+ All Categories
Home > Documents > STRUCTURAL CONDITION EVALUATION OF PRESTRESSED CONCRETE ... · STRUCTURAL CONDITION EVALUATION OF...

STRUCTURAL CONDITION EVALUATION OF PRESTRESSED CONCRETE ... · STRUCTURAL CONDITION EVALUATION OF...

Date post: 15-Apr-2018
Category:
Upload: dinhdien
View: 225 times
Download: 3 times
Share this document with a friend
46
European COoperation in the field of Scientific and Technical Research 1 Group Project 5 STRUCTURAL CONDITION EVALUATION OF PRESTRESSED CONCRETE STRUCTURES BASED ON ACOUSTIC MONITORING Co-ordinator: Stanislaw RADKOWSKI Working Group 3 - "New assessment methods"
Transcript

European COoperation in the field of Scientific and Technical Research

1

Group Project 5

STRUCTURAL CONDITION EVALUATION OF PRESTRESSED CONCRETE STRUCTURES

BASED ON ACOUSTIC MONITORING

Co-ordinator: Stanisław RADKOWSKI

Working Group 3 - "New assessment methods"

European COoperation in the field of Scientific and Technical Research

2

Participiants:

• Warsaw University of Technology - ������������ ����

• KWH Bautechnologen AG - ������� ���� ����� ������ ����������

• AGH University of Science and Technology - �����������������

• Poznan University of Technology - ����ł�� ������� ��� ���������

• Bouwdienst Rijkswaterstaat and Advitam - � �� !��������"#��� ������� ������ � ����������

• Budapest University of Technology and Economics (BUTE) -!�$�%�&�����

• National Technical University of Athens - ' �������� ������

European COoperation in the field of Scientific and Technical Research

3

Problem:To evaluate the structural condition of prestressedconcrete structure by means of vibro-acoustic monitoring and by improving the applicability of the dynamic evaluation techniques

Basic assumption – increase and decrease of prestressing forces are accompanied by a change of stress distribution in the cross-section of concrete structure. The parameters of propagation path will change due to this phenomena.

European COoperation in the field of Scientific and Technical Research

4

1500

200

(199

)

100 (98)

260

260

700

Fo

UY

UX

1

1 6

9

1

13

2

15

1300

4

50

3X

Z

Y

X

Z

Y

4207

580 8

50

X

Z

Y

10

12

11

420580

5

X

Z

Y

14

X

Z

Y

225

What is the frequency stucture of a pulse?How it depends on: technical state and failure evolution?

WARSAW UNIVERSITY OF TECHNOLOGYThe Faculty of Automotive and Construction Machinery Engineering

European COoperation in the field of Scientific and Technical Research

5

1500

200

(199

)

100 (98)

260

260

700

Fo

UY

UX

1

1 6

9

1

13

2

15

1300

4

50

3X

Z

Y

X

Z

Y

4207

580 8

50

X

Z

Y

10

12

11

420580

5

X

Z

Y

14

X

Z

Y

225

Kielce measurement – prestressedconcrete beam, bending force (changeable) applied in middle, measuring vibrations exceeded with impulse. Various prestressed beams examined.

4200 4400 4600 4800 5000 5200 54000

0.005

0.01

0.015

0.02

0.025

0.03

0.03515 kN30 kN

Frequency [Hz]

Am

plitu

de

0 2000 4000 6000 8000 10000 12000 14000

0.005

0.01

0.015

0 ..02

0 ..025

0.03

1464

2137

4620

6947

2890

Frequency [Hz]

Am

plitu

de

European COoperation in the field of Scientific and Technical Research

6

0 10 20 30 40 50 60 70 0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Fre

qu

en

cy [F

/Fm

ax]

Force [ kN]

Natural freq. 1500 [Hz ]Natural freq. 7000 [Hz ]

before failure -dispersion phenomena

after failure – change of natural frequency

change of phase velocity

change of Young`s modulus

ρ�

� � =change of group velocity

amplitude modulation of carrier function

(

(( ()�

����� ++=

ρ

European COoperation in the field of Scientific and Technical Research

7

1500

200

(199

)

100 (98)

260

260

700

UY

UX

1

1 6

9

1

13

2

15

1300

4

50

3X

Z

Y

X

Z

Y

4207

580 8

50

X

Z

Y

10

12

11

420580

5

X

Z

Y

14

X

Z

Y

225

Without dispersion phenomena

European COoperation in the field of Scientific and Technical Research

8

Phase velocity

*(++

*(,+

*)++

*),+

**++

**,+

(+ )+ *+ ,+ -+ .+ /+ 0+ 1++

2����������%3 �����4

5�� ���� 3������ �����6���7�

European COoperation in the field of Scientific and Technical Research

9

Spectrum

European COoperation in the field of Scientific and Technical Research

10

1500

200

(199

)

100 (98)

260

260

700

UY

UX

1

1 6

9

1

13

2

15

1300

4

50

3X

Z

Y

X

Z

Y

4207

580 8

50

X

Z

Y

10

12

11

420580

5

X

Z

Y

14

X

Z

Y

225

Fo

DISPERSION!

European COoperation in the field of Scientific and Technical Research

11

Phase velocity

European COoperation in the field of Scientific and Technical Research

12

Effect ofdispersion

European COoperation in the field of Scientific and Technical Research

13

change of group velocity

amplitude modulation of carrier function

before failure - dispersion phenomena

European COoperation in the field of Scientific and Technical Research

14

Load value Evnelope amplitude distribution [m/s2]

0 10 20 30 40 50 60 70 0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Fre

qu

en

cy [F

/Fm

ax]

Force [ kN]

Natural freq. 1500 [Hz ]Natural freq. 7000 [Hz ]

Probability distribution of amplitude of evnelope value

European COoperation in the field of Scientific and Technical Research

15

5�����6������� ��

������� � 3�������� ����

8�� ������ �

" ������ ���������������������������� �

���9����% 3�� ���

� ����

5������ � 3

� ���������

�33�����������

�����������������

5������ � 3���%� ����6��� �

5������ � 3���������� ����� �

:��� ����6����� 3

��6�� ����������

"����%������ ��� ��3����� �������% �

�� ��3�������6����%��� �

:�;;48

"����% ����� ��

5������ � 3���9�����

��������� 3���%� ���%

��������

�����������������3��<����������3 ����� �

��6����%��� � 33��<������9��%�

��=�� � ���9��%�

�<������ �����9

� ��������� 3�����9���

&��<������������ �

����������� 3����� ����9��

:��� ����6�����

3������%����������3 � �% �

5����� 6������� ��������� � 3

�������� ����

8�� ������ �

5������ � 3� ���������

�33�����������

�����������������

:��� ����6����� 3��6�� ����������

2������������������3��<����������3 ����� ���6����%��� � 33��<������9��%���=�� � ���9��%�

�<������ ����9� ��������� 3����

&��<������������ �

����������� 3����

�9���

� ����9��

European COoperation in the field of Scientific and Technical Research

16

" ������ ���������������������������� ����9����% 3�� ���

� ����

5������ � 3���%� ����6��� �

5������ � 3���������� ����� �

:��� ����6����� 3��6�� ����������

"����%������ ��� ��3����� �������%

��� ��3�������6����%��� �

:�;;48

"����% ����� ��

5������ � 3���9�������������� 3���%� ���%

��������

:��� ����6����� 3������%����������3��%�

5�����6������� ��

������� � 3�������� ����

8�� ������ �

" ������ ���������������������������� �

���9����% 3�� ���

� ����

5������ � 3

� ���������

�33�����������

�����������������

5������ � 3���%� ����6��� �

5������ � 3���������� ����� �

:��� ����6����� 3

��6�� ����������

"����%������ ��� ��3����� �������% �

�� ��3�������6����%��� �

:�;;48

"����% ����� ��

5������ � 3���9�����

��������� 3���%� ���%

��������

�����������������3��<����������3 ����� �

��6����%��� � 33��<������9��%�

��=�� � ���9��%�

�<������ �����9

� ��������� 3�����9���

&��<������������ �

����������� 3����� ����9��

:��� ����6�����

3������%����������3 � �% �

European COoperation in the field of Scientific and Technical Research

17

Conclusions:

• Presented results were achieved in laboratory tests.

• Assumed models were confirmed by results achievedfor two different sets of beams.

• To make this method mature for application, method must be tested and verified on a real structure.

European COoperation in the field of Scientific and Technical Research

18

– SoundPrint ® : continuous acoustic monitoring of prestressed structures. Monitoring of internal wire break activity

European COoperation in the field of Scientific and Technical Research

19

Particular risks for pre or post tensioned structures

• Cables are very sensitive to– Corrosion– Fatigue

• These phenomenon remain hidden until final break of cable…

… and of bridge

Criticality of these risks is always high for cable based structures

European COoperation in the field of Scientific and Technical Research

20

SoundPrint detects and localizes the sounds emitted by the energy released during wire

breakage

Sensors are distributed on the structure allowing a global and continuous monitoring

Structure Post tensioned structure

Cable / strand / wire

Acoustic sensor

Library of acoustic signature of known events allow identification of captured noises

European COoperation in the field of Scientific and Technical Research

21

SoundPrint allows early detection and localization of internal wire breaks

And filtering of ambient noise

Processing center

structure

Local DAQ Unit

Sensors

Internet

Real time Internet access

Internet

Owner

European COoperation in the field of Scientific and Technical Research

22

4��� ���:��9�����>��6������ 3��9������9 � 3"��9������;�%�������%�"��9������ 8���%����

� ��� ������������� ��8��������������������?�� ��� �����9���

• The signals were analyzed both in the time and frequency domain.

• The scope is to search for modulations in the signals

• Different parts of the signal (stationary – non-stationary) were examined with various frequency resolutions

• 2 Demodulation methods were used ( Hilbert & TeagerKaiser)

• The signals were decomposed by Empirical Mode Decomposition &

• Hilbert – Huang Transformation

European COoperation in the field of Scientific and Technical Research

23

1500

200(199)

100 (98)

260

260

700

Fo

UY

UX1

1 6

9

1

13

2

15

1300

4

50

3X

Z

Y

XZ

Y

4207

580 8

50X

Z

Y

10

1211

420580

5

X

ZY

14

X

ZY

225

? ���� � 36������ ����� ������������ � 36������ ��=������ �3 ����@�������������

�A����������

European COoperation in the field of Scientific and Technical Research

24

non-stationary part

stationary part

non-stationary part

stationary part

Frequency [Hz]

Frequency [Hz]

ampl

itude

spec

trum

ampl

itude

spec

trum

European COoperation in the field of Scientific and Technical Research

25

������������3 ��B����@� ����� �6 ���� �

�B:���

=���B����� ������%���

�C=���D���9�������������3 �� 3=���#

� ������� ������������������ ����� ������������������ ����������������� ��

( ) ( )1+∞

−∞

� � =� � −�� �

� � � ���π τ

( ) ( ) ( ) ( ) ( )� 1� � � �= + = = −� � � �

� �� � � � � �� � � � � � �

φ������������%���B

( ) ( ) ( )( ( � �= + � �� � � � � � �

( ) ( )������

� �

� �� �=� � �

�� �

φ

"�%������B

29���B

European COoperation in the field of Scientific and Technical Research

26

����������������� ��������� ������

( ) ( ) ( ) ( )� �Ψ = −� � � �� � � � � � � � �

����� ������������������������

( ) ( )( )

� �Ψ � �≈� �Ψ � ��

� �� �

� �

( ) ( )( )

� �Ψ � �≈� �Ψ � �

��

� ��

� �ϕ

���������

���������

�������� ������!������������� �� �������

��������������� ��������������� ���������� �������� ����� ���������������� �������� ���������� ��

European COoperation in the field of Scientific and Technical Research

27

������� �����������������

"�#�����$��������%��&���!

'� �����%�(���&)���#���������$�����

*� � ������#+�������#��������#������

( ) ( ) ( )1=

= +�

� � �� � � �

�!�%�(���&�����!,���%�%%��� #���%�����������&$���

European COoperation in the field of Scientific and Technical Research

28

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-200

-100

0

100

200

300

:���

����

&�����%���

SignalHilbert EnvTKEO Env

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1-200

-100

0

100

200

300

:���

����

��%���1B1++++

SignalHilbert EnvTKEO Env

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02-200

-100

0

100

200

300

:���

����

Signal 1:2000

SignalHilbert EnvTKEO Env

����������� -��(����� ������ ������ �����

European COoperation in the field of Scientific and Technical Research

29

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

0.1

0.2

0.3

3��<#����

&&:

&&: 3&�����%�����E(

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

0.5

1

1.5

3��<#����

&&:

&&: 3��%���1B1++++��E1+

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

1

2

3

4

5

6

3��<#����

&&:

&&: 3��%���1B(+++��E,+

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

0.2

0.4

0.6

0.8

1

1.2

3��<#����

&&:

&&: 3;�6�� � 3&�����%�����E(

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

1

2

3

4

5

6

3��<#����

&&:

&&: 3;�6�� � 3��%���1B1++++��E1+

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

5

10

15

20

25

3��<#����&&:

&&: 3;�6�� � 3��%���1B(+++��E,+

��%�������#��%� ��%������ �������#��%�

European COoperation in the field of Scientific and Technical Research

30

0 5000 10000 150000

0.2

0.4

0.6

3��<#����

&&:

&&: 3;�6�� � 3&�����%���&���������),++B-,++��E(

0 5000 10000 150000

1

2

3

3��<#����

&&:

&&: 3;�6�� � 3��%���1B1++++&���������),++B-,++��E1+

0 5000 10000 150000

5

10

15

3��<#����

&&:

&&: 3;�6�� � 3��%���1B(+++&���������),++B-,++��E,+

freq

uenc

ytime

Hilbert-Huang spectrum

200 400 600 800 1000 1200 1400 1600 18000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

4

��%������ �������#��%����������������� -��(���� -%������#��%�

������ ����� !�"#�$"�%&��'�(#

��������� ��))����* ��������

� ������ �,)*@ �� �����������������������������������������������

������������������������������������������������������������������������

���������������������������������������������������

�������������� ���!�"�#$�%�&����� ��' ������() �*�"&��%����%�+, *-�����#�. $���!�#�/����#�) ,'�#$�������"��$'�"$�!�/�%��!$�'$��

Hz5001000 2000 3000 4000 5000

Y/t Chart 0

150.00

112.50

75.00

37.50

0.00

&���6������ �� �� ������������ ��������

Three test methods were developed and verified in the frame of the researches for prestressed concrete structures for the testing and assessment of the structure condition.

The test methods are based on:

time-modal analysis method,energy method of diagnostics, load power distribution analysis.

The elaborated research methods make the use of the analysis of vibroacoustic signals.

The vibration signals are taken from the tested structure and these have a form of decaying free vibrations.

The structure was excited by impact force .

Test stand

One can distinguish the several basic steps of the investigations.

Initial investigationsBasic testsVerification tests

In parallel with the basic investigations thefollowing investigations:

• Static load tests• The ultrasonic tests• Auxiliary investigationswere carried out.

In addition, the FEM model of the beam was elaborated, and itis planned to use the BEM model as well._______________________________________A part of these investigations will be continued if the project is completed.

Two sets of beams were worked out and made:• The first set consisted of the beams with a different controlled initial

prestress

• The second set consisted of the beams with introduced initial imperfections that simulated a different degradation degree (structure integrity loss).

Basic Tests

were realized by a training system on the prestressed beams.

�� �� �� �� � 8 ; :� :=

1+�4

(+�4

)+�4

*+�4

,+�4

-+�4

.+�4

/+�4

0+�4

1++�4

����� �� 3�������

:������%���:������

Artificially introduced disintegrity of beam structures - simulation of beam crack in middle part of beam (¼ , ½ , ¾ of full integrity loss )

Tendons placed symmetrically (even stress distribution in the beam cross-section

Signal from tested object

STFTAFC

analysis

Backbone curve estimation

Nonlinearity parameterisation

conditionevaluationof tested object.(detection of:

- cracks, - integrity loss, - stress loss etc.

����@3��<��������

1285

1290

1295

1300

1305

1310

1315

1320

1325

0

5

10

15

20

25

30

aAFC

[m/s

2 ]

frequency [Hz]

���� �����6�

6������ ����� ���

NON-LINEARITY ANALYSIS !"$"� �$% �������� 3� �����������9��%�� @ ΘΘΘΘ ���3������

y = -1.7731x + 1155.6311

1090

1100

1110

1120

1130

1140

1150

1160

1170

0 10 20 30 40

aAFC [m/s2]

freq

uen

cy [H

z]

950

955

960

965

970

975

980

0 10 20 30 40

aAFC [m/s2]

freq

uen

cy [H

z]

F= 60 [kN]cracked beam

1156 1138

1085

975

800

900

1000

1100

1200

1300

1400

15 30 45 60

load [kN]

freq

uenc

y A

FC [H

z]

load influenceanalysis

crackedbeam

3.1

1.8

1.1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

15 30 45

load [kN]

UW

N

[%]

load influenceanalysis

;=������ 3����� ��

�9����

�����6������=��� ���� ��

������ 3����� �����6��

�������������� ��

��

���0� 3��<�����6����3 �

����������→+#

��

6����� 3>�43��� �

Simplified algorithm of STRFA and example of analysis result Transient vibration signal typical for non linear structures

:���6������

���������

������

� � %����:&:

��������

�� ��������� ���123

�9�������������

��%���

��6�� ���%

ms25 50 75 100 125 150

Y/t Chart 0

5.0

2.5

0.0

-2.5

-5.0

:��%%�� � ��� �

Hz500 1500 2500 3500 4500 5500

Y/t Chart 1

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

�3

F3

�1�423 ��123

2������������� � 3���0��������

�1�3

;��������

EXAMPLE

Hz500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Y/t Chart 0 Y/t Chart 1

100

75

50

25

0

1.000 1.010 1.020 1.030 1.040 1.050 1.060 1.070 1.080 1.090

4000

3500

3000

2500

2000

1500

1000

500

0

Recorder 0

Hz500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Y/t Chart 0 Y/t Chart 1

100

75

50

25

0

0.320 0.330 0.340 0.350 0.360 0.370 0.380 0.390 0.400 0.410 0.420 0.430

4000

3500

3000

2500

2000

1500

1000

500

0

Recorder 0

Hz500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Y/t Chart 0 Y/t Chart 1

100

75

50

25

0

0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49

4000

3500

3000

2500

2000

1500

1000

500

0

Recorder 0

The STRFA analysis can be used for analysis of all signal components (in the whole analysed frequency

1500

2000

2500

3000

3500

4000

4500

5000

0.02 0.03 0.04 0.05 0.06

shift of the analysis time window [s]

Ric

e fre

quen

cy [H

z]

0 kN

50 kN

70 kN

80 kN

100 kN

1500

2000

2500

3000

3500

4000

4500

5000

0.02 0.03 0.04 0.05 0.06

shift of the analysis time window [s]

Ric

e freq

uenc

y [H

z]

c

beamwithout crack

artificially introduced

disintegrity of beam structures simulation of the

beam crack (in the middle part)

¼ full integrity loss ¾½

:9� ��1�3 �9������������3 ���������96��� ����������������� � 3������������������9 ��

�����3���� ���

:9� ��1�3 �9������������3 ���������9��33���������9 ������3���� �������

���9�9����������������� � 3���������

,+�4�

We can use the time integrated average R(f) frequency in order toassess the stress loss in the structures. (highest value of the correlation coefficient).

In order to detect the integrity loss of structures the following three parameters are suitable:

• Amplitude normalized total R(f) frequency deviation• Normalized R(f) frequency deviation • Frequency deviation rate.

The determination of the representative symptoms and their sensitivity require an individual approach for each test type of the structure.

The symptoms limit values of the representative symptoms on the basis ofexperimental data should be assessed.

�:&�@ � ������ ��

belka A0b nap. 00kN (w ym. pkt 3 ; odp.pkt. 3)

0

0,5

1

1,5

2

2,5

3

3,5

0 1000 2000 3000 4000

cz�stotliwo�� [Hz]

a R

MS

[m/s

2 ]

mz

cz kz

Fz(t)=F0 �(t)

����

&���=���=9���=

δ=ω++ 0202 ���

�������� ���* ������������ ���

220

1

2

1 ξ−

π=ξ−

ω=ω �� 3

"��)���������������������� ���

!)������ ����������� �� �+��

F

(+)G���HI����

���������

,

�1�(

�J ���

� �����

3�� �K�

���� �����

11(+

1*++

������

1++

1*+

2����� ����������������L

2 �������������� ��

2����� ������J�

*�����- �.�/ #0 ���/� %��-!1�

����� ���� � ������ �����

��� ��������� �+2

Zale�no�� przepływu energii od stanu obci��enia i stanu technicznego - na

podstawie maksymalnej mody drga� gi�tnych - belka A4d, wymuszenie p. 4, pomiar drga� - czujnik p. 1

2.00E-10

1.20E-09

2.20E-09

3.20E-09

4.20E-09

5.20E-09

6.20E-09

7.20E-09

0 5 10 15 20 25 30 35

Obci��enie belki [kN]

Jedn

ostk

owa

Daw

ka E

nerg

ii [J

/kg]

"����)������� ������������� ��3������ ��� ����� � ����)���������� ����

*�����- �.�/ #0 ���/� %��-!1�

��������� � ������ ����� @ �������

"����4����3����� ����������������������)��3������ �� � ����� � � ���)���������� ����

*�����- �.�/ #0 ���/� %��-!1�

��������� � ������ ����� @ �������

DRGANIA GI�TNE BELKI ELBETOWEJ A4d, punkt 1 -

pobudzenie impulsowe w p.4 - maksymalna ampl.

1.00E-111.01E-092.01E-093.01E-094.01E-095.01E-096.01E-097.01E-098.01E-09

0 5 10 15 20 25 30 35

Obci��enie belki [kN]

Jedn

ostk

owa

mak

s.D

awka

Ene

rgii

[J/k

g]

JDE bezwł. JDE strat JDE spr��.

European COoperation in the field of Scientific and Technical Research

46

Thank You


Recommended