UDCON10 UDCON4 UDCON14 UDCON13

STORY2 B9 Min Value -1.68 -4.53 0.16 0.239 -0.701 -2.587

Min Case UDCON2 UDCON4 UDCON14 UDCON14 UDCON2 UDCON3

Max Value -0.73 4.78 0.51 1.072 0.646 1.722

Max Case UDCON11 UDCON3 UDCON2 UDCON2 UDCON2 UDCON2

STORY2 B10 Min Value -0.64 -5.96 -0.41 0.061 -0.539 -1.955

Min Case UDCON6 UDCON5 UDCON2 UDCON12 UDCON2 UDCON5

Max Value 0 3.58 -0.05 0.508 0.007 3.309

Max Case UDCON13 UDCON6 UDCON14 UDCON3 UDCON5 UDCON5

STORY2 B18 Min Value -1.45 -8.47 0.24 0.421 -1.368 -5.857

Min Case UDCON4 UDCON2 UDCON11 UDCON14 UDCON4 UDCON4

Max Value -0.26 4.5 0.81 0.714 0.45 1.705

Max Case UDCON11 UDCON3 UDCON4 UDCON1 UDCON6 UDCON4

STORY1 B1 Min Value -0.49 -20.58 -0.46 -0.825 -0.057 -25.514

Min Case UDCON6 UDCON4 UDCON6 UDCON5 UDCON10 UDCON3

Max Value 1.13 35.87 0.36 2.492 0.062 8.084

Max Case UDCON5 UDCON3 UDCON5 UDCON5 UDCON5 UDCON3

STORY1 B2 Min Value -0.14 -42.41 -0.55 -0.71 -0.018 -34.174

Min Case UDCON12 UDCON1 UDCON4 UDCON5 UDCON6 UDCON4

Max Value 3.61 39.33 0.03 3.186 0.093 24.237

Max Case UDCON3 UDCON3 UDCON6 UDCON6 UDCON4 UDCON2

STORY1 B3 Min Value -2.34 -35.99 -0.49 -5.679 -0.071 -26.92

Min Case UDCON9 UDCON5 UDCON5 UDCON3 UDCON4 UDCON6

Max Value 1.52 42.85 0.9 0.14 0.013 15.496

Max Case UDCON14 UDCON6 UDCON4 UDCON2 UDCON4 UDCON6

STORY1 B4 Min Value -1.4 -32.96 -0.05 -4.006 -0.015 -21.623

Page 6: Structural Analysis_Sapphire Italian (2)

Min Case UDCON5 UDCON5 UDCON4 UDCON4 UDCON4 UDCON5

Max Value 0.66 17.9 1 1.738 0.067 4.504

Max Case UDCON7 UDCON5 UDCON4 UDCON11 UDCON4 UDCON6

STORY1 B5 Min Value -1.87 -23.68 -0.58 -1.274 -0.028 -15.79

Min Case UDCON13 UDCON5 UDCON10 UDCON4 UDCON10 UDCON6

Max Value 2.38 27.07 0.49 0.23 0.03 5.998

Max Case UDCON6 UDCON6 UDCON5 UDCON8 UDCON5 UDCON14

STORY1 B6 Min Value -0.34 -37.69 -0.05 -4.955 -0.17 -25.875

Min Case UDCON13 UDCON5 UDCON6 UDCON2 UDCON2 UDCON5

Max Value 5.75 38.12 2.56 0.969 0.037 19.294

Max Case UDCON5 UDCON6 UDCON2 UDCON4 UDCON2 UDCON2

STORY1 B7 Min Value -1.74 -34.76 -0.81 -3.677 -0.026 -43.08

Min Case UDCON11 UDCON4 UDCON2 UDCON6 UDCON2 UDCON2

Max Value 2.48 58.9 2.09 4.755 0.335 25.002

Max Case UDCON4 UDCON2 UDCON2 UDCON2 UDCON2 UDCON5

STORY1 B8 Min Value -3.7 -19.85 -1.55 -2.817 -0.02 -24.452

Min Case UDCON6 UDCON9 UDCON2 UDCON3 UDCON2 UDCON6

Max Value 0.22 34.22 0.04 0.243 0.125 3.94

Max Case UDCON13 UDCON6 UDCON5 UDCON12 UDCON2 UDCON9

STORY1 B9 Min Value -1.1 -29.57 -1.65 0.099 -0.244 -7.941

Min Case UDCON5 UDCON4 UDCON2 UDCON14 UDCON2 UDCON4

Max Value 2.53 19.4 0.03 3.944 0.216 12.147

Max Case UDCON2 UDCON3 UDCON5 UDCON2 UDCON2 UDCON2

STORY1 B10 Min Value -1.19 -24.49 -1.43 0.883 -0.123 -8.367

Min Case UDCON6 UDCON5 UDCON2 UDCON13 UDCON3 UDCON14

Max Value 2.6 19.71 0.04 4.324 0.112 12.889

Max Case UDCON5 UDCON10 UDCON6 UDCON6 UDCON2 UDCON5

STORY1 B11 Min Value -1.9 -20.43 -0.11 -7.072 -0.01 -24.287

Min Case UDCON11 UDCON4 UDCON5 UDCON2 UDCON13 UDCON3

Max Value 3.19 45 0.24 3.487 0.028 12.281

Max Case UDCON4 UDCON3 UDCON6 UDCON5 UDCON10 UDCON2

STORY1 B12 Min Value -2.1 -33.47 -0.18 -9.022 -0.011 -24.443

Min Case UDCON12 UDCON4 UDCON11 UDCON2 UDCON12 UDCON4

Max Value 3.56 5.74 0.32 -1.206 0.023 2.502

Max Case UDCON3 UDCON5 UDCON4 UDCON12 UDCON3 UDCON3

STORY1 B13 Min Value -1.75 -22.91 -0.13 -1.365 -0.024 -25.394

Min Case UDCON6 UDCON6 UDCON3 UDCON3 UDCON3 UDCON6

Max Value 1.14 38.05 0.14 7.144 0.023 10.151

Max Case UDCON13 UDCON2 UDCON3 UDCON4 UDCON3 UDCON2

STORY1 B14 Min Value -1.2 -42.91 -1.94 -2.785 -0.032 -25.285

Min Case UDCON13 UDCON5 UDCON2 UDCON3 UDCON4 UDCON5

Max Value 1.27 12.01 0.09 4.548 0.286 5.336

Max Case UDCON6 UDCON6 UDCON8 UDCON3 UDCON2 UDCON2

STORY1 B15 Min Value -1.33 -8.59 -1.08 -0.173 -0.163 -6.14

Min Case UDCON6 UDCON5 UDCON6 UDCON3 UDCON6 UDCON6

Max Value 0.79 10.89 0.22 4.709 0.049 4.667

Max Case UDCON4 UDCON6 UDCON11 UDCON3 UDCON4 UDCON6

Page 7: Structural Analysis_Sapphire Italian (2)

STORY1 B16 Min Value -0.1 -12.41 -0.02 -0.148 -0.002 -2.449

Min Case UDCON14 UDCON6 UDCON6 UDCON10 UDCON6 UDCON6

Max Value 0.18 6.3 0.01 0.087 0.002 3.291

Max Case UDCON5 UDCON2 UDCON13 UDCON6 UDCON4 UDCON6

STORY1 B17 Min Value -6.43 -61.75 -0.99 -2.338 -0.214 -56.628

Min Case UDCON3 UDCON4 UDCON2 UDCON13 UDCON6 UDCON4

Max Value 3.32 38.21 0.59 3.149 0.178 35.088

Max Case UDCON12 UDCON3 UDCON6 UDCON6 UDCON13 UDCON6

Column Forces:

STORY COLUMN LOAD LOC P V2 V3 T M2 M3

(kN) (kN) (kN) (kN-m) (kN-m) (kN-m)

STORY2 C12 UDCON1

0 -4.96 0 -0.21 -0.04 -0.464 -0.11

1.35 -3.96 0 -0.21 -0.04 -0.18 -0.108

2.7 -2.96 0 -0.21 -0.04 0.104 -0.105

STORY2 C12 UDCON2

0 -8.1 -0.12 -0.3 -0.023 -0.556 -0.309

1.35 -7.24 -0.12 -0.3 -0.023 -0.146 -0.142

2.7 -6.38 -0.12 -0.3 -0.023 0.264 0.024

STORY2 C12 UDCON3

0 -8.21 -0.08 -0.93 -0.1 -1.569 -0.212

1.35 -7.35 -0.08 -0.93 -0.1 -0.319 -0.109

2.7 -6.5 -0.08 -0.93 -0.1 0.931 -0.007

STORY2 C12 UDCON4

0 -5.1 -0.08 0.41 0.045 0.576 -0.245

1.35 -4.24 -0.08 0.41 0.045 0.02 -0.138

2.7 -3.38 -0.08 0.41 0.045 -0.535 -0.03

STORY2 C12 UDCON5

0 -5.76 0.38 -0.29 -0.003 -0.511 0.372

1.35 -4.9 0.38 -0.29 -0.003 -0.125 -0.138

2.7 -4.05 0.38 -0.29 -0.003 0.261 -0.649

STORY2 C12 UDCON6

0 -7.55 -0.53 -0.23 -0.051 -0.482 -0.829

1.35 -6.69 -0.53 -0.23 -0.051 -0.173 -0.109

2.7 -5.84 -0.53 -0.23 -0.051 0.135 0.611

STORY2 C12 UDCON7

0 -5.8 0 -0.85 -0.106 -1.471 -0.077

1.35 -4.95 0 -0.85 -0.106 -0.324 -0.078

2.7 -4.09 0 -0.85 -0.106 0.822 -0.078

STORY2 C12 UDCON8

0 -2.69 0 0.49 0.039 0.674 -0.111

1.35 -1.84 0 0.49 0.039 0.015 -0.106

2.7 -0.98 0 0.49 0.039 -0.644 -0.102

STORY2 C12 UDCON9

0 -3.35 0.45 -0.21 -0.01 -0.412 0.507

Page 8: Structural Analysis_Sapphire Italian (2)

1.35 -2.5 0.45 -0.21 -0.01 -0.13 -0.107

2.7 -1.64 0.45 -0.21 -0.01 0.152 -0.72

STORY2 C12 UDCON10

0 -5.14 -0.46 -0.15 -0.058 -0.384 -0.695

1.35 -4.29 -0.46 -0.15 -0.058 -0.179 -0.078

2.7 -3.43 -0.46 -0.15 -0.058 0.026 0.54

STORY2 C12 UDCON11

0 -4.74 0 -0.8 -0.098 -1.371 -0.054

1.35 -4.1 0 -0.8 -0.098 -0.286 -0.055

2.7 -3.46 0 -0.8 -0.098 0.8 -0.056

STORY2 C12 UDCON12

0 -1.63 0 0.53 0.047 0.774 -0.087

1.35 -0.99 0 0.53 0.047 0.054 -0.083

2.7 -0.35 0 0.53 0.047 -0.666 -0.08

STORY2 C12 UDCON13

0 -2.29 0.45 -0.16 -0.001 -0.313 0.53

1.35 -1.65 0.45 -0.16 -0.001 -0.092 -0.084

2.7 -1.01 0.45 -0.16 -0.001 0.129 -0.698

STORY2 C12 UDCON14

0 -4.08 -0.46 -0.11 -0.05 -0.284 -0.671

1.35 -3.44 -0.46 -0.11 -0.05 -0.14 -0.055

2.7 -2.8 -0.46 -0.11 -0.05 0.004 0.562

STORY1 C6 UDCON1

0 -91.83 -1.83 1.84 0 0 0

1.3 -89.9 -1.83 1.84 0 -2.397 2.381

2.6 -87.98 -1.83 1.84 0 -4.793 4.762

STORY1 C6 UDCON2

0 -100.25 -2.12 2.07 0 0 0

1.3 -98.6 -2.12 2.07 0 -2.689 2.757

2.6 -96.95 -2.12 2.07 0 -5.379 5.513

STORY1 C6 UDCON3

0 -89.1 -1.81 0.56 0 0 0

1.3 -87.45 -1.81 0.56 0 -0.734 2.358

2.6 -85.8 -1.81 0.56 0 -1.469 4.715

STORY1 C6 UDCON4

0 -95.25 -2.01 3.21 0 0 0

1.3 -93.6 -2.01 3.21 0 -4.168 2.619

2.6 -91.95 -2.01 3.21 0 -8.335 5.238

STORY1 C6 UDCON5

0 -90.86 1.3 1.98 0 0 0

1.3 -89.21 1.3 1.98 0 -2.573 -1.695

2.6 -87.56 1.3 1.98 0 -5.146 -3.39

STORY1 C6 UDCON6

0 -93.48 -5.13 1.79 0 0 0

1.3 -91.83 -5.13 1.79 0 -2.329 6.672

2.6 -90.18 -5.13 1.79 0 -4.658 13.343

Page 9: Structural Analysis_Sapphire Italian (2)

STORY1 C6 UDCON7

0 -75.63 -1.47 0.26 0 0 0

1.3 -73.98 -1.47 0.26 0 -0.338 1.91

2.6 -72.33 -1.47 0.26 0 -0.675 3.821

STORY1 C6 UDCON8

0 -81.78 -1.67 2.9 0 0 0

1.3 -80.13 -1.67 2.9 0 -3.771 2.172

2.6 -78.48 -1.67 2.9 0 -7.542 4.343

STORY1 C6 UDCON9

0 -77.4 1.65 1.67 0 0 0

1.3 -75.75 1.65 1.67 0 -2.176 -2.142

2.6 -74.1 1.65 1.67 0 -4.353 -4.285

STORY1 C6 UDCON10

0 -80.02 -4.79 1.49 0 0 0

1.3 -78.37 -4.79 1.49 0 -1.932 6.224

2.6 -76.72 -4.79 1.49 0 -3.864 12.449

STORY1 C6 UDCON11

0 -55.96 -1.08 -0.14 0 0 0

1.3 -54.72 -1.08 -0.14 0 0.176 1.4

2.6 -53.48 -1.08 -0.14 0 0.352 2.8

STORY1 C6 UDCON12

0 -62.11 -1.28 2.51 0 0 0

1.3 -60.87 -1.28 2.51 0 -3.257 1.661

2.6 -59.63 -1.28 2.51 0 -6.514 3.323

STORY1 C6 UDCON13

0 -57.72 2.04 1.28 0 0 0

1.3 -56.49 2.04 1.28 0 -1.663 -2.653

2.6 -55.25 2.04 1.28 0 -3.325 -5.305

STORY1 C6 UDCON14

0 -60.34 -4.4 1.09 0 0 0

1.3 -59.1 -4.4 1.09 0 -1.419 5.714

2.6 -57.87 -4.4 1.09 0 -2.837 11.428

STORY1 C16 UDCON1

0 -73.87 -0.17 0.1 0 0 0

1.3 -72.16 -0.17 0.1 0 -0.134 0.222

2.6 -70.45 -0.17 0.1 0 -0.269 0.444

STORY1 C16 UDCON2

0 -96.79 -0.1 0.14 0 0 0

1.3 -95.32 -0.1 0.14 0 -0.186 0.133

2.6 -93.85 -0.1 0.14 0 -0.373 0.267

STORY1 C16 UDCON3

0 -86.6 7.18 0.12 0 0 0

1.3 -85.14 7.18 0.12 0 -0.154 -9.335

2.6 -83.67 7.18 0.12 0 -0.308 -18.669

STORY1 C16 UDCON4

0 -81.87 -7.42 0.13 0 0 0

1.3 -80.4 -7.42 0.13 0 -0.166 9.644

Page 10: Structural Analysis_Sapphire Italian (2)

2.6 -78.93 -7.42 0.13 0 -0.331 19.288

STORY1 C16 UDCON5

0 -82.87 -0.34 0.62 0 0 0

1.3 -81.4 -0.34 0.62 0 -0.809 0.44

2.6 -79.93 -0.34 0.62 0 -1.618 0.88

STORY1 C16 UDCON6

0 -85.61 0.1 -0.38 0 0 0

1.3 -84.14 0.1 -0.38 0 0.49 -0.13

2.6 -82.67 0.1 -0.38 0 0.979 -0.26

STORY1 C16 UDCON7

0 -65.68 7.15 0.08 0 0 0

1.3 -64.22 7.15 0.08 0 -0.109 -9.299

2.6 -62.75 7.15 0.08 0 -0.219 -18.598

STORY1 C16 UDCON8

0 -60.95 -7.45 0.09 0 0 0

1.3 -59.48 -7.45 0.09 0 -0.121 9.68

2.6 -58.02 -7.45 0.09 0 -0.242 19.359

STORY1 C16 UDCON9

0 -61.95 -0.37 0.59 0 0 0

1.3 -60.48 -0.37 0.59 0 -0.765 0.475

2.6 -59.01 -0.37 0.59 0 -1.529 0.951

STORY1 C16 UDCON10

0 -64.69 0.07 -0.41 0 0 0

1.3 -63.22 0.07 -0.41 0 0.534 -0.095

2.6 -61.75 0.07 -0.41 0 1.068 -0.189

STORY1 C16 UDCON11

0 -49.86 7.19 0.06 0 0 0

1.3 -48.76 7.19 0.06 0 -0.081 -9.347

2.6 -47.66 7.19 0.06 0 -0.161 -18.693

STORY1 C16 UDCON12

0 -45.12 -7.41 0.07 0 0 0

1.3 -44.02 -7.41 0.07 0 -0.092 9.632

2.6 -42.92 -7.41 0.07 0 -0.185 19.264

STORY1 C16 UDCON13

0 -46.12 -0.33 0.57 0 0 0

1.3 -45.02 -0.33 0.57 0 -0.736 0.428

2.6 -43.92 -0.33 0.57 0 -1.472 0.855

STORY1 C16 UDCON14

0 -48.86 0.11 -0.43 0 0 0

1.3 -47.76 0.11 -0.43 0 0.563 -0.142

2.6 -46.66 0.11 -0.43 0 1.126 -0.285

Page 11: Structural Analysis_Sapphire Italian (2)

Support Reactions:

STORY POINT LOAD FX FY FZ MX MY MZ

(kN) (kN) (kN) (kN-m) (kN-m) (kN-m)

BASE 16 DEAD 0.06 -0.02 33.86 0 0 0

BASE 16 EQX -7.3 0 2.37 0 0 0

BASE 16 EQY 0.22 -0.5 -1.37 0 0 0

BASE 16 SDL 0.07 -0.05 18.91 0 0 0

BASE 16 LIVE -0.03 -0.03 20.92 0 0 0

BASE 15 DEAD -0.35 0.01 8.81 0 0 0

BASE 15 EQX -5.32 0 8.44 0 0 0

BASE 15 EQY 0.07 -0.78 -2.24 0 0 0

BASE 15 SDL -1.11 -0.01 20.35 0 0 0

BASE 15 LIVE -0.04 0.02 0.81 0 0 0

BASE 3 DEAD 0.07 -0.02 41.11 0 0 0

BASE 3 EQX -5.3 -0.01 -6.45 0 0 0

BASE 3 EQY -0.48 -1.32 9.83 0 0 0

BASE 3 SDL 0.37 -0.09 77.21 0 0 0

BASE 3 LIVE -0.07 0 26.77 0 0 0

BASE 1 DEAD 0.16 -0.12 27.33 0 0 0

BASE 1 EQX -4.64 -0.02 4.98 0 0 0

BASE 1 EQY 0.22 -1.11 3.92 0 0 0

BASE 1 SDL 0.51 -0.12 47.68 0 0 0

BASE 1 LIVE 0 -0.07 14.24 0 0 0

BASE 7 DEAD -0.44 -0.58 23.72 0 0 0

BASE 7 EQX -1.38 -0.02 3.68 0 0 0

BASE 7 EQY 0.01 -3.62 6.22 0 0 0

BASE 7 SDL -0.96 -1.27 44.25 0 0 0

BASE 7 LIVE -0.22 -0.41 13.08 0 0 0

BASE 9 DEAD -0.22 0.02 24.47 0 0 0

BASE 9 EQX -1.13 0.07 1.64 0 0 0

BASE 9 EQY -0.03 -4.1 -1.29 0 0 0

BASE 9 SDL -0.19 0.17 43.87 0 0 0

BASE 9 LIVE -0.18 0.01 12.47 0 0 0

BASE 14 DEAD 0.03 0.27 33.82 0 0 0

BASE 14 EQX -1.33 0.23 3.33 0 0 0

BASE 14 EQY -0.03 -4.33 2.99 0 0 0

BASE 14 SDL 0.05 0.14 19.47 0 0 0

BASE 14 LIVE 0.01 0.06 22.32 0 0 0

BASE 11 DEAD -0.05 0.05 11.36 0 0 0

BASE 11 EQX -1.32 0 3.94 0 0 0

BASE 11 EQY -0.08 -3.73 -14.61 0 0 0

BASE 11 SDL -0.2 0.28 20.85 0 0 0

BASE 11 LIVE -0.03 0.03 1.63 0 0 0

BASE 13 DEAD 0.13 0.88 19.27 0 0 0

BASE 13 EQX -1.39 -0.01 -4.04 0 0 0

BASE 13 EQY -0.08 -3.06 -6.43 0 0 0

BASE 13 SDL 0.44 2.09 36.21 0 0 0

BASE 13 LIVE 0.09 0.68 9.3 0 0 0

Page 12: Structural Analysis_Sapphire Italian (2)

BASE 6 DEAD 0.41 0.41 22.79 0 0 0

BASE 6 EQX -1.32 -0.1 -3.08 0 0 0

BASE 6 EQY 0.09 -3.22 -1.31 0 0 0

BASE 6 SDL 0.91 0.9 42.8 0 0 0

BASE 6 LIVE 0.31 0.34 13.46 0 0 0

BASE 5 DEAD 0.15 -0.56 24.37 0 0 0

BASE 5 EQX -1.5 -0.08 -7.41 0 0 0

BASE 5 EQY 0.02 -4.11 -6.09 0 0 0

BASE 5 SDL 0.06 -1.25 36.59 0 0 0

BASE 5 LIVE 0.13 -0.44 11.46 0 0 0

BASE 4 DEAD 0.05 -0.33 14.15 0 0 0

BASE 4 EQX -1.48 -0.07 -7.39 0 0 0

BASE 4 EQY 0.06 -3.52 10.39 0 0 0

BASE 4 SDL 0.04 -0.8 22.97 0 0 0

BASE 4 LIVE 0.04 -0.19 5.49 0 0 0

Page 13: Structural Analysis_Sapphire Italian (2)

( )Design of Reinforced Concrete beam:mark:B1mark:B1mark:B1mark:B1

Input Parameters:

fc' 21 MPa= dbar 16 mm= nt 2= Mun 24.5 kN m=

fy 275 MPa= dties 10 mm= nb 2= Mup 12.3 kN m=

β1 0.85= b 200 mm= Vu 45 kN=

Es 200 GPa= h 400 mm=

Esεcu 600 MPa=Ab

π

4dbar

2201.062 mm

2==

Analysis:

DEFINING CONDITIONS: ϕ εt( ) ϕ 0.48 83 εt+←

ϕ 0.65← εt 0.002−>if

ϕ 0.65← εt 0.003<if

ϕ 0.9← εt 0.005−<if

ϕ

= Ffs kd di, ( ) fs Esεcukd di−

kd

fs fy← fs fy>if

fs fy−← fs fy−<if

fs fs 0.85 fc'−← β1 kd di>if

fs

=

FCc kd( ) 0.85 fc' b β1 kd=

Design for Negative flexure: Design for Positive flexure:

dt h 65 mm−= db h 65 mm−=

Ast nt Ab 402.124 mm2

== Asb nb Ab 402.124 mm2

==

at

Ast fy

0.85 fc' b30.976 mm== ab

Asb fy

0.85 fc' b30.976 mm==

ct

at

β1

36.442 mm== cb

ab

β1

36.442 mm==

εst 0.003ct dt−

ct

0.025−== εsb 0.003cb db−

cb

0.025−==

thus, use: ϕbt ϕ εst( ) 0.9== thus, use: ϕbb ϕ εsb( ) 0.9==

Mnn 0.85 fc' at b dt

at

2−

35.333 kN m== Mnp 0.85 fc' ab b db

ab

2−

35.333 kN m==

ϕbt Mnn 31.8 kN m= > Mun 24.5 kN m= ϕbb Mnp 31.8 kN m= > Mup 12.3 kN m=

Design for Shear: ϕv 0.75=Av 2

π

4dties

2157.08 mm

2==

Vc1

6fc' MPa b dt 51.172 kN==

VsVu

ϕv

Vc− 8.828 kN==.5 ϕv Vc 19.19 kN= < Vu 45 kN=

Vsmax2

3fc' MPa b dt 204.688 kN== sa min 0.5 dt 600 mm, ( ) Vs

1

3fc' MPa b dt<if

min 0.25 dt 300 mm, ( ) otherwise

=

Vnmax Vc Vsmax+ 255.86 kN==

sa 167.5 mm=svu

Av fy dt

Vs1.639 10

3× mm==

sb16 Av fy

fc' MPa b754.107 mm==

s2 100 mm= Vn2Av fy dt

s2

Vc+ 195.882 kN==

sc3 Av fy MPa

1−

b647.953 mm==

s3 150 mm= Vn3Av fy dt

s3

Vc+ 147.645 kN==smax min sa sb, sc, ( ) 167.5 mm==

therefore, use 200x400mm with 2-16mmϕ top bars and 2-16mmϕ bot. bars (Grade 40)

10mmϕ stirrups: 3@50mm, 10@100mm and rest at 150mm o.c.

Page 14: Structural Analysis_Sapphire Italian (2)

Design of Reinforced Concrete beam:mark:B2mark:B2mark:B2mark:B2

Input Parameters:

fc' 21 MPa= dbar 16 mm= nt 3= Mun 43.1 kN m=

fy 275 MPa= dties 10 mm= nb 2= Mup 25 kN m=

β1 0.85= b 200 mm= Vu 58.9 kN=

Es 200 GPa= h 400 mm=

Esεcu 600 MPa=Ab

π

4dbar

2201.062 mm

2==

Analysis:

DEFINING CONDITIONS: ϕ εt( ) ϕ 0.48 83 εt+←

ϕ 0.65← εt 0.002−>if

ϕ 0.65← εt 0.003<if

ϕ 0.9← εt 0.005−<if

ϕ

= Ffs kd di, ( ) fs Esεcukd di−

kd

fs fy← fs fy>if

fs fy−← fs fy−<if

fs fs 0.85 fc'−← β1 kd di>if

fs

=

FCc kd( ) 0.85 fc' b β1 kd=

Check for Negative flexure: Check for Positive flexure:

dt h 65 mm−= db h 65 mm−=

Ast nt Ab 603.186 mm2

== Asb nb Ab 402.124 mm2

==

at

Ast fy

0.85 fc' b46.464 mm== ab

Asb fy

0.85 fc' b30.976 mm==

ct

at

β1

54.663 mm== cb

ab

β1

36.442 mm==

εst 0.003ct dt−

ct

0.015−== εsb 0.003cb db−

cb

0.025−==

thus, use: ϕbt ϕ εst( ) 0.9== thus, use: ϕbb ϕ εsb( ) 0.9==

Mnn 0.85 fc' at b dt

at

2−

51.715 kN m== Mnp 0.85 fc' ab b db

ab

2−

35.333 kN m==

ϕbt Mnn 46.543 kN m= < Mun 43.1 kN m= ϕbb Mnp 31.8 kN m= < Mup 25 kN m=

o.k.! o.k.! Check for Shear: ϕv 0.75=

Av 2π

4dties

2157.08 mm

2==

Vc1

6fc' MPa b dt 51.172 kN==

VsVu

ϕv

Vc− 27.361 kN==.5 ϕv Vc 19.19 kN= < Vu 58.9 kN=

Vsmax2

3fc' MPa b dt 204.688 kN== sa min 0.5 dt 600 mm, ( ) Vs

1

3fc' MPa b dt<if

min 0.25 dt 300 mm, ( ) otherwise

=

Vnmax Vc Vsmax+ 255.86 kN==

sa 167.5 mm=svu

Av fy dt

Vs528.885 mm==

sb16 Av fy

fc' MPa b754.107 mm==

s2 100 mm= Vn2Av fy dt

s2

Vc+ 195.882 kN==

sc3 Av fy MPa

1−

b647.953 mm==

s3 150 mm= Vn3Av fy dt

s3

Vc+ 147.645 kN==smax min sa sb, sc, ( ) 167.5 mm==

therefore, use 200x400mm with 3-16mmϕ top bars and 2-16mmϕ bot. bars (Grade 40)

10mmϕ stirrups: 3@50mm, 10@100mm and rest at 150mm o.c.

Page 15: Structural Analysis_Sapphire Italian (2)

Design of Reinforced Concrete beam:mark:B3mark:B3mark:B3mark:B3

Input Parameters:

fc' 21 MPa= dbar 16 mm= nt 3= Mun 56.7 kN m=

fy 275 MPa= dties 10 mm= nb 2= Mup 35.1 kN m=

β1 0.85= b 200 mm= Vu 61.8 kN=

Es 200 GPa= h 500 mm=

Esεcu 600 MPa=Ab

π

4dbar

2201.062 mm

2==

Analysis:

DEFINING CONDITIONS: ϕ εt( ) ϕ 0.48 83 εt+←

ϕ 0.65← εt 0.002−>if

ϕ 0.65← εt 0.003<if

ϕ 0.9← εt 0.005−<if

ϕ

= Ffs kd di, ( ) fs Esεcukd di−

kd

fs fy← fs fy>if

fs fy−← fs fy−<if

fs fs 0.85 fc'−← β1 kd di>if

fs

=

FCc kd( ) 0.85 fc' b β1 kd=

Check for Negative flexure: Check for Positive flexure:

dt h 65 mm−= db h 65 mm−=

Ast nt Ab 603.186 mm2

== Asb nb Ab 402.124 mm2

==

at

Ast fy

0.85 fc' b46.464 mm== ab

Asb fy

0.85 fc' b30.976 mm==

ct

at

β1

54.663 mm== cb

ab

β1

36.442 mm==

εst 0.003ct dt−

ct

0.021−== εsb 0.003cb db−

cb

0.033−==

thus, use: ϕbt ϕ εst( ) 0.9== thus, use: ϕbb ϕ εsb( ) 0.9==

Mnn 0.85 fc' at b dt

at

2−

68.302 kN m== Mnp 0.85 fc' ab b db

ab

2−

46.391 kN m==

ϕbt Mnn 61.472 kN m= > Mun 56.7 kN m= ϕbb Mnp 41.752 kN m= > Mup 35.1 kN m=

Check for Shear: ϕv 0.75=Av 2

π

4dties

2157.08 mm

2==

Vc1

6fc' MPa b dt 66.447 kN==

VsVu

ϕv

Vc− 15.953 kN==.5 ϕv Vc 24.918 kN= < Vu 61.8 kN=

Vsmax2

3fc' MPa b dt 265.789 kN== sa min 0.5 dt 600 mm, ( ) Vs

1

3fc' MPa b dt<if

min 0.25 dt 300 mm, ( ) otherwise

=

Vnmax Vc Vsmax+ 332.237 kN==

sa 217.5 mm=svu

Av fy dt

Vs1.178 10

3× mm==

sb16 Av fy

fc' MPa b754.107 mm==

s2 100 mm= Vn2Av fy dt

s2

Vc+ 254.354 kN==

sc3 Av fy MPa

1−

b647.953 mm==

s3 150 mm= Vn3Av fy dt

s3

Vc+ 191.718 kN==smax min sa sb, sc, ( ) 217.5 mm==

therefore, use 200x500mm with 3-16mmϕ top bars and 2-16mmϕ bot. bars (Grade 40)

10mmϕ stirrups: 3@50mm, 10@100mm and rest at 150mm o.c.

Page 16: Structural Analysis_Sapphire Italian (2)

Design of Reinforced Concrete beam:mark:RBmark:RBmark:RBmark:RB

Input Parameters:

fc' 21 MPa= dbar 12 mm= nt 2= Mun 10 kN m=

fy 275 MPa= dties 10 mm= nb 2= Mup 6.40 kN m=

β1 0.85= b 150 mm= Vu 13.6 kN=

Es 200 GPa= h 300 mm=

Esεcu 600 MPa=Ab

π

4dbar

2113.097 mm

2==

Analysis:

DEFINING CONDITIONS: ϕ εt( ) ϕ 0.48 83 εt+←

ϕ 0.65← εt 0.002−>if

ϕ 0.65← εt 0.003<if

ϕ 0.9← εt 0.005−<if

ϕ

= Ffs kd di, ( ) fs Esεcukd di−

kd

fs fy← fs fy>if

fs fy−← fs fy−<if

fs fs 0.85 fc'−← β1 kd di>if

fs

=

FCc kd( ) 0.85 fc' b β1 kd=

Check for Negative flexure: Check for Positive flexure:

dt h 65 mm−= db h 65 mm−=

Ast nt Ab 226.195 mm2

== Asb nb Ab 226.195 mm2

==

at

Ast fy

0.85 fc' b23.232 mm== ab

Asb fy

0.85 fc' b23.232 mm==

ct

at

β1

27.332 mm== cb

ab

β1

27.332 mm==

εst 0.003ct dt−

ct

0.023−== εsb 0.003cb db−

cb

0.023−==

thus, use: ϕbt ϕ εst( ) 0.9== thus, use: ϕbb ϕ εsb( ) 0.9==

Mnn 0.85 fc' at b dt

at

2−

13.895 kN m== Mnp 0.85 fc' ab b db

ab

2−

13.895 kN m==

ϕbt Mnn 12.506 kN m= < Mun 10 kN m= ϕbb Mnp 12.506 kN m= > Mup 6.4 kN m=o.k.!

o.k.! Check for Shear: ϕv 0.75=

Av 2π

4dties

2157.08 mm

2==

Vc1

6fc' MPa b dt 26.923 kN==

VsVu

ϕv

Vc− 8.789− kN==.5 ϕv Vc 10.096 kN= < Vu 13.6 kN=

Vsmax2

3fc' MPa b dt 107.691 kN== sa min 0.5 dt 600 mm, ( ) Vs

1

3fc' MPa b dt<if

min 0.25 dt 300 mm, ( ) otherwise

=

Vnmax Vc Vsmax+ 134.613 kN==

sa 117.5 mm=svu

Av fy dt

Vs1.155− 10

3× mm==

sb16 Av fy

fc' MPa b1.005 10

3× mm==

s2 100 mm= Vn2Av fy dt

s2

Vc+ 128.435 kN==

sc3 Av fy MPa

1−

b863.938 mm==

s3 150 mm= Vn3Av fy dt

s3

Vc+ 94.598 kN==smax min sa sb, sc, ( ) 117.5 mm==

therefore, use 150x300mm with 2-12mmϕ top bars and 2-12mmϕ bot. bars (Grade 40)

10mmϕ stirrups: 3@50mm, 10@100mm and rest at 150mm o.c.

Page 17: Structural Analysis_Sapphire Italian (2)

DESIGN OF COLUMN mark:c1mark:c1mark:c1mark:c1b 300 mm= d' 65 mm=

nl 2=h 150 mm= db 12 mm=

i 0 nl..=fc' 21 MPa= dties 10 mm=

Mu 8.4 kN m=fy 275 MPa=

Pu 92 kN=Ab

π

4db2

113.097 mm2

==β1 0.85= Vu 5.2 kN=

Esεcu 600 MPa=

Es 200000 MPa= d

d'

0.5 h

h d'−

= As

3 Ab

0 Ab

3 Ab

=

fy 0.85 fc'− 257.1 MPa=

Maximum Axial capacity and location of plastic centroid:

Cc 0.85 fc' b h 803.25 kN== DEFINING CONDITIONS: Ffs kd di, ( ) fs Esεcukd di−

kd

fs fy← fs fy>if

fs fy−← fs fy−<if

fs fs 0.85 fc'−← β1 kd di>if

fs

=

fsi fy 0.85 fc'−= FCc kd( ) 0.85 fc' b β1 kd=

Fsi Asi fsi=ϕ εt( ) ϕ 0.48 83 εt+←

ϕ 0.65← εt 0.002−>if

ϕ 0.65← εt 0.003<if

ϕ 0.9← εt 0.005−<if

ϕ

=

Pn0 Cc

0

nl

i

Fsi∑=

+ 977.748 kN==

xp Cch

20

nl

i

Fsi di( )∑=

+

1

Pn0

75 mm==εy

fy

Es0.00137==

ϕc 0.65=

MaxϕPn0 ϕc 0.8 Pn0 508.429 kN== ρ

As∑b h

1.508 %==

Capacity at balanced condition: Tension-controlled capacity :

εb εy−= εt 0.005−=

cb

Esεcu

Esεcu fy+dnl 58.286 mm== ct

Esεcu

Esεcu Es εt−dnl 31.875 mm==

ab β1 cb 49.543 mm== at β1 ct 27.094 mm==

Ccb FCc cb( )= fsi Ffs cb di, ( )= Fsi Asi fsi= Cct FCc ct( )= fsi Ffs ct di, ( )= Fsi Asi fsi=

Pnb Ccb

0

nl

i

Fsi∑=

+ 78.691 kN== Pnt Cct

0

nl

i

Fsi∑=

+ 41.524− kN==

Mnb Cc 0.5 h 0.5 ab−( )0

nl

i

Fsi 0.5 h di−( ) ∑=

+= Mnt Cc 0.5 h 0.5 at−( )0

nl

i

Fsi 0.5 h di−( ) ∑=

+=

eb

Mnb

Pnb

512.713 mm== et

Mnt

Pnt

1.189− 103

× mm==

ϕb 0.65= ϕt 0.9=

ϕb Pnb 51.1 kN= ϕt Pnt 37.4− kN=

ϕb Mnb 26.2 kN m= ϕt Mnt 44.4 kN m=

Page 18: Structural Analysis_Sapphire Italian (2)

Section Capacity at applied eccentriciy due to loads:

euMu

Pu91.304 mm==

p cn( ) FCc cn( ) eu .5 h− .5 β1 cn+( )0

nl

i

Asi Ffs cn di, ( ) eu 0.5 h− di+( ) ∑=

+=

cn

et eu−

et eb−cb ct−( ) ct+ 12.005 mm==

c root p cn( ) cn, ( ) 58.695 mm==

εs 0.003c d2−

c

0.00134−==

ϕn ϕ εs( ) 0.65==

Pn FCc c( )

0

nl

i

Asi Ffs c di, ( )( )∑=

+ 154.062 kN==

Mn FCc c( ) 0.5 h .5 β1 c−( )0

nl

i

Asi Ffs c di, ( )( ) 0.5 h di−( ) ∑=

+ 14.067 kN m==

ϕn Pn 100.14 kN= < Pu 92 kN=o.k.!

ϕn Mn 9.143 kN m= < Mu 8.4 kN m=

Check for Shear:

ϕv 0.75=

Vc 1Pu kN

1−

14 b h m2−

+

fc' MPa b d2

62.864 10

3× kN==

Vu

ϕv

6.933 kN=>

smax min 16 db 48 dties, min b h, ( ), ( )=

smax 150 mm=

therefore, use 150x300mm with 6-12mmϕ longitudinal bars

10mmϕ stirrups: 10@75mm, and rest at 160mm o.c.

Page 19: Structural Analysis_Sapphire Italian (2)

DESIGN OF COLUMN mark:c2mark:c2mark:c2mark:c2b 150 mm= d' 65 mm=

nl 2=h 400 mm= db 12 mm=

i 0 nl..=fc' 21 MPa= dties 10 mm=

Mu 19.3 kN m=fy 275 MPa=

Pu 81.9 kN=Ab

π

4db2

113.097 mm2

==β1 0.85= Vu 7.4 kN=

Esεcu 600 MPa=

Es 200000 MPa= d

d'

0.5 h

h d'−

= As

2 Ab

2 Ab

2 Ab

=

fy 0.85 fc'− 257.1 MPa=

Maximum Axial capacity and location of plastic centroid:

Cc 0.85 fc' b h 1.071 103

× kN== DEFINING CONDITIONS: Ffs kd di, ( ) fs Esεcukd di−

kd

fs fy← fs fy>if

fs fy−← fs fy−<if

fs fs 0.85 fc'−← β1 kd di>if

fs

=

fsi fy 0.85 fc'−= FCc kd( ) 0.85 fc' b β1 kd=

Fsi Asi fsi=ϕ εt( ) ϕ 0.48 83 εt+←

ϕ 0.65← εt 0.002−>if

ϕ 0.65← εt 0.003<if

ϕ 0.9← εt 0.005−<if

ϕ

=

Pn0 Cc

0

nl

i

Fsi∑=

+ 1.245 103

× kN==

xp Cch

20

nl

i

Fsi di( )∑=

+

1

Pn0

200 mm==εy

fy

Es0.00137==

ϕc 0.65=

MaxϕPn0 ϕc 0.8 Pn0 647.659 kN== ρ

As∑b h

1.131 %==

Capacity at balanced condition: Tension-controlled capacity :

εb εy−= εt 0.005−=

cb

Esεcu

Esεcu fy+dnl 229.714 mm== ct

Esεcu

Esεcu Es εt−dnl 125.625 mm==

ab β1 cb 195.257 mm== at β1 ct 106.781 mm==

Ccb FCc cb( )= fsi Ffs cb di, ( )= Fsi Asi fsi= Cct FCc ct( )= fsi Ffs ct di, ( )= Fsi Asi fsi=

Pnb Ccb

0

nl

i

Fsi∑=

+ 456.56 kN== Pnt Cct

0

nl

i

Fsi∑=

+ 219.666 kN==

Mnb Cc 0.5 h 0.5 ab−( )0

nl

i

Fsi 0.5 h di−( ) ∑=

+= Mnt Cc 0.5 h 0.5 at−( )0

nl

i

Fsi 0.5 h di−( ) ∑=

+=

eb

Mnb

Pnb

275.735 mm== et

Mnt

Pnt

788.783 mm==

ϕb 0.65= ϕt 0.9=

ϕb Pnb 296.8 kN= ϕt Pnt 197.7 kN=

ϕb Mnb 81.8 kN m= ϕt Mnt 155.9 kN m=

Page 20: Structural Analysis_Sapphire Italian (2)

Section Capacity at applied eccentriciy due to loads:

euMu

Pu235.653 mm==

p cn( ) FCc cn( ) eu .5 h− .5 β1 cn+( )0

nl

i

Asi Ffs cn di, ( ) eu 0.5 h− di+( ) ∑=

+=

cn

et eu−

et eb−cb ct−( ) ct+ 237.846 mm==

c root p cn( ) cn, ( ) 140.871 mm==

εs 0.003c d2−

c

0.00413−==

ϕn ϕ εs( ) 0.65==

Pn FCc c( )

0

nl

i

Asi Ffs c di, ( )( )∑=

+ 259.603 kN==

Mn FCc c( ) 0.5 h .5 β1 c−( )0

nl

i

Asi Ffs c di, ( )( ) 0.5 h di−( ) ∑=

+ 61.176 kN m==

ϕn Pn 168.742 kN= < Pu 81.9 kN=o.k.!

ϕn Mn 39.765 kN m= < Mu 19.3 kN m=

Check for Shear:

ϕv 0.75=

Vc 1Pu kN

1−

14 b h m2−

+

fc' MPa b d2

63.78 10

3× kN==

Vu

ϕv

9.867 kN=>

smax min 16 db 48 dties, min b h, ( ), ( )=

smax 150 mm=

therefore, use 150x400mm with 6-12mmϕ longitudinal bars

10mmϕ stirrups: 10@75mm, and rest at 160mm o.c.

Page 21: Structural Analysis_Sapphire Italian (2)

DESIGN OF COLUMN mark:c3mark:c3mark:c3mark:c3b 150 mm= d' 65 mm=

nl 2=h 150 mm= db 12 mm=

i 0 nl..=fc' 21 MPa= dties 10 mm=

Mu 1.6 kN m=fy 275 MPa=

Pu 8.2 kN=Ab

π

4db

2113.097 mm

2==

β1 0.85= Vu 1 kN=

Esεcu 600 MPa=

Es 200000 MPa= d

d'

0.5 h

h d'−

= As

2 Ab

0 Ab

2 Ab

=

fy 0.85 fc'− 257.1 MPa=

Maximum Axial capacity and location of plastic centroid:

Cc 0.85 fc' b h 401.625 kN== DEFINING CONDITIONS: Ffs kd di, ( ) fs Esεcukd di−

kd

fs fy← fs fy>if

fs fy−← fs fy−<if

fs fs 0.85 fc'−← β1 kd di>if

fs

=

fsi fy 0.85 fc'−= FCc kd( ) 0.85 fc' b β1 kd=

Fsi Asi fsi=ϕ εt( ) ϕ 0.48 83 εt+←

ϕ 0.65← εt 0.002−>if

ϕ 0.65← εt 0.003<if

ϕ 0.9← εt 0.005−<if

ϕ

=

Pn0 Cc

0

nl

i

Fsi∑=

+ 517.957 kN==

xp Cch

20

nl

i

Fsi di( )∑=

+

1

Pn0

75 mm==εy

fy

Es0.00137==

ϕc 0.65=

MaxϕPn0 ϕc 0.8 Pn0 269.338 kN== ρ

As∑b h

2.011 %==

Capacity at balanced condition: Tension-controlled capacity :

εb εy−= εt 0.005−=

cb

Esεcu

Esεcu fy+dnl 58.286 mm== ct

Esεcu

Esεcu Es εt−dnl 31.875 mm==

ab β1 cb 49.543 mm== at β1 ct 27.094 mm==

Ccb FCc cb( )= fsi Ffs cb di, ( )= Fsi Asi fsi= Cct FCc ct( )= fsi Ffs ct di, ( )= Fsi Asi fsi=

Pnb Ccb

0

nl

i

Fsi∑=

+ 8.244 kN== Pnt Cct

0

nl

i

Fsi∑=

+ 51.864− kN==

Mnb Cc 0.5 h 0.5 ab−( )0

nl

i

Fsi 0.5 h di−( ) ∑=

+= Mnt Cc 0.5 h 0.5 at−( )0

nl

i

Fsi 0.5 h di−( ) ∑=

+=

eb

Mnb

Pnb

2.447 103

× mm== et

Mnt

Pnt

475.885− mm==

ϕb 0.65= ϕt 0.9=

ϕb Pnb 5.4 kN= ϕt Pnt 46.7− kN=

ϕb Mnb 13.1 kN m= ϕt Mnt 22.2 kN m=

Page 22: Structural Analysis_Sapphire Italian (2)

Section Capacity at applied eccentriciy due to loads:

euMu

Pu195.122 mm==

p cn( ) FCc cn( ) eu .5 h− .5 β1 cn+( )0

nl

i

Asi Ffs cn di, ( ) eu 0.5 h− di+( ) ∑=

+=

cn

et eu−

et eb−cb ct−( ) ct+ 25.812 mm==

c root p cn( ) cn, ( ) 54.315 mm==

εs 0.003c d2−

c

0.00169−==

ϕn ϕ εs( ) 0.65==

Pn FCc c( )

0

nl

i

Asi Ffs c di, ( )( )∑=

+ 34.709 kN==

Mn FCc c( ) 0.5 h .5 β1 c−( )0

nl

i

Asi Ffs c di, ( )( ) 0.5 h di−( ) ∑=

+ 6.773 kN m==

ϕn Pn 22.561 kN= < Pu 8.2 kN=o.k.!

ϕn Mn 4.402 kN m= < Mu 1.6 kN m=

Check for Shear:

ϕv 0.75=

Vc 1Pu kN

1−

14 b h m2−

+

fc' MPa b d2

6263.234 kN==

Vu

ϕv

1.333 kN=>

smax min 16 db 48 dties, min b h, ( ), ( )=

smax 150 mm=

therefore, use 150x150mm with 4-12mmϕ longitudinal bars

10mmϕ stirrups: 10@75mm, and rest at 160mm o.c.

Page 23: Structural Analysis_Sapphire Italian (2)

Design of Reinforced Concrete Slab:mark:S-1mark:S-1mark:S-1mark:S-1

Input Parameters:

fc' 21 MPa= db 10 mm=γc 23.5

kN

m3

=fy 275 MPa= sp 300 mm=

β1 0.85= t 100 mm=

Es 200 GPa= Ln 1.2 m=

Analysis: For Negative Reinforcement

For 1-meter strip: b 1 m=

ωsw γc t 2.35 kPa==

ωf 1.20 kPa=

ωL 2.40 kPa=

wD ωsw ωf+( ) b 3.55kN

m==

wL ωL b 2.4kN

m==

wU 1.2wD 1.6 wL+ 8.1kN

m==

MuwU Ln

2

81.458 kN m==

Abπ

4db

278.54 mm

2==

AsAb b

sp

261.799 mm2

==

Depth of rectangular compressive stress block:

aAs fy

0.85 fc' b4.033 mm==

ca

β1

4.745 mm==

d t 30 mm−=

εyfy

Es

1.375 103−

×==

εy (fs = fy)

εs 0.003d c−

c

0.041== exceeds0.005 (tension-controlled)

thus, use: ϕ 0.90=

Mn 0.85 fc' a b da

2−

4.894 kN m==

ϕ Mn 4.405 kN m= Mu 1.458 kN m=

Since; ϕMn Mu> andLn

3633.333 mm= < t o.k.!

therefore; use 100mm thk. slab with 10mmϕ rebar

spaced at 300mm o.c. top reinforcement

Page 24: Structural Analysis_Sapphire Italian (2)

Design of Reinforced Concrete Slab:mark:S-1mark:S-1mark:S-1mark:S-1

Input Parameters:

fc' 21 MPa= db 10 mm=γc 23.5

kN

m3

=fy 275 MPa= sp 300 mm=

β1 0.85= t 100 mm=

Es 200 GPa= Ln 1.2 m=

Analysis: For Positive Reinforcement

For 1-meter strip: b 1 m=

ωsw γc t 2.35 kPa==

ωf 1.20 kPa=

ωL 2.40 kPa=

wD ωsw ωf+( ) b 3.55kN

m==

wL ωL b 2.4kN

m==

wU 1.2wD 1.6 wL+ 8.1kN

m==

Mu9wU Ln

2

1280.82 kN m==

Abπ

4db

278.54 mm

2==

AsAb b

sp

261.799 mm2

==

Depth of rectangular compressive stress block:

aAs fy

0.85 fc' b4.033 mm==

ca

β1

4.745 mm==

d t 30 mm−=

εyfy

Es

1.375 103−

×==

εy (fs = fy)

εs 0.003d c−

c

0.041== exceeds0.005 (tension-controlled)

thus, use: ϕ 0.90=

Mn 0.85 fc' a b da

2−

4.894 kN m==

ϕ Mn 4.405 kN m= Mu 0.82 kN m=

Since; ϕMn Mu> andLn

3633.333 mm= < t o.k.!

therefore; use 100mm thk. slab with 10mmϕ rebar

spaced at 300mm o.c. top reinforcement

Page 25: Structural Analysis_Sapphire Italian (2)

Design of Reinforced Concrete Slab:mark:S-2mark:S-2mark:S-2mark:S-2

Input Parameters:

fc' 21 MPa= db 10 mm=γc 23.5

kN

m3

=fy 275 MPa= sp 280 mm=

β1 0.85= t 100 mm=

Es 200 GPa= Ln 1.5 m=

Analysis: For Negative Reinforcement

For 1-meter strip: b 1 m=

ωsw γc t 2.35 kPa==

ωf 1.20 kPa=

ωL 2.40 kPa=

wD ωsw ωf+( ) b 3.55kN

m==

wL ωL b 2.4kN

m==

wU 1.2wD 1.6 wL+ 8.1kN

m==

MuwU Ln

2

82.278 kN m==

Abπ

4db

278.54 mm

2==

AsAb b

sp

280.499 mm2

==

Depth of rectangular compressive stress block:

aAs fy

0.85 fc' b4.321 mm==

ca

β1

5.084 mm==

d t 30 mm−=

εyfy

Es

1.375 103−

×==

εy (fs = fy)

εs 0.003d c−

c

0.038== exceeds0.005 (tension-controlled)

thus, use: ϕ 0.90=

Mn 0.85 fc' a b da

2−

5.233 kN m==

ϕ Mn 4.71 kN m= Mu 2.278 kN m=

Since; ϕMn Mu> andLn

3641.667 mm= < t o.k.!

therefore; use 100mm thk. slab with 10mmϕ rebar

spaced at 280mm o.c. top reinforcement

Page 26: Structural Analysis_Sapphire Italian (2)

Design of Reinforced Concrete Slab:mark:S-2mark:S-2mark:S-2mark:S-2

Input Parameters:

fc' 21 MPa= db 10 mm=γc 23.5

kN

m3

=fy 275 MPa= sp 280 mm=

β1 0.85= t 100 mm=

Es 200 GPa= Ln 1.5 m=

Analysis: For Positive Reinforcement

For 1-meter strip: b 1 m=

ωsw γc t 2.35 kPa==

ωf 1.20 kPa=

ωL 2.40 kPa=

wD ωsw ωf+( ) b 3.55kN

m==

wL ωL b 2.4kN

m==

wU 1.2wD 1.6 wL+ 8.1kN

m==

Mu9wU Ln

2

1281.281 kN m==

Abπ

4db

278.54 mm

2==

AsAb b

sp

280.499 mm2

==

Depth of rectangular compressive stress block:

aAs fy

0.85 fc' b4.321 mm==

ca

β1

5.084 mm==

d t 30 mm−=

εyfy

Es

1.375 103−

×==

εy (fs = fy)

εs 0.003d c−

c

0.038== exceeds0.005 (tension-controlled)

thus, use: ϕ 0.90=

Mn 0.85 fc' a b da

2−

5.233 kN m==

ϕ Mn 4.71 kN m= Mu 1.281 kN m=

Since; ϕMn Mu> andLn

3641.667 mm= < t o.k.!

therefore; use 100mm thk. slab with 10mmϕ rebar

spaced at 280mm o.c. top reinforcement

Page 27: Structural Analysis_Sapphire Italian (2)

Design of Reinforced Concrete Slab:mark:SD-1mark:SD-1mark:SD-1mark:SD-1

Input Parameters:

fc' 21 MPa= db 10 mm=γc 23.5

kN

m3

=fy 275 MPa= sp 200 mm=

β1 0.85= t 100 mm=

Es 200 GPa=

Analysis: For Positive Reinforcement

For 1-meter strip: b 1 m=

Mu 5.4 kN m=

Abπ

4db

278.54 mm

2==

AsAb b

sp

392.699 mm2

==

Depth of rectangular compressive stress block:

aAs fy

0.85 fc' b6.05 mm==

ca

β1

7.118 mm==

d t 30 mm−=

εyfy

Es

1.375 103−

×==

εy (fs = fy)

εs 0.003d c−

c

0.027== exceeds0.005 (tension-controlled)

thus, use: ϕ 0.90=

Mn 0.85 fc' a b da

2−

7.233 kN m==

ϕ Mn 6.51 kN m= Mu 5.4 kN m=

Since; ϕMn Mu> and o.k.!

therefore; use 100mm thk. slab with 10mmϕ rebar

spaced at 200mm o.c. top reinforcement

Page 28: Structural Analysis_Sapphire Italian (2)

Design of Reinforced Concrete Slab:mark:SD-1mark:SD-1mark:SD-1mark:SD-1

Input Parameters:

fc' 21 MPa= db 10 mm=γc 23.5

kN

m3

=fy 275 MPa= sp 125 mm=

β1 0.85= t 100 mm=

Es 200 GPa= Ln 3 m=

Analysis: For Negative Reinforcement

For 1-meter strip: b 1 m=

Mu 10.1 kN m=

Abπ

4db

278.54 mm

2==

AsAb b

sp

628.319 mm2

==

Depth of rectangular compressive stress block:

aAs fy

0.85 fc' b9.68 mm==

ca

β1

11.388 mm==

d t 30 mm−=

εyfy

Es

1.375 103−

×==

εy (fs = fy)

εs 0.003d c−

c

0.015== exceeds0.005 (tension-controlled)

thus, use: ϕ 0.90=

Mn 0.85 fc' a b da

2−

11.259 kN m==

ϕ Mn 10.133 kN m= Mu 10.1 kN m=

Since; ϕMn Mu> o.k.!

therefore; use 100mm thk. slab with 10mmϕ rebar

spaced at 125mm o.c. top reinforcement

Page 29: Structural Analysis_Sapphire Italian (2)

DESIGN OF A ISOLATED FOOTING Mark :

INPUT DATA :

Concrete Strength, fc' =

Rebar Yield strength, fy =

Net Allowable Soil pressure, qa =

Footing Embedment Depth, Df =

Surcharge, qs =

Soil Weight, ws =

Column Width, cx =

Column Depth, cy =

Column Location in X-dir., dx = Use 1.3 x 1.3 x 0.3m thk. footing

Column Location in Y-dir., dy = w/ 6-16mm along X-direction

Footing Length, L = 6-16mm along Y-direction rebar

Footing Width, B =

Footing Thickness, t =

Longitudinal Rebar, Ax = 6 - Gravity Service Loads :

Transverse Rebar, Ay = 6 - PD =

Rebar center to Conc. edge, c = PL =

Check Soil Bearing Capacity :

Load on Footings :

PD + PL = 145.1 kN (Applied load) αs = 40

qs(BL) = 5.9 kN (Surcharge load) φVc2 =

(23.5-ws) tBL = 3.8 kN (Increased Footing)

Pa = 154.8 kN

φVc3 =

φVc = Min(φVc1 ,φVc2 ,φVc3 )

x-z plane: eX = 0.000 m < L/6 = 0.2167 φVc = > Vu <ok!>

qmaxX = 92 kPa < qa <ok!> Check for One-way Shear :

y-z plane: eY = 0.000 m < B/6 = 0.2167

qmaxY = 92 kPa < qa <ok!>

Vux = 56.7 kN Vuy =

Check thickness for Two-way Shear :

1.2PD + 1.6PL =

1.2qs(BL) = 7.1 kN φVcx = 148.9 kN φVcy =

1.2(23.5-ws) tBL = 4.6 kN > Vu <ok!> > Vu <ok!>

PU = 196.5 kN Check Flexural Reinforcement :

Governing Moments:

MUx = 25.0 kN-m MUy =

x-z plane: eUX = 0.000 m < L/6 = 0.2167 Asx = Asy = (provided)

qUmaxX = 116.3 kPa Asmin(x) = 702 mm² Asmin(y) = (= 0.0018Bt)

y-z plane: eUY = 0.000 m < B/6 = 0.2167 sx = 201 mm sy = (Smax = 500mm)

qUmaxY = 116.3 kPa

d = 0.20 m ax = ay =

Vu = qu [BL-(cx+d)(cy+d)] Check Tension-controlled limit :

Vu = ab/d = 0.616

bo = 2(cy+d)+2(cx+d) ax/d = 0.059 ay/d = 0.059

bo = 1.70 m < ab/d <ok!> < ab/d <ok!>

φMnx = φMny =

> MU <ok!> > MU <ok!>

βc = 2.00

φVc1 =

11.9 mm

48.0 kN-m

148.9 kN

18.9 kN-m

F1

184.8 kN

389.5 kN

45.3 kN

1,206 mm² 1,206 mm²

702 mm²

201 mm

16.0 kN/m³

0.15 m

0.30 m

1.3 m

21.0 MPa

228.0 MPa

100.0 kPa

1.0 m

3.5 kPa

389.5 kN

653.0 kN

16 mm φ

16 mm φ

48.0 kN-m

118.3 kN

26.8 kN0.10 m

0.30 m

1.3 m

0.65 m

0.65 m

φVc2 =

φVcy =

φMnx =

ax =

φVc3 =

ay =

φMny =

βc =

φVc1 =

φVcx =

176.2 kN

11.9 mm

389.5 kN

from CL of footing.

from CL of footing.

f ikjj2 + 4

bc

y{zz è!!!!!!

fc bo d

12

long side of col .

short s ide of col .

f ikjj2 + as d

bo

y{zz è!!!!!!

fc bo d

12

f 1

3 è!!!!!!

fc bo d

eu =Mu

Pu

e =M

P

VuX = qu B@max Hd x , L-d x L -0.5 c x -dD VuY = qu L@max Hdy , B-dyL -0.5 cy -dD

f 1

6 è!!!!!!

fc Bd f 1

6 è!!!!!!

fc Ld

Asx fy

0.85 fc B

Asy fy

0.85 fc L

fAsx fy Jd -a x

2N fAsy fy Jd -

ay

2N

y

x

z

x

z

L

x

y

f

f

xy

yx

y

surcharge

surcharge surcharge

dx

y

Page 30: Structural Analysis_Sapphire Italian (2)

DESIGN OF A ISOLATED FOOTING Mark :

INPUT DATA :

Concrete Strength, fc' =

Rebar Yield strength, fy =

Net Allowable Soil pressure, qa =

Footing Embedment Depth, Df =

Surcharge, qs =

Soil Weight, ws =

Column Width, cx =

Column Depth, cy =

Column Location in X-dir., dx = Use 1 x 1 x 0.275m thk. footing

Column Location in Y-dir., dy = w/ 5-16mm along X-direction

Footing Length, L = 5-16mm along Y-direction rebar

Footing Width, B =

Footing Thickness, t =

Longitudinal Rebar, Ax = 5 - Gravity Service Loads :

Transverse Rebar, Ay = 5 - PD =

Rebar center to Conc. edge, c = PL =

Check Soil Bearing Capacity :

Load on Footings :

PD + PL = 80.9 kN (Applied load) αs = 40

qs(BL) = 3.5 kN (Surcharge load) φVc2 =

(23.5-ws) tBL = 2.1 kN (Increased Footing)

Pa = 86.5 kN

φVc3 =

φVc = Min(φVc1 ,φVc2 ,φVc3 )

x-z plane: eX = 0.000 m < L/6 = 0.1667 φVc = > Vu <ok!>

qmaxX = 86 kPa < qa <ok!> Check for One-way Shear :

y-z plane: eY = 0.000 m < B/6 = 0.1667

qmaxY = 86 kPa < qa <ok!>

Vux = 27.2 kN Vuy =

Check thickness for Two-way Shear :

1.2PD + 1.6PL =

1.2qs(BL) = 4.2 kN φVcx = 100.2 kN φVcy =

1.2(23.5-ws) tBL = 2.5 kN > Vu <ok!> > Vu <ok!>

PU = 108.8 kN Check Flexural Reinforcement :

Governing Moments:

MUx = 9.8 kN-m MUy =

x-z plane: eUX = 0.000 m < L/6 = 0.1667 Asx = Asy = (provided)

qUmaxX = 108.8 kPa Asmin(x) = 495 mm² Asmin(y) = (= 0.0018Bt)

y-z plane: eUY = 0.000 m < B/6 = 0.1667 sx = 180 mm sy = (Smax = 500mm)

qUmaxY = 108.8 kPa

d = 0.18 m ax = ay =

Vu = qu [BL-(cx+d)(cy+d)] Check Tension-controlled limit :

Vu = ab/d = 0.616

bo = 2(cy+d)+2(cx+d) ax/d = 0.073 ay/d = 0.073

bo = 1.60 m < ab/d <ok!> < ab/d <ok!>

φMnx = φMny =

> MU <ok!> > MU <ok!>

βc = 2.00

φVc1 =

F2

102.1 kN

320.8 kN

19.0 kN

1,005 mm² 1,005 mm²

495 mm²

180 mm

16.0 kN/m³

0.15 m

0.28 m

1.0 m

21.0 MPa

228.0 MPa

100.0 kPa

1.0 m

3.5 kPa

320.8 kN

511.2 kN

320.8 kN

from CL of footing.

from CL of footing.

16 mm φ

16 mm φ

34.8 kN-m

68.4 kN

12.5 kN0.10 m

0.30 m

1.0 m

0.50 m

0.50 m

φVc2 =

φVcy =

φMnx =

ax =

φVc3 =

ay =

φMny =

12.8 mm

34.8 kN-mβc =

φVc1 =

φVcx =

92.0 kN

12.8 mm

100.2 kN

6.7 kN-m

f ikjj2 + 4

bc

y{zz è!!!!!!

fc bo d

12

long side of col .

short s ide of col .

f ikjj2 + as d

bo

y{zz è!!!!!!

fc bo d

12

f 1

3 è!!!!!!

fc bo d

eu =Mu

Pu

e =M

P

VuX = qu B@max Hd x , L-d x L -0.5 c x -dD VuY = qu L@max Hdy , B-dyL -0.5 cy -dD

f 1

6 è!!!!!!

fc Bd f 1

6 è!!!!!!

fc Ld

Asx fy

0.85 fc B

Asy fy

0.85 fc L

fAsx fy Jd -a x

2N fAsy fy Jd -

ay

2N

y

x

z

x

z

L

x

y

f

f

xy

yx

y

surcharge

surcharge surcharge

dx

y

Page 31: Structural Analysis_Sapphire Italian (2)

DESIGN OF A ISOLATED FOOTING Mark :

INPUT DATA :

Concrete Strength, fc' =

Rebar Yield strength, fy =

Net Allowable Soil pressure, qa =

Footing Embedment Depth, Df =

Surcharge, qs =

Soil Weight, ws =

Column Width, cx =

Column Depth, cy =

Column Location in X-dir., dx = Use 1.1 x 1.1 x 0.25m thk. footing

Column Location in Y-dir., dy = w/ 5-16mm along X-direction

Footing Length, L = 5-16mm along Y-direction rebar

Footing Width, B =

Footing Thickness, t =

Longitudinal Rebar, Ax = 5 - Gravity Service Loads :

Transverse Rebar, Ay = 5 - PD =

Rebar center to Conc. edge, c = PL =

Check Soil Bearing Capacity :

Load on Footings :

PD + PL = 89.4 kN (Applied load) αs = 40

qs(BL) = 4.2 kN (Surcharge load) φVc2 =

(23.5-ws) tBL = 2.3 kN (Increased Footing)

Pa = 95.9 kN

φVc3 =

φVc = Min(φVc1 ,φVc2 ,φVc3 )

x-z plane: eX = 0.000 m < L/6 = 0.1833 φVc = > Vu <ok!>

qmaxX = 79 kPa < qa <ok!> Check for One-way Shear :

y-z plane: eY = 0.000 m < B/6 = 0.1833

qmaxY = 79 kPa < qa <ok!>

Vux = 35.7 kN Vuy =

Check thickness for Two-way Shear :

1.2PD + 1.6PL =

1.2qs(BL) = 5.1 kN φVcx = 94.5 kN φVcy =

1.2(23.5-ws) tBL = 2.7 kN > Vu <ok!> > Vu <ok!>

PU = 120.8 kN Check Flexural Reinforcement :

Governing Moments:

MUx = 12.4 kN-m MUy =

x-z plane: eUX = 0.000 m < L/6 = 0.1833 Asx = Asy = (provided)

qUmaxX = 99.8 kPa Asmin(x) = 495 mm² Asmin(y) = (= 0.0018Bt)

y-z plane: eUY = 0.000 m < B/6 = 0.1833 sx = 205 mm sy = (Smax = 500mm)

qUmaxY = 99.8 kPa

d = 0.15 m ax = ay =

Vu = qu [BL-(cx+d)(cy+d)] Check Tension-controlled limit :

Vu = ab/d = 0.616

bo = 2(cy+d)+2(cx+d) ax/d = 0.078 ay/d = 0.078

bo = 1.50 m < ab/d <ok!> < ab/d <ok!>

φMnx = φMny =

> MU <ok!> > MU <ok!>

βc = 2.00

φVc1 =

βc =

φVc1 =

φVcx =

107.3 kN

11.7 mm

94.5 kN

8.8 kN-m

257.8 kN

from CL of footing.

from CL of footing.

16 mm φ

16 mm φ

29.7 kN-m

75.1 kN

14.3 kN0.10 m

0.30 m

1.1 m

0.55 m

0.55 m

φVc2 =

φVcy =

φMnx =

ax =

φVc3 =

ay =

φMny =

11.7 mm

29.7 kN-m

F3

113.0 kN

257.8 kN

27.5 kN

1,005 mm² 1,005 mm²

495 mm²

205 mm

16.0 kN/m³

0.15 m

0.25 m

1.1 m

21.0 MPa

228.0 MPa

100.0 kPa

1.0 m

3.5 kPa

257.8 kN

386.7 kN

f ikjj2 + 4

bc

y{zz è!!!!!!

fc bo d

12

long side of col .

short s ide of col .

f ikjj2 + as d

bo

y{zz è!!!!!!

fc bo d

12

f 1

3 è!!!!!!

fc bo d

eu =Mu

Pu

e =M

P

VuX = qu B@max Hd x , L-d x L -0.5 c x -dD VuY = qu L@max Hdy , B-dyL -0.5 cy -dD

f 1

6 è!!!!!!

fc Bd f 1

6 è!!!!!!

fc Ld

Asx fy

0.85 fc B

Asy fy

0.85 fc L

fAsx fy Jd -a x

2N fAsy fy Jd -

ay

2N

y

x

z

x

z

L

x

y

f

f

xy

yx

y

surcharge

surcharge surcharge

dx

y

Page 32: Structural Analysis_Sapphire Italian (2)

DESIGN OF A ISOLATED FOOTING Mark :

INPUT DATA :

Concrete Strength, fc' =

Rebar Yield strength, fy =

Net Allowable Soil pressure, qa =

Footing Embedment Depth, Df =

Surcharge, qs =

Soil Weight, ws =

Column Width, cx =

Column Depth, cy =

Column Location in X-dir., dx = Use 0.9 x 0.9 x 0.25m thk. footing

Column Location in Y-dir., dy = w/ 4-16mm along X-direction

Footing Length, L = 4-16mm along Y-direction rebar

Footing Width, B =

Footing Thickness, t =

Longitudinal Rebar, Ax = 4 - Gravity Service Loads :

Transverse Rebar, Ay = 4 - PD =

Rebar center to Conc. edge, c = PL =

Check Soil Bearing Capacity :

Load on Footings :

PD + PL = 64.8 kN (Applied load) αs = 40

qs(BL) = 2.8 kN (Surcharge load) φVc2 =

(23.5-ws) tBL = 1.5 kN (Increased Footing)

Pa = 69.2 kN

φVc3 =

φVc = Min(φVc1 ,φVc2 ,φVc3 )

x-z plane: eX = 0.000 m < L/6 = 0.15 φVc = > Vu <ok!>

qmaxX = 85 kPa < qa <ok!> Check for One-way Shear :

y-z plane: eY = 0.000 m < B/6 = 0.15

qmaxY = 85 kPa < qa <ok!>

Vux = 21.7 kN Vuy =

Check thickness for Two-way Shear :

1.2PD + 1.6PL =

1.2qs(BL) = 3.4 kN φVcx = 77.3 kN φVcy =

1.2(23.5-ws) tBL = 1.8 kN > Vu <ok!> > Vu <ok!>

PU = 86.7 kN Check Flexural Reinforcement :

Governing Moments:

MUx = 6.8 kN-m MUy =

x-z plane: eUX = 0.000 m < L/6 = 0.15 Asx = Asy = (provided)

qUmaxX = 107.0 kPa Asmin(x) = 405 mm² Asmin(y) = (= 0.0018Bt)

y-z plane: eUY = 0.000 m < B/6 = 0.15 sx = 212 mm sy = (Smax = 500mm)

qUmaxY = 107.0 kPa

d = 0.15 m ax = ay =

Vu = qu [BL-(cx+d)(cy+d)] Check Tension-controlled limit :

Vu = ab/d = 0.616

bo = 2(cy+d)+2(cx+d) ax/d = 0.076 ay/d = 0.076

bo = 1.50 m < ab/d <ok!> < ab/d <ok!>

φMnx = φMny =

> MU <ok!> > MU <ok!>

βc = 2.00

φVc1 =

F4

81.5 kN

257.8 kN

14.5 kN

804 mm² 804 mm²

405 mm²

212 mm

16.0 kN/m³

0.15 m

0.25 m

0.9 m

21.0 MPa

228.0 MPa

100.0 kPa

1.0 m

3.5 kPa

257.8 kN

386.7 kN

257.8 kN

from CL of footing.

from CL of footing.

16 mm φ

16 mm φ

23.8 kN-m

55.5 kN

9.3 kN0.10 m

0.30 m

0.9 m

0.45 m

0.45 m

φVc2 =

φVcy =

φMnx =

ax =

φVc3 =

ay =

φMny =

11.4 mm

23.8 kN-mβc =

φVc1 =

φVcx =

72.3 kN

11.4 mm

77.3 kN

4.3 kN-m

f ikjj2 + 4

bc

y{zz è!!!!!!

fc bo d

12

long side of col .

short s ide of col .

f ikjj2 + as d

bo

y{zz è!!!!!!

fc bo d

12

f 1

3 è!!!!!!

fc bo d

eu =Mu

Pu

e =M

P

VuX = qu B@max Hd x , L-d x L -0.5 c x -dD VuY = qu L@max Hdy , B-dyL -0.5 cy -dD

f 1

6 è!!!!!!

fc Bd f 1

6 è!!!!!!

fc Ld

Asx fy

0.85 fc B

Asy fy

0.85 fc L

fAsx fy Jd -a x

2N fAsy fy Jd -

ay

2N

y

x

z

x

z

L

x

y

f

f

xy

yx

y

surcharge

surcharge surcharge

dx

y

Page 33: Structural Analysis_Sapphire Italian (2)

DESIGN OF A ISOLATED FOOTING Mark :

INPUT DATA :

Concrete Strength, fc' =

Rebar Yield strength, fy =

Net Allowable Soil pressure, qa =

Footing Embedment Depth, Df =

Surcharge, qs =

Soil Weight, ws =

Column Width, cx =

Column Depth, cy =

Column Location in X-dir., dx = Use 0.6 x 0.6 x 0.175m thk. footing

Column Location in Y-dir., dy = w/ 3-16mm along X-direction

Footing Length, L = 3-16mm along Y-direction rebar

Footing Width, B =

Footing Thickness, t =

Longitudinal Rebar, Ax = 3 - Gravity Service Loads :

Transverse Rebar, Ay = 3 - PD =

Rebar center to Conc. edge, c = PL =

Check Soil Bearing Capacity :

Load on Footings :

PD + PL = 30.0 kN (Applied load) αs = 40

qs(BL) = 1.3 kN (Surcharge load) φVc2 =

(23.5-ws) tBL = 0.5 kN (Increased Footing)

Pa = 31.7 kN

φVc3 =

φVc = Min(φVc1 ,φVc2 ,φVc3 )

x-z plane: eX = 0.000 m < L/6 = 0.1 φVc = > Vu <ok!>

qmaxX = 88 kPa < qa <ok!> Check for One-way Shear :

y-z plane: eY = 0.000 m < B/6 = 0.1

qmaxY = 88 kPa < qa <ok!>

Vux = 9.6 kN Vuy =

Check thickness for Two-way Shear :

1.2PD + 1.6PL =

1.2qs(BL) = 1.5 kN φVcx = 25.8 kN φVcy =

1.2(23.5-ws) tBL = 0.6 kN > Vu <ok!> > Vu <ok!>

PU = 38.4 kN Check Flexural Reinforcement :

Governing Moments:

MUx = 1.6 kN-m MUy =

x-z plane: eUX = 0.000 m < L/6 = 0.1 Asx = Asy = (provided)

qUmaxX = 106.7 kPa Asmin(x) = 189 mm² Asmin(y) = (= 0.0018Bt)

y-z plane: eUY = 0.000 m < B/6 = 0.1 sx = 176 mm sy = (Smax = 500mm)

qUmaxY = 106.7 kPa

d = 0.08 m ax = ay =

Vu = qu [BL-(cx+d)(cy+d)] Check Tension-controlled limit :

Vu = ab/d = 0.616

bo = 2(cy+d)+2(cx+d) ax/d = 0.171 ay/d = 0.171

bo = 1.20 m < ab/d <ok!> < ab/d <ok!>

φMnx = φMny =

> MU <ok!> > MU <ok!>

βc = 2.00

φVc1 =

F5

36.3 kN

103.1 kN

4.8 kN

603 mm² 603 mm²

189 mm²

176 mm

16.0 kN/m³

0.15 m

0.18 m

0.6 m

21.0 MPa

228.0 MPa

100.0 kPa

1.0 m

3.5 kPa

103.1 kN

116.0 kN

103.1 kN

from CL of footing.

from CL of footing.

16 mm φ

16 mm φ

8.5 kN-m

29.2 kN

0.8 kN0.10 m

0.30 m

0.6 m

0.30 m

0.30 m

φVc2 =

φVcy =

φMnx =

ax =

φVc3 =

ay =

φMny =

12.8 mm

8.5 kN-mβc =

φVc1 =

φVcx =

29.4 kN

12.8 mm

25.8 kN

0.7 kN-m

f ikjj2 + 4

bc

y{zz è!!!!!!

fc bo d

12

long side of col .

short s ide of col .

f ikjj2 + as d

bo

y{zz è!!!!!!

fc bo d

12

f 1

3 è!!!!!!

fc bo d

eu =Mu

Pu

e =M

P

VuX = qu B@max Hd x , L-d x L -0.5 c x -dD VuY = qu L@max Hdy , B-dyL -0.5 cy -dD

f 1

6 è!!!!!!

fc Bd f 1

6 è!!!!!!

fc Ld

Asx fy

0.85 fc B

Asy fy

0.85 fc L

fAsx fy Jd -a x

2N fAsy fy Jd -

ay

2N

y

x

z

x

z

L

x

y

f

f

xy

yx

y

surcharge

surcharge surcharge

dx

y


Recommended