+ All Categories
Home > Documents > Structural identification of Vector Autoregressions...Identification using long run restrictions...

Structural identification of Vector Autoregressions...Identification using long run restrictions...

Date post: 21-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
63
Structural identification of vector autoregressions Tony Yates Lectures to MSc Time Series students, Bristol, Spring 2014
Transcript
Page 1: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Structural identification of vector autoregressions

Tony YatesLectures to MSc Time Series students, Bristol, Spring 2014

Page 2: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Overview

• The algebra of the identification problem in VARs.

• Cholesky‐factoring;  timing restrictions.• Long run impact restrictions.• (Max share restrictions).• Sign restrictions.• Identification through heteroskedasticity.

Page 3: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Some useful sources

• Luktepohl, Hamilton.• Kilian survey.• Wouter den Haan lecture notes• Karl Whelan lecture notes• Many more! 

Page 4: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Why bother with structural identification

• Empirical form of business cycle accounting, which is important for informing policy.  Eg if RBC claim that tech shocks dominant true, maybe no need for stabilisation policy?

• Not needed for forecasting.• Needed for estimation of our economic models, eg impulse response function matching.

• Hence needed to understand appropriate policy design.  Eg identify a policy shock.

Page 5: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Lucas(1980) on why identifying shocks is important

Methods and problems in business cycle theory, JMCB

Page 6: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Reduced form vs structural model for Y

Yt A1Yt−1 A2Yt−2 A3Yt−3 . . .ApYt−p et

Eutut′ u IK

We are estimating this VAR(p), in the vector Y....

..in order to learn about this structural model, with different coefficients, and driven by structural shocks

Structural shocks mutually uncorrelated, and normalised so that vcov matrix is identity=dimension of Y

B0Yt B1Yt−1 . . .BpYt−p ut

I − BLYt ut

Page 7: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Structural vs reduced form VARs

Once we have estimated the reduced form VAR for Y, if only we knew the B_0, we could recover the sructural shocks, and ALL the coefficients of the structrualmodel.If only!!Structural identification is about trying to find B_0.Long and controversial story.We will tell it chronologically.

B0−1B0Yt B0

−1B1Yt−1 . . .B0−1BpYt−p B0

−1ut

Yt B0−1B1Yt−1 . . .B0

−1BpYt−p B0−1ut

Ai B0−1Bi,et B0

−1ut

Page 8: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Idealised factorisation of the reduced form vcov matrix

e B0−1Eutut

′B0−1′

e B0−1uB0

−1′ B0−1B0

−1′

LHS known;  RHS elements unknown.  System of nonlinear equations.Need to restrict B_0 so that have same number of unknowns as equations.Sigma_e is symmetric, as it’s a vcov matrix, hence has K(K+1)/2 independent elements only.B_0 not necessarily symmetricReferred to as ‘order condition’ for identification.

Page 9: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Simple illustration of the identification problem in 2 dimensions

Yt y1y2

t

AYt−1 e1e2

t

b0,11 b0,12

b0,21 b0,22

y1y2

t

b1,11 b1,12

b1,21 b1,22

y1y2

t−1

u1

u2t

y1y2

t

b1,11 b1,12

b1,21 b1,22

−1b1,11 b1,12

b1,21 b1,22

y1y2

t−1

b1,11 b1,12

b1,21 b1,22

−1u1

u2t

We estimate this 2 variable reduced form VAR(1) to learn about this 2 variable structural VAR.

Here we invert the coefficient matrix B0 so that the structural VAR has the same form as the reduced form VAR.Which allows us to see relation between rf and structural errors….

Page 10: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Identification problem in 2 dimensions, ctd…

e Ee1e2

e1e2

e,11 e,21

e,21 e,22

b1,11 b1,12

b1,21 b1,22

−1b1,11 b1,12

b1,21 b1,22

−1′

b1,112 b1,21

2

b1,212 b1,22

2

First line:  we compute the vcov matrix of reduced form errors which we see has only 3 separate elements.Second line:  we note that this is equal to inv(B0)*inv(B0)’.Problem:  this is a 2*2 with 4 independent unknown elements.We have only 3 knowns to find these 4 unknowns.This is the identification problem in VARs/SVARs.

Page 11: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Cholesky identification

e PP ′,P chole

P B0−1

Yt

x t

t

it

p11 0 0

p21 p22 0

p31 p32 p33

B1Yt−1 . . .p11 0 0

p21 p22 0

p31 p32 p33

ux

uui

t

P is lower triangularUsed eg to identify a monetary policy shockAssumes strict causal chain in the VARGDP and inflation don’t react within period to a monetary policy shock.

For those studying DSGE models.Third equation looks like a central bank reaction function.But it isn’t!  Coefficients of the central bank reaction function will show up in all of the VARs reduced form equations.See, eg, Canova comment on Benati/Surico paper.

Page 12: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Recovering the monetary policy shock and structural coefficients with 

Cholesky identification

ex

eei

t

p11 0 0

p21 p22 0

p31 p32 p33

ux

uui

t

eit p31uxt p32ut p33uiteit − p31uxt − p32ut

p33 uit

Ai B0−1Bi

B1 A1

p11 0 0

p21 p22 0

p31 p32 p33

−1

Page 13: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Finishing the 3d monetary policy shock

ext p11uxt

uxt ext/p11

et p21uxt p22ut

p21ext/p11 p22ut

et − p21ext/p11p22

ut

e it−p 31u xt−p 32utp 33

uitOur expression for the monpol shock u_it was in terms of some unknowns.

Here we can get rid of one of them, u_xt.

Here we get rid of the second, u_pit, also using expression for u_xt

And we are done.  u_it now entirely in terms of knowns.

Page 14: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Impulse responses to the structural shocks

e B0−1u u B0e

Yhirf AhB0e

We can use the reduced form VAR estimates to compute the response to structural shocks.Our structural shocks are functions of the reduced form shocks, a function of our assumed value for B_0.So we then feed these through the reduced form VAR in the normal way, taking successively higher and higher powers of the A matrix.

Page 15: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Problems with recursive structure implied by Cholesky identification

• Is it economically plausible?  Quarterly data.  Does output or inflation really not respond to interest rates within the quarter?

• Assumed causal ordering means we can’t use the VAR to find out about causality.

• Common practice to check for robustness to alternative causal orderings, but this is rarely done comprehensively;  and [so Kilian says] is nonsensical!

Page 16: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Recap on causal assumptions in Cholesky identification of mon pol 

shock

ex

eei

t

p11 0 0

p21 p22 0

p31 p32 p33

ux

uui

t

Neither e_x nor e_pi are functions of the structural shock u_it.

Implies output gap and inflation do not respond [within the period] to a monetary policy shock.

Is this really plausible?

Remember the NK DSGE model.

t Et1 x t ut

x t Ex t1 − it − Et1 uxt

it t xx t uit

If we trace the timing of the effects of the monetary policy shock, we can see that it affects inflation and the output gap straight away.Of course, the NK model could be a load of nonsense!

Page 17: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

More problems with recursive identification.

• Sims and the ‘price puzzle’.• Would find that recursively identified, contract mon pol shock leads to increase in prices, contrary to theory.

• Concluded that had omitted variable cbresponding to, eg commodity prices.

• CP up means prices up, despite central bank rate increase.

Page 18: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Recursive ID problems:  omitted variables

• Omitted variable bias leads us to enlarge the VAR.

• But there is a cost:  imprecision in the coefficients.  And the search for more restrictions.

• Solutions:  Bayesian shrinkage and factor modelling to reduce dimensionality.

• In time we will cover both of these.

Page 19: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

What are these mp shocks anyway?

• Why would policymakers induce shocks?• Are they really conducting experiments for their own edification [a control literature involving Sargent, Cogley shows there is a benefit].  Alan Blinder says not.

• Shocks are just misspecifications by econometrician• Shocks are policymakers’ real time measurement error?

• Shocks are policymakers’ [or our] model mis‐specification

• Same goes, of course, for fiscal policy shocks.

Page 20: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Alternative, less intensive measures of identifying (eg) mp shocks

• Romer and Romer (1989) narrative measures of monetary policy (and fiscal policy) shocks.

• Rudebusch (1998):  gap between actual Fed Funds Rate and expectations implied by Fed Funds futures.

Page 21: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Romer and Romer’s narrative shock definition

Problem:  they are including movements in rates prompted by concerns about inflation.  So if we think i=a*pi+b*y+shock, they are not identifying m p shocks

Page 22: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Romer and Romer(1989), quoting Friedman and Schwartz (1964)

Page 23: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Rudebusch, and Sims on Rudebusch

• Rudebusch:  FFFs produce better forecasts than VARs. His surprise a better measure of policy ‘shocks’.

• Sims (1996): 1.  False premise.  FFR shocks confound surprises due to non policy shocks with those due to shocks.  2.  Not true that if shock measures badly correlated, estimated effects are very different.

Page 24: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Famous applications

• Rotemburg and Woodford (1998).– Early application.  Estimated DSGE model by fitting IRFs of monetary policy shock using MDE.

– Later pointed out that in DSGE model EVERYTHING responds within the period to monetary policy.

• Christiano, Eichenbaum and Evans (2005)– Same exercise.  But DSGE model is consistent with timing assumption.

Page 25: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Minimum distance estimation

mde

arg min Y − YA,e

DSGE model is defined by a vector of parameters, PHI.

We take as our PHI_hat the value of these parameters that makes the impulse response in the DSGE model as close as possible to the identified, estimated IRF in the VAR.

Some costs and benefits wrt eg MLE estimation of DSGE model.

Cost:  partial information, means bad identification.Benefit:  MLE only consistent if model well‐specified.

Page 26: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Identification using long run restrictions

• Attractive because much agreement on certain long run restrictions.  So these are ‘credible’ in Sims language.  At least among members of the RBC/DSGE cult [like me]!

• Famous early applications are Blanchard and Quah (1989), and Gali (1999).  More later.

• Technique sparked famous arguments between Chari et al and VAR proponents, notably Christiano and coauthors.

Page 27: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Egs of restrictions uncontroversial, at least in DSGE/RBC‐land

• Nominal shocks should have no long run impact on real variables.

• Corrollary:  only real shocks should have a long run impact on real variables.

• Real shocks like technology should be neutral on inflation in the long run.

• Only inflation regime changes should affect inflation in the long run.

Page 28: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Deriving long run restrictions for an SVAR

Yt At−1 B0−1ut

impact period: B0−1

1 period after: AB0−1

2 periods after:A2B0−1

n periods after:AnB0−1

Reduced form VAR(1) with an expression in terms of structural shocks and the unkown structural impact matrix substiuted in place of the RF shock

This is how we would compute the IRF to the structural shock, if only we knew the structural impat matrix....

You can see this defines an infinite sequence.  Effect on level of something=0, implies sum of effects on difference=0.

Page 29: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Deriving long run restrictions

∑i0

ai 11−a

Factor the long run IRF in terms of something you might recognise from high school as the expression for an infinite geometric series, or its matrix equivalent.

DD′ I − A−1B0−1B0

−1′I − A−1 ′

I − A−1eI − A−1 ′

Some algebra and we spot that DD’ involves something we can estimate from the data, the vcov of the RF residuals!

D B0−1 AB0

−1 A2B0−1 . . .AnB0

−1

I A A2 . . .AnB0−1

D I − A−1B0−1

Page 30: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Long run restrictions and the Choleskyfactor, again

D cholI − A−1eI − A−1 ′

D B0−1I − A−1

B0−1 I − AD

DD′ I − A−1B0−1B0

−1′I − A−1 ′

I − A−1eI − A−1 ′

DD’ which we know to be related to the magic B0 which we are trying to find……we also know to be related entirely to things we do know.

Page 31: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Gali’s (AER, 1999) search for technology shocks

Yt Δ logyt/ht

Δ loght

Only the tech shock (which we say comes first, has a long run effect on the first variable, (the change in) output per hour

D d11 0

d21 d22

Page 32: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Celebrated applications of LR restrictions

• Blanchard‐Quah.   Tech shock is the only thing to affect output in the long run.  Q:   how important are tech shocks in driving the business cycle?

• Gali (1999).  Tech shock is only thing driving labour productivity.  Appears to cause hours to fall, not rise.  Consistent with sticky price model, not RBC models.  Hours tend to comove positively with business cycle.  Suggests tech shocks not dominant driver of business cycle.

• Christiano‐Eichenbaum‐Vigfussen ().  Reexamination of Gali.  Conclusion depends on definition of hours worked used in VAR

Page 33: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Identification of VARs using sign restrictions

e PP ′,P chole

e PCC ′P ′,C Givens

Cholesky factorisation of rf varcov can be expanded with product of any orthonormal matrixSo, parameterising with the angle theta, we choose all those that satisfy certain sign restrictions

Sign is the ‘signum’ function;  S is a selector matrix with ones for restricted elements, 0s otherwise.  C is our givens matrix.  A is our estimated rf impact matrix.

1 0 0 0

0 c −s 0

0 s c 0

0 0 0 1

,c cos, s sin

signS.PCAh R

Page 34: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Signum function and the selector matrix

sign0 0.05

2 −3

0 1

1 −1

An example of what the signumfunction does to a matrix.  Turns things into 0s, 1s or ‐1s.Just a way to record in an algorithm whether things are positive, negative or zero.Could do it differently, with more if, then else statements.

S.2 6

0 1

1 0

1 0.

2 6

0 1

2 0

0 0

An example of doing element by element multiplication with a selector matrix.

Page 35: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Verbal description of sign restrictions

• Take cholesky factor of vcov matrix P• Multiply by some Givens, C(theta)• Check signs of elements of interest.• If they agree with your restrictions, store and keep.

• If not, move on.• At the end, plot ALL the IRFs, and or summarise them somehow.

Page 36: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

i=cb rate, pi=inflation, x=output, ur=unemployment rate

Mp shock in first column:  contraction raises rate, lowers pi, lowers output, lowers unemployment.

Tech shock in second column:  reduction has ambiguous effect on i, increases pi, lowers output, ambiguous effect on ue

Demand shock in third column:  cb raises rates to fight it, inflation and output increase anyway, ue falls.

Fourth shock unidentified.  A dustbin containing many things we don’t need to worry about.

Yt

it

t

x t

urt

AYt−1 et

R

1 0 1 0

−1 1 1 0

−1 −1 1 0

−1 0 −1 0

S

1 0 1 0

1 1 1 0

1 1 1 0

1 0 1 0

C

1 0 0 0

0 c −s 0

0 s c 0

0 0 0 1

Page 37: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Alternative way to do sign restrictions using the QR decomposition

1.LKK,Lij NID0,1

2.L QR,QQ′ IK

3.C Q′

4.Proceed as before

Any square matrix can be decomposed into a product of an orthonormalmatrix and something else.Matlab will calculate this for you in a flash.Note equivalence which seems not to be widely understood.  Derives from fact that all orthonormal matrices can be shown to be product of Givens matrices.Personal preference:  use Givens method.  Systematic way to explore the space.Random number generators for step 1 in computers are not random, they are pseudo random.  Don’t know if this matters much.

Page 38: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Sign restrictions at different or multiple horizons

signSPCAh RChoose h the horizon, then keep IRF if it satisifies this condition

signSPCAh 1 R, signSPCAh 2 R

For multiple horizons, keep if the condition above applied for multiple horizons holds!

Page 39: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Warning:  spanning the entire space of possible impulse responses

nn − 1/2A givens indexed by one angle only not enough to guarantee to find all possible IRFs that satisfy the sign restriction, except in the 2  variable case [eg n=2, 2*(1)/2=1]

More generally, we need to search across orthonormal matrices formed by products of Givens matrices.

i1

nn−1/2

C i

Page 40: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Reporting distributions from sign restrictions

1.For each h compute: IRFh 1/n∑i1

n

Yh,i

irf

2. Find arg min ∑h∑ Yh,i

irf − IRFh2

3. Plot Yh,irf

Sign restrictions generate arbitrary numbers of impulse response functions.

How to report them?  Can just plot the whole damned lot.

People used to report moments at each h eg the median.

Fry and Pagan suggested above.  Find the single SVAR corresponding to single angle that is closest to this median.

Page 41: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Sign restrictions:  examples

• Giraitis, Kapetanios, Yates.• Actually a TVP study, but don’t worry about that until later on in the lecture series.

• Sign restrictions to identify various shocks.• Studies time variation in the IRFs.

Page 42: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Sign restrictions in Giraitis, Kapetanios, Yates

Δc Δi Δy h Δw/p r

monetary policy - - - -

technology -

labour supply - -

demand

Page 43: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are
Page 44: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are
Page 45: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Identification using Mountford and Uhlig’s penalty method

w_h are weights;  V records not just signs, but magnitudes.Why would you do this?  Isn’t it just assuming the answer?Well, one motivation is to use one implication of the model to test another, that you don’t impose.Another is that some rotations may satisfy the sign restriction literally, but you want the IRF not just to clear the zero line by a tiny amount.  

1. draw rotationmatrixC

2. compute K ∑h1

H

whSPCAh − VhSPCAh − Vh′

3. Rank according to K

Page 46: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Using the ‘max share’ criterion in a VAR to identify news shocks

• Barsky‐Sims (2010): identified news shocks for technology.

• Long history of identifying technology shocks, measuring impact, quantifying contribution to business cycles

• RE assumption suggests agents may also react to news about future events.

• Failure to account for this may mislead us in properly measuring and quantifying effects of technology shocks.

Page 47: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Other work on news shocks

• Beaudry‐Portier:  news shocks in VARs:  news causes hours to increase.

• Jaimovich and Rebello:  news shocks in RBC model, neutralising the wealth effect so that hours don’t fall.

• Schmitt‐Grohe and Uribe (2012):  multiple news shocks in large RBC style model

• Christiano, Motto, Rostagno and Pinter, Theodoridis and Yates:  risk news shocks in DSGE model and VAR respectively

Page 48: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

News shocks:  algebrayt BLut

ut At

AA ′

yth − Et−1yth ∑0

h

BAQth−

QQ′ IN,KK−1/2∗1

Q Q1 Q2 . . .QKK−1/2∗1

A chol

Note annoying change of notation;  matches Barsky‐Sims.  Sorry.  Good for the soul though.This slide is about writing down the expression for the forecast error up to horizon h.

Page 49: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

News shocks identification, ctd...

i,jh ei′ ∑0

h B AQejej′Q′A

′B ei

ei′ ∑0

h B B ei

tfpt tfpt−1 utfp,t utfp,t−1news

1,1h 1,2h 1

The share of the FEV up to horizon h, of variable i, accounted for by shock j...

Example news process for tfp.  Could be more general than this.

In an ideal setting, share of current and news shock to tfpthat accounts for tfp should be 1.  tfp is exogenous after all!

Page 50: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

News shocks:  the max share criterion

maxi,jh

subject to

A1, j 0, j 1

signSA22 F

By choice of the K.(K‐1)/2 vector of angles w, maximise the share of tfp forecast error variance up to horizon h, accounted for by the news shock to tfp, subject to the restriction that the news shock is orthogonal to tfp today.  [if it weren’t, it wouldn’t be news, it would be a contemp. Shock to tfp]

In Pinter, Theodoridis and Yates, in our search for ‘risk news’ shocks, we impose a sign restrictions condition too.

Page 51: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Comments on news shock ID

• Method proposed originally as an alternative to LR restrictions that does not depend on uncovering zero frequency events in finite samples:  see work by Faust and Diebold et al.

• Note practical contradiction.  Proxy for shock is supposed to be exogenous, but is included as an endogenous variable.

• Monte carlo tests in economic laboratory show that it works in ‘theory’.

Page 52: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Application : ‘risk news shock’ in Pinter, Theodoridis and Yates

• Looks for the same shock as in CMR(2013), AER.• Risk shocks are fluctuations in the variance of idiosyncratic returns to entrepreneurs.

• Literally, in CMR, these guys build capital goods from capital inputs, selling them to sticky‐price producers.

• They borrow from banks at a spread related to their cross‐sectional risk.

• Higher risk means more defaults, means bigger spread to compensate.

Page 53: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Pinter, Theodoridis, Yates

• VAR study allows us to drop lots of contestable assumptions in the full information estimation of CMR’s DSGE model.

• Cost:  we have to assume we can observe risk.• Do this using the VIX, and using cross section of stock returns computed from a US panel.

Page 54: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Risk proxies

Page 55: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

‘F’: Sign and zero restrictions in the VAR

t t1

news tech net w mpol news tech net w mpol

risk 0 0 0 0

spread

GDP growth - - - -

C growth

I growth

hours

r wage growth

inflation - - - - - -

policy rate - - - -

net worth growth - - - -

Page 56: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

IRF to a risk news shock:  VIX vs CSR

Page 57: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

FEVD contributions (VIX)

Page 58: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Headlines from application

• PTY get a much smaller contribution of the risk and risk news shocks to the business cycle than CMR.  20% contribution in total, compared to 60% in CMR.

Page 59: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Rigobon:  identification through heteroskedasticity

• If you can persuasively argue there was a change in the structural shock variances

• And at the same time the VARs coefficients were constant

• Then you can use the change to generate more equations to find your unknowns and get identification.

• In the limit, this is like event study analysis.

Page 60: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Similar variance of demand and supply shocks generates cloud of dots, unable to see shape of either curve of course.

Page 61: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Increase in variance of supply shocks starts to trace out shape of demand curve helping us to ‘identify’ demand coefficients.In the limit : event study;  no demand shocks at all.

Page 62: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

The identification problem:  Rigobon’ssimple demand‐supply example

pt qt t

qt pt t

P p1 ,p2 . . .pT,

Q q1 ,q2 . . .qT

,,2 ,

2

11−2

22

2 22

2

22

2 2

2

A simultaneous demand and supply system.

All we observe is time series on prices P and quantities Q

We try to estimate four unknowns, the two slopes, and the two shock variances

However all we can estimate consistently is the reduced form vcov matrix.  Its symmetry means we only have 3 different elements, so this is 3 equations in 4 unknowns.

Page 63: Structural identification of Vector Autoregressions...Identification using long run restrictions •Attractive because much agreement on certain long run restrictions. So these are

Rigobon’s heteroskedasticity solution to the identification problem

s 11−2

2,s2 ,s

2 2,s2 ,s

2

2,s2 ,s

2 ,s2 ,s

2, s ∈ 1,2

There are TWO values for s, so we have TWO reduced form vcovmatrices. This means two lots of 3 equations=6.Slope coefficients are unchanged, so they provide 2 unknowns as before.Structural variances change, so there are now double 2=4 unknowns.Making 6 equations in 6 unknowns.Luktepohl has applied this to VARs.


Recommended