+ All Categories
Home > Documents > Structural and optical properties for PVA- PEG-MnCl2 ...

Structural and optical properties for PVA- PEG-MnCl2 ...

Date post: 15-Apr-2022
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
15
Iraqi Journal of Physics, 2017 Vol.15, No.32, PP. 99-113 99 Structural and optical properties for PVA- PEG-MnCl 2 composites Abeer Mohammed 1 , Mahdi Hasan Suhail 2 , Mohammed Ghazi 1 1 Department of Physics, College of Science, University of Anbar, Iraq 2 Department of Physics, College of Science, University of Baghdad, Iraq E-mail: [email protected]. Abstract Key words Polymer films of PEG and PVA and their blend with different concentrations of MnCl 2 (0, 2, 4, 6 and 10 %.wt) were study using casting technique. The X-ray spectra of pure PEG, PVA and PVA:PEG films and with addition of 2% concentrations from (MnCl 2 ) show amorphous structures. The results for FTIR show the interaction between the filler and polymer blend results in decreasing crystallinity with rich amorphous phase. This amorphous nature confirms the complexation between the filler and the polymer blend. The optical properties of (PVA:PEG/MnCl 2 ) contain the recording of absorbance (A) and explain that the absorption coefficient (α), refractive index (n), extinction coefficient (k o ) and the dielectric constants (real and imaginary part) increase with increasing the concentration of Composite (PVA:PEG/MnCl 2 ). The optical energy gap for electrons transitions both are direct and indirect allowed. PVA, PEG polymer, refractive index, dielectric constant, energy gap, composite polymer. Article info. Received: Oct. 2016 Accepted: Nov. 2016 Published: Mar. 2017 بولي وكحول ال فينال بوليلمتراكب ل والبصريه التركيبيه الخواصطعم الميكول ك اثلين المنغنيز بكلوريدحمد م عبير1 ، سھيل حسن مھدي2 ، غازيحمد م1 1 زياء الفي قسم، كلي ةعلوم ال، جامع ةنبار ا، العراق2 زياء الفي قسم، كلي ةعلوم ال، جامع ةاد بغد، العراقص الخ ةكحول ال فينال بولي اغشيه- المطعمة ومرية البولييكول ك اثلين بولي المنغنيز كلوريد من مختلفة بتراكيز) 10,8,6,4,2 % ( السحب بطرية حضرت قد. ضافة وا النقيةغشيه ل السينيةئشعه ا فحوصات نتائج كانت2 % عشوائية المنغنيز كلوريد من. مريه البوليلمادة ا بينتفاعل ال بينت الحمراءحت تشعة ا فحوصات نتائج و المطعمةتبلور ال زيادةذلك وك. و ھذ هلمادة ا بينتداخل البسب ب العشوائيه البولمريةلمادة وا المدعمة، الخواصضمنت ت البصرية دراسة وثابت الخمود ومعاملنكسار اعمل وماصمتص ا معاملتوضيح واصيةمتص الماده ا تراكيز بزياده تزدادالي والخيقي الحقيعزل ال المطعمة. كانتقالية اروناتلكت للطاقة ا فجوة نوع من نت المسموحة مباشرة والغيرلمباشرة ا. Introduction Polymer blends play an important role because of their relatively simple preparation methods and diverse resulting properties [1]. Interest in studying polymer blends has considerably increased due to their significant industrial applications [2]. Blends with improved characteristics are produced by blending two or more polymers in order to combine their properties for certain purposes. Polyvinyl alcohol (PVA) is the most widely produced water soluble
Transcript
Page 1: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraqi Journal of Physics, 2017 Vol.15, No.32, PP. 99-113

99

Structural and optical properties for PVA- PEG-MnCl2 composites

Abeer Mohammed1, Mahdi Hasan Suhail2, Mohammed Ghazi1

1Department of Physics, College of Science, University of Anbar, Iraq 2Department of Physics, College of Science, University of Baghdad, Iraq

E-mail: [email protected].

Abstract Key words Polymer films of PEG and PVA and their blend with different concentrations of MnCl2 (0, 2, 4, 6 and 10 %.wt) were study using casting technique. The X-ray spectra of pure PEG, PVA and PVA:PEG films and with addition of 2% concentrations from (MnCl2) show amorphous structures. The results for FTIR show the interaction between the filler and polymer blend results in decreasing crystallinity with rich amorphous phase. This amorphous nature confirms the complexation between the filler and the polymer blend. The optical properties of (PVA:PEG/MnCl2) contain the recording of absorbance (A) and explain that the absorption coefficient (α), refractive index (n), extinction coefficient (ko) and the dielectric constants (real and imaginary part) increase with increasing the concentration of Composite (PVA:PEG/MnCl2). The optical energy gap for electrons transitions both are direct and indirect allowed.

PVA, PEG polymer, refractive index, dielectric constant, energy gap, composite polymer.

Article info. Received: Oct. 2016Accepted: Nov. 2016Published: Mar. 2017

اثلين كلايكول المطعم الخواص التركيبيه والبصريه للمتراكب بولي فينال الكحول وبولي

بكلوريد المنغنيز

1محمد غازي ،2مھدي حسن سھيل، 1عبير محمد العراق، الانبار ةجامع ،العلوم ةكلي، قسم الفيزياء1

العراق، بغداد ةجامع ،العلوم ةكلي، قسم الفيزياء2

ةالخلاصبتراكيز مختلفة من كلوريد المنغنيز بولي اثلين كلايكول البوليمرية و المطعمة -اغشيه بولي فينال الكحول

كانت نتائج فحوصات الائشعه السينية للاغشيه النقية واضافة . قد حضرت بطرية السحب) % 10,8,6,4,2(نتائج فحوصات الاشعة تحت الحمراء بينت التفاعل بين المادة البوليمريه . من كلوريد المنغنيز عشوائية% 2الخواص ،المدعمةوالمادة البولمريةالعشوائيه بسبب التداخل بين المادة هھذو .وكذلك زيادة التبلور المطعمةو

الامتصاصية وتوضيح معامل الامتصاص ومعمل الانكسار ومعامل الخمود وثابت دراسةالبصرية تضمنت نت من نوع فجوة الطاقة للالكترونات الانتقالية كا. المطعمةالعزل الحقيقي والخيالي تزداد بزياده تراكيز الماده

.المباشرة والغير مباشرة المسموحة

Introduction Polymer blends play an important role because of their relatively simple preparation methods and diverse resulting properties [1]. Interest in studying polymer blends has considerably increased due to their

significant industrial applications [2]. Blends with improved characteristics are produced by blending two or more polymers in order to combine their properties for certain purposes. Polyvinyl alcohol (PVA) is the most widely produced water soluble

Page 2: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraqi Journal of Physics, 2017 Abeer Mohammed, et al.

100

synthetic polymer over a wide range of temperatures depending on its degree of hydrolysis, molecular weight and tendency to hydrogen bond in aqueous solutions [3]. Moreover, PVA is also nontoxic, potential material having high dielectric strength, good charge storage capacity and dopant dependent electrical and optical properties [4]. PVA has been found to have a wide range of applications in the industrial sector and it has been attractive in different areas of science and technology [5, 6]. Polyethylene glycol (PEG) Chemical formula is [H (OCH2CH2)nOH]. Solubility all grades of polyethylene glycol are soluble in water. Polyethylene glycols are used in great variety of applications because of their chemical structure, their low toxicity, their solubility in water and their lubricating properties. They provide flexibility in choosing properties to meet the requirements of many different applications. In the rubber industry, they serve as heat transfer agents, mold release agents, rubber compounders, lubricants, and pigment carriers [7-10]. Filler additives were added to polymer or polymer blend to improve and modify its properties. Transition metals have influence on the structural, optical, morphological and thermal properties of polymer blend. Manganese is well known as a magneto active multivalent element. Thus, its halides can be used as fillers to modify the electric conduction and the optical absorption of PVV:PEG. On the other hand, MnCl2 is considered as a good candidate for one- or two-dimensional phenomena [11]. Most of the early works on metal/polymer composites are patented and little systematic investigation has been carried out in this field, especially on the particulate composite systems.

In the present work, PEG:PVA blend doped with different concentrations of MnCl2 have been prepared by casting method. The structural and optical characteristics of the prepared composites were studied with on their physical properties.

Experimental part The materials used in the present work were Poly-vinyl al alcohol (PVA) and Poly-ethylene glycol (PEG) with addition of different concentrations from (MnCl2). Equal weights of PVA and PEG with ratio 50: 50 wt% for one gm of PVA and one gm of PEG was first dissolved in the common solvent (30 mL of distilled water) and then both the polymers were homogeneously mixed using a magnetic stirrer at the constant temperature at 50˚C for 12 hours. Complete homogeneous solution was casted on Teflon petri dishes and left for the evaporation of the solvent. The resulting PVA:PEG films were dried up to 4 days at room temperature in the desiccators to remove the traces of solvent, and then lifted out of the petri dish for further analysis. On the other hand, MnCl2 was dissolved in double distilled water in the same condition. The resulting solution of MnCl2 particles were added to the polymer blend PVA:PEG solution with mass fraction (0, 2, 4, 6, 8, 10) wt%. with temperature of 100 oC . The resulting solution was then cast to glass slides and leave over it for about 72 h. After drying, the films were peeled from Petridish (it has diameter 5cm) and then left to dry. The thickness of films were in ranging from 150 to 200 nm were obtained and kept in vacuum desiccators until use. NICOLET FTIR 6700 spectrometer was used to record the FTIR spectra in the range 400 - 4000 cm−1 to study the functional groups of the samples. The absorbance Spectrum was recorded of

Page 3: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraqi Journal of Physics, 2017 Vol.15, No.32, PP. 99-113

101

the wavelength range (200 - 1100) nm by using the double-beam spectrophotometer (UV- 1800 shimedza). The absorption coefficient (α) was calculated in the fundamental absorption region from the following equation [12]: α =2.303A/d (1) where (A) is absorbance and (d) is the thickness of sample. The refractive index is explained in terms of real and imaginary parts. The real part of the refractive index (n) or simply the refractive index which describes the oscillations of the incident radiation in the crystal, while the imaginary part (k) known as the extinction coefficient which describes the attenuation of the incident radiation as it propagates in the crystal. The values of (n) and (k) can be determined from the absorption coefficient α and reflection (R) spectra.

The refractive index (n) is the written in terms of reflectance of the surface as [13]:

n = ((4R/(R – 1)2 –k

2))1/2 – (R+1)/(R – 1)

(2)

while the extinction coefficient k is related to the absorption coefficient α by: K=α λ /4π (3)

The forbidden energy gap of indirect transition both allowed, forbidden calculated according to the relationship [14 :] αhν= ( hν - Eg )

m (4) hν: is the energy of photon, :is proportionality constant, Eg: is optical energy gap of the transition. The optical dielectric constant ε can be expressed as a complex equation in the form ε=εr - iεi, where εr is the real part generally relates to dispersion, while εi is the imaginary part provides a measure of the dissipative rate of the wave in the medium. The real and imaginary parts of the complex dielectric constant are related to the refractive index and the extinction coefficient as [15]:

εr= n2 – k2 (5)

εi =2nk (6)

Results and discussion Structure properties Fig. 1 presents the X-ray spectra of pure PEG and PVA and their blend with different concentrations of MnCl2 in the range 2θ =10-65o. Pure PEG, PVA and PVA:PEG films and with addition of 2% concentrations from (MnCl2) show amorphous structures.

Page 4: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

Aobseappwithin bthe are presresuwhesuppblencrys2θ=foun and wt ≥distblenin areve crys

qi Journal of P

Fig. 1: X

After addierved thaarently dimh the increblend sampl

number offormed bet

sent [16]. Ault of diluen mixed press recrynd polymestal growth

= 15.59 annd to be

decreased≥ 8%. whicortion in cnd. This resamorphous ealed that stal struct

Physics, 2017

X-ray diffract

ing MnClt the ten

minution of ease of Mnle implies a f hydrogen tween PEG Also, this ution effecwith polym

ystallization er chains h. The twnd 20.02, increased d broadne

ch revealed crystal strucsults reveal nature the there is d

ture of t

7

tion scans of

l2, it wasndency ocrystallinityCl2 contendecrease obonds tha

and PVA imight be at of Mn2+

mer, whichof broken

and inhibiwo peaks a

have beenin intensity

ess in forthat there iscture of thethe increasefilms which

distortion inthe blend

102

f various Mn

s f y

nt f

at f a + h n it at n y r s e e h n

d.

Mapthinpo

refideamnabeblFPPEarblpeinbe

nCl2 filling le

Moreover, thppeared forhe completen amorpholymers [16 From all

esults, theller and pecreasingmorphousature confetween thelend. ig. 2 depictEG and EG:PVA cre observedlend films eak shifts, nteraction, etween two

Abeer M

evels for PVA

here are nr MnCl2. Te dissolutioous regio

6]. l previouslinteraction olymer blecrystallinityphase. Thi

firms the filler and

ts the IR spPVA/PEG

characterizind. FTIR spwere carriewhich maylike hydropolymers.

Mohammed, e

VA/PEG film

no new peaThis indicaon of the filons of

ly mentionbetween t

end results y with riis amorphocomplexati

d the polym

pectra of PG. The mng frequenpectroscopy

ed out to dey be due toogen bond

et al.

s.

aks ates ller the

ned the in

ich ous ion

mer

PVA, main ncies y of etect

o the ding,

Page 5: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

absoassibenThegrouvibrThe173stret844modcm-

acetback941 Fbansharto grou146

qi Journal of P

Fi

For pure orption banigned to ding vibrat

e band corrup (CH2) ration occue vibratio4 cm-1

tching of P4 cm-1 is de of CH2. 1 correspontyl group kbone. Th cm-1 is assFor pure Pds of PEGrp band at

CH2 streup. The

64 cm-1 an

Physics, 2017

ig. 2: FTIR t

PVA, the nds at abo

O-H stretion of hydresponding

asymmetriurs at abounal band correspond

PVA. The bassigned tThe band a

nds to C-O present o

he absorptisigned to CHEG, main

G can be 2887 cm-1

etching ofbands

nd 1350 cm

7

transmission

characteristout 3367 aetching androxyl grouto methylenic stretchin

ut 2926 cmat abo

ds to C=band at aboto stretchinat about 109

stretchingon the PVion band H2 stretchincharacteristobserved.is attribut

f methylenat aroun

m-1 represe

103

n spectra of P

tic are nd up. ne ng

m-1. out =O out ng 93 of

VA at

ng. tic A

ted ne nd ent

CbesmasCbaC

fufogrfrthalacwhypo

PV2,Fr

PVA, PEG a

CH2 scissoriending, resmall bandssigned to

C-O-C stretand at 111

C-H bending The chan

unctional gorce constaroups and requency ofhese grouplready repoccepting p

which is necydrogen olymers[17 Fig.3 shVA:PEG bl, 4, 6, 8, arom the

Vol.15, N

and PVA/PE

ing and Cspectively. at around CH2 symmtching mo2 cm-1 out

g mode at 9nges in absgroups caunt of dono

due to tf stretching, s occurs. rted that PEpolymer (essary for thbond b

, 18]. hows thelend and thand 10 wt.

figure,

No.32, PP. 99

EG.

CH2 asymmThe relati1282 cm-1

metric twisode has st-of-plane r

956 cm-1. sorption of

uses changeor and accethis change deformatio It has b

EO is a pr(ether grothe formatiobetween

e spectra he blend wit. % of Mn

the rela

9-113

metric ively 1 is ting, harp rings

f the e in eptor e in on of been roton oup), on of

two

of th 0, nCl2. ative

Page 6: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

intevibrblenthatprepincrO-H320stret

qi Journal of P

ensities ofrational bands are det the amorpared sampreasing theH stretch00cm-1 to tching vibr

Fig. 3: FTI

Physics, 2017

f some ands for tecreased. Trphous reg

ples are auge filler. Thhing vibra

3500 cmration from

IR transmiss

7

characteristthose MnC

This indicatgions of thgmented wihe shiftsation f ro

m-1, the CHm 2891 cm

sion spectra

104

tic Cl2 tes he ith of m H2

m-1

to16stoufrobinpoin

of different

o 2933 cm665 cm-1

tretching, 94ut-of-plane rom 966 cbserved. Thnteractionsolymer blenn agreement

concentratio

Abeer M

m-1, C=O to 1760

47 cm-1 torings C-H

cm-1 to 9hese indicat

of MnCnd these rest with Abde

on MnCl2 in

Mohammed, e

stretch f0 cm-1, o 955 cm-1 bending m

62 cm-1 wte the chem

Cl2 with sults are ne

elraze [19].

n PVA/PEG.

et al.

from C-C and

mode were

mical the

early

Page 7: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

Th Tbe optiprovstruand Fspecblendifffromwav300specPVA

Fig.B- conc

00.050.1

0.150.2

0.250.3

0.350.4

0.450.5

Ab

sorb

ance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ab

sorb

ance

qi Journal of P

e optical prThe opticalused for tically indvides infor

ucture and enon-crysta

Fig. 4A andctra of the Pnded PEG:Pferent contem MnCl2 mvelength sp0-1100 nm ctra, we canA increases

. 4: A- AbsoAbsorbancecentrations o

05152535455

300 4

0

1

2

3

4

5

6

7

8

300 40

Physics, 2017

roperties absorption

the investigduced trarmation aboenergy gap lline materi

d 4B show thPure PVA

PVA polymnt (0, 2, 4,

material as pectra in t

respectiveln see that ps, band ed

orbance of Pe of PEG:Pof MnCl2.

400 5

0 500

7

n method cgation of thansitions.out the banin crystallin

ials [20]. he absorptioand PEG an

mer films wi6, 8, and 1a function the rangely. From th

peak height dge increas

PVA, PEG anPVA and P

00 60

600 7λ (nm

105

an the

It nd ne

on nd ith 0) of of he of

ses

antovamabminelwvacaPEnomta

nd PEG:PVAPVA:PEG/M

00 700λ (nm

700 800m)

nd the absoowards shalue of a

material willbsorptions

materials. Tnduces anlectromagne

which can ariations inan be seen EG and PEon- absorb

meaning noaking place

A polymer coMnCl2 comp

0 800m)

900 1

Vol.15, N

orption bandorter wavbsorption l be betwee

for PVAThe absorn interactetism and

be interpn the absorp

from the fiEG:PVA filmbing for o interactioin this wave

omposites. posites w

900

1000 1100

No.32, PP. 99

d of PEG svelengths.

for PEG:Pen the valueA and Prption protion betw

d the sampreted throption spectrigure that Pms were alm350-1100

on of lighelength regi

with diffe

1000

PVA

PEG

PEG+PV

0

10% Mn

8 % Mn

6 % Mn

4 % Mn

2 % Mn

Pure

9-113

hifts The

PVA es of PEG

ocess ween mple, ough ra. It PVA, most

nm ht is ion.

ferent

1100

VA

nCl2

Cl2

Cl2

Cl2

Cl2

Page 8: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

Fsee edgshifincrMnCamopolychemmatformintevaluMnCsamincrwhiand lighwavneigabsobetwwillabsoTheincr

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

3

k

qi Journal of P

From the spthat peak

e increases fts towards reasing theCl2. The ounts of ymers blenmical struterial but nmed. From ensity of thues were inCl2 materia

mples. This rease the nuich cause to

this is dueht by free evelength ghborhood orption edween incidel occur, anorbance [20e absorbancreased wi

Fig. 5A

300 4

Physics, 2017

pectra of Figheight incand the abslonger wav

e weight padding MnCl2

nd does noucture of new physica

this figure,he peak o

ncrease withal concentra

increase umber of cao increase the to absorb

electrons [2decreases of the

dge), the ent photon nd the pho0]. ce of comith the

A: Extinctio

00 50

7

g. 4B, we ccreases, bansorption banelengths wi

percentage of differematerial t change ththe polymal mixture , we note thof absorptioh increase ations for aattributed

arries charghe absorbanb the incide1]. When th

(at thfundament

interactioand materi

oton will b

mposites weincrease

on coefficien

0 600

106

an nd nd ith of

ent to

the mer

is the on of all to

ges nce ent he

the tal on ial be

ere of

coislichlaprthTelenmbaTcow5BPVcocalothpainwof

nt of PVA, PE

0 700λ (nm

oncentrations due to (Mnght [22-24]hange ofarge. This robability ohe absorptiohis means lectron trannergy of inc

move the eand to the che changoefficient

wavelength, B for PVAVA: PEoncentrationan be notedow concenthe increasinarticles ncreasing of

with the incrf MnCl2 nan

EG and PEG

800m)

Abeer M

n of (MnCl2

nCl2), absor]. At low wabsorption

is indicaof electronicon edge of tthat a greatnsitions concident photolectron froonduction b

ge of thas a funis shown in

A, PEG, PEG witn of MnCl2 d that (k) hatration and ng of the c(MnCl2) f absorptionease of weinoparticles

G:PVA comp

900

PVA

PEG

PEG

Mohammed, e

l2) material,rbs the inciwavelength,

coefficienates the lc transitionsthe region [t possibilitynsequently,on is enoug

om the valband. the extincnction of n Figs. 5A

PEG:PVA th diffe respectivelas low valuincreases

concentratiobecause

n coefficienight percent[26].

posites.

1000

A

G

G+PVA

et al.

this ident , the

nt is large s are [25]. y for the

gh to ence

ction the and and

erent ly. It ue at with

on of of

nt (α) tages

1100

Page 9: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

FigsrefrPEG

kn

qi Journal of P

Fig.5B: Ex

s.6A and 6active ind

G:PVA and

Fig.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300

k

0

1

2

3

4

5

300 4

n

Physics, 2017

xtinction coef

6B shows thdex for Pd PVA:PEG

6A: Refract

400 500

400 50

7

efficient of Pconcen

he change PVA, PEG

G with addin

tive index of

0 600

00 600

107

PEG:PVA anntration of (M

of G, ng

dicow

f (PVA, PEG

700 80λ (n

700λ (nm

nd PVA:PEGMnCl2).

ifferent coomposites

wavelength,

G, and PEG:P

00 900m)

800m)

Vol.15, N

G /MnCl2) wi

oncentrationas a

respectively

PVA) compo

1000 11

900 10

PV

PE

PE

No.32, PP. 99

ith different

n of Mfunction

y.

osites.

100

10% M

8 % M

6 % M

4 % M

2 % M

Pure

000 1100

VA

EG

EG+PVA

9-113

nCl2 of

MnCl2

MnCl2

MnCl2

MnCl2

MnCl2

0

Page 10: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

F

Frefrcomrefrand Frefrincrthe polyincrleadcom Tand fromof (

n

qi Journal of P

Fig.6B: Refr

From Fig. active inde

mposite ractive indd (PEG) comFrom Fig. 6active inreasing the

concentratymer comporease of theding to incremposites [27The optical

blend sam the UV-Vαhν)1/2 and

0

1

2

3

4

5

6

7

8

300 4

n

Physics, 2017

fractive index

6A, we nex value fowas bet

dex valuesmposites. 6B, we can

ndex incrweight pe

tion of (Mosites. Thise (MnCl2) ease of the d7]. l band gap

amples wasVis spectra (αhν) 2 we

400 500

7

x of (PVA, aconcen

note that thor PEG:PVtween th for (PVA

n see that threases wiercentages

MnCl2) in th reason is thconcentratiodensity of th

of the Pus determina. The valuere calculat

600 7

108

and PVA:PEntration of (M

he

VA he A)

the ith of he

the on he

ure ned ues ted

anpoexabthcoFbe(PPV8,a reenPEdi

700 800λ (nm

EG /MnCl2) cMnCl2).

nd plotted ortion of xtrapolated bscissa washe inset orresponds igs. 7A anetween absPVA, PEGVA:PEG w, 10 wt% fr

functionespectively.nergy gapEG:PVA/Mifferent con

900 10m)

Abeer M

composites w

against hνthe curv

and its intes determineof figure.

to the nd 7B showsorption edG, and PEwith additionrom MnCl2)n of ph

Fig. 8C p of PE

MnCl2 concentrations

000 1100

Mohammed, e

with differen

ν. The strave was ersection oned as show. This v

energy ws the rela

dge (αhv)1/2

EG:PVA) n of (0, 2, 4) compositehoton en

show IndEG:PVA

omposites of MnCl2.

10% MnC

8 % MnCl

6 % MnCl

4 % MnCl

2 % MnCl

Pure

et al.

nt

aight then

n the wn in value gap.

ation 2 for

and 4, 6, es as

nergy direct

and with

l2

l2

l2

l2

l2

Page 11: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

Fig.B- DconcC- Iconc

(αhν)

1/2

(c

m -1

/2. (

eV)

1/2 )

1

2

3

4

5

6

7

(αhν)

1/2

(c

m -1

/2. (

eV)

1/2 )

1

1

1

(αhν)

2

(cm

-2. (

eV)

2 )*1

010

qi Journal of P

.7: A- EnergDirect Enercentrations oIndirect Encentrations o

0

50

100

150

200

250

300

350

400

450

500

2

0

100

200

300

400

500

600

700

2

0

2

4

6

8

10

12

14

3

Physics, 2017

gy gap of PVArgy gap of of MnCl2.

nergy gap ofof MnCl2.

2.5

PVA

PEG

PEG+PV

2.5

10% M8 % M6 % M4 % M2 % MPure

3.25

7

VA, PEG, andf PEG:PVA

f PEG:PVA

phot

VA

3photo

MnCl2MnCl2MnCl2MnCl2MnCl2

3.5hν (

10% Mn8 % MnC6 % MnC4 % MnC

109

d PEG:PVAand PEG:

A and PEG

3ton energy (

3n energy (eV

3.75(eV)

Cl2Cl2Cl2Cl2

composites.:PVA/MnCl2

:PVA/MnCl

3.5(eV)

3.5V)

4

Vol.15, N

2 composites

l2 composite

4

4

4.25

No.32, PP. 99

s with diffe

es with diffe

4.5

4.5

4.5

9-113

ferent

ferent

Page 12: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

TheindiTab Tabdirecomp

C

ε

qi Journal of P

e values oirect energble 1.

le 1: Enerect and indirmposites.

MnCl2

Concentration(wt.%)

0

2

4

6

8

10

Fig. 8A: Re

0

5

10

15

20

25

300

ε r

Physics, 2017

of allowedgy gap ar

rgy gap forrect of (PVA

n

E

AllowedDirect

3.95

3.94

3.92

3.88

3.86

3.48

eal part of d

400 5

7

d direct ane shown

r the allowA:PEG-MnC

Eg (eV)

d AllowedIndirect

3.64

3.62

3.48

3.43

3.19

3.13

dielectric con

500 600

110

nd in

wed Cl2)

d

vabe(Pre(E(MthcoblbetheldefothbefoFεr

(P(Pco

nstant of PVA

0 700

λ (nm

It is note alue for (PEetween the PVA) and esults showEg) decreaMnCl2) conchat thereomplexes arlend and ehavior canhat in heterolectrical cefect and ormation ofhe blendinetween the ormation of igs. 8A andr as a functPVA, PEGPEG:PVA omposites r

VA, PEG, and

800

m)

Abeer M

that the enEG:PVA) cvalues of e

(PEG). Twed that thased with centration.

are charose betwee

Mn-ions n be attributogeneous coonduction impurities

f defects cg] and thpolymer c

f some bondd 8B showstion of the G, and PE

and PVespectively

d PEG:PVA

900 1

PVA

PEG

PEG+P

Mohammed, e

nergy gap (composite wenergy gap The obtain

he energy gincrease

This indicaarge transen the polym

[19]. Tuted to the fomposites,

depends [due to

created durhe interactchains and ds [28-30]. s the changwavelengthEG:PVA) VA:PEG/My.

composites.

1000 110

+PVA

et al.

(Eg) was for

ned gap the

ates sfer mer This fact the on the

ring tion the

ge of h for

and nCl2

00

Page 13: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

F

It cdep(k2)noteincrconincrIn

Fi

ε rε i

qi Journal of P

Fig.8B: Rea

can be seeends on (n

). Generallye that the reases withcentrations reasing of ab imaginary

Fig. 9A: Imag

0

5

10

15

20

25

30

300

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

300

i

Physics, 2017

l part of diel

en that εr n2) due to ly from figreal dielec

h the incrof (MnCl2

bsorption co part of

ginary part o

400 500

400

7

lectric constconcen

considerablow value

gure, we cctric constarease of th2) becauseoefficient (α dielectri

of dielectric

0 600 7λ

500 60

111

tant of PVA ntration of (M

bly of an

ant he of α). ic

cothwPEPVcore

constant of P

700 800λ (nm)

00 700λ (nm

and PEG:PMnCl2).

onstant, thehe change

wavelength fEG:PVA) VA:PEG oncentrationespectively.

PVA, PEG a

900 10

0 800m)

Vol.15, N

VA/MnCl2 w

e Figs. 9A of εi as

for both (Pand (PEGwith add

n of MnC

and PEG:PV

000 1100

900

PV

P

P

No.32, PP. 99

with differen

and 9B sha function

PVA, PEG, G:PVA ding diffe

Cl2) compo

VA composit

10% MnC

8 % MnCl

6 % MnCl

4 % MnCl

2 % MnCl

Pure

1000 11

PVA

PEG

PEG+PVA

9-113

nt

hows n of

and and

erent sites

tes.

Cl2

l2

l2

l2

l2

100

Page 14: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraq

Fi

It c(k) of threlaFromimaincrpercnanpolyfromfolloindewhefollocoefcoef Con Gof PsoluPVAconshowbecothe wergrouoptiexti

ε i

qi Journal of P

ig. 9B: Imag

an be seen values that he absorptio

ation betweem figure,

aginary partreases withcentages ooparticles ymer compm Eq. (5,6)ows the saex (n) onereas the vows the befficient k fficient (α)

nclusions Good qualPVA:PEG/Mution growA:PEG centrations w amorpome polycrMnCl2 mor

re measureups were aical constaninction coef

0

0.5

1

1.5

2

2.5

3

3.5

300

i

Physics, 2017

ginary part o

that εi is dchange wit

on coefficieen (α) and (k

we can st of dielec

h increasingf the concfor (MnC

posites [32]), that the vame trend n photon variation o

ehavior of tand the

is the same

lity, highlyMnCl2 wewth techn

films aadding fr

phous strurystalline wre than 2%. ed and thassigned. Thnts (refractifficient (k),

400 5

7

of dielectric cdifferent co

dependent oth the changent due to thk) [31]. see that thctric constag the weigcentrationCl2) in th. It is cle

variation of as refractivenergy h

of εi mainthe extinctioe absorptio.

y transpareere grown bnique. Puand 2rom (MnCluctures anwith increaFTIR spect

he functionhe calculatve index (n the real an

500 600

112

constant of Poncentration

on ge he

the ant ght of he

ear f εr ve

hν, nly on on

ent by

ure 2% l2) nd

ase tra nal ed n), nd

imco(wabofinininmapan R[1S

AN[2C[3NP19 [4ShPh[5Ph[6N32

0 700λ (nm

PEG:PVA, a of (MnCl2).

maginary ponstant) andwas deducebsorption cof transitionndirect) wencreasing on the com

material mopplications nd photonic

References1] G. O.imon, "P

Alloys", 1st

New York, 12] O. Pecka

Croucher, M3] C. M. H

N.A. Peolymers”, P998. 4] P. B. Bhaharma, V.Vhys., 9 (2005] J. Pacanhys. Chem.6] M. Watan

N. Ogato, J. 27.

800m)

Abeer M

and PVA:PE

parts of d the opticed from thoefficient (α

n was allowre clearly f concentra

mposite. Thore promineof various

c devices.

Shonaike Polymert Ed., Ma999. an, M. A. W

Macromol, 2Hassan, P. Teppas, “Plenum Pre

argav, V. MV.R.N. Rao09) 165. nsky and S, 94 (1990) nabe, S. NaPower Sou

900 1

Mohammed, e

EG/MnCl2 w

the dieleal band gap

he data of α) and the wed direct depend on

ation of Mhis makes ent for deoptoelectro

e and G. Blends

arcel Dek

Winnik, M23 (1990) 26Trakampan “Water-Soless, New Y

M. Mohan, Ao, Curr. A

S. Schneide 3166.

agona, K. Saurces, 20 (1

000 110

et al.

with

ctric p Eg

f the type and

n the nCl2

the evice onics

P. and

ker,

M. D. 673.

and luble

York,

A. K. Appl.

er, J.

anui, 987)

00

Page 15: Structural and optical properties for PVA- PEG-MnCl2 ...

Iraqi Journal of Physics, 2017 Vol.15, No.32, PP. 99-113

113

[7] N. Nakano, S. Yamane and K. Toyosima, “ Poval (polyvinyl alcohol”, Japan Polymer Society, KyoTo, chapter 3. 1989. [8] T. S. Bailey, C. M. Hardy, T.H. Epps and F. S. Bates, Macromol, 35 (2002) 7007. [9] S. Angot, D. Taton, Y. Gnanou, Macromol. 33 (2000) 5418. [10] M. A. Hillmyer and F. S. Bates, Macromol, 29 (1996) 6994. [11] R. Dingle, M. E. Lines, and S. L. Holt, Phys. Rev., 187 (1969) 643. [12] S. D. Hutagalwng., Lee. B. Y.,

Proceeding of the 2nd International Conference Nano/Micro Engineered and Molecular systems, January, Bangkok, Thailand, 2007. [13] A. Zaky and R. Hawley, "Dielectric solid", Routlege and kegan paul Ltd, London,Newyerk, 1970. [14] Ahmed Hashim, Kaiser mahdy, Hussein Hakim, Journal of Natural Sciences Research, 5, 7 (2015) 1-6. [15] S.P.Seth, and D.V.Gupta, “A Course in Electrical Engineering

Materials", 2nd Ed, Dhanp at Rai and

Sons, 1981. [16 ] H.Hakim, and N.Humood, Advances in Journal of Industial Engineering Research, 4 (2015) 94-98. [17] C.H. Linga Raju, J.L. Rao, B.C.V. Reddy, K. V. Brahmam, Bull. Mater. Sci. 30 (2007) 215. [18] I. S. Elashmawi, N. A. Hakeem, M. S. Selim, Mater. Chem. and Phys., 115 (2009) 132. [19] E. M. Abdelrazek, I. S. Elashmawi, A. Hezma, A. Rajeh, International Journal of Modern Applied Physics, 1, 2 (2012) 83-96. [20] G.N. Hemantha Kumar, J. Lakshmana Rao, N.O. Gopal, K.V. Narasimhulu, R.P.S. Chakradhar, A.

Varada Rajulu, J. Poly., 45 (2004) 5407. [21] B.G. Streetman and S. Bonerjee, "Solid state electronic devices", 5th Ed., Engle Wood cliffs, Nj Prentice ilall, (2000). [22] P.U. Asogwa Journal of Optoelectronics and Biomedical Materials, 2, 3 (2010) 109-117. [23] M. Crane, translation and Y. Hassan, "Solar Cells", College of Education, University of Mousl, (1989). [24] H. Hakim Abed, Australian Journal of Basic and Applied Sciences, 8, 17 (2014) 591-594. [25] M.K. El-Mansy, E.M. Sheha, Patel KR, Sharma GD., Optik, 124, 13 (2013) 1624–1631. [26] Moayad Abd, "Toughening of High Density Polyethylene with Rubber and Reinforced with Glass fiber" Uni. of Babylon, College of Engineering, 2008. [27] H. N. Najeeb, G. A. Wahab Ali, A. K. Kodeary, J. Ali, Academic Research International, 4 (2013) 53-62. [28]S. A. Nouh, Radiation Measurement, 38 (2004) 167-172. [29] A. Buttafava, G. Consolati, L. Di Landro, M. Mariani, Polymer, 43, (2002) 7477-7481. [30] R. Mishra, S.P. Tripathy, D. Sinha, K.K. Dwivedi, S. Ghosh, D.T. Khathing, M. Muller, D. Fink, W.H. Chung, Nuclear Instruments and Methods in Physics Research B, 168, (2000) 59-64. [31] H. A. Sarvetnick, "PVC", Van Nostrand Reinhold Company.1969. [32 ] M. Habeeb and H.Hakim, International Journal of Science and Research, 3 (2014) 1585-1587.


Recommended