+ All Categories
Home > Documents > Structure of Informational Molecules: DNA and RNA

Structure of Informational Molecules: DNA and RNA

Date post: 03-Jan-2017
Category:
Upload: vucong
View: 215 times
Download: 0 times
Share this document with a friend
42
Structure of Informational Molecules: DNA and RNA Stryer Short course Chapter 33
Transcript
Page 1: Structure of Informational Molecules: DNA and RNA

Structure of Informational Molecules: DNA and RNA

Stryer Short courseChapter 33

Page 2: Structure of Informational Molecules: DNA and RNA

Nucleic Acid Structure

• Nucleobase• Nucleoside• Nucleotide• Nucleic acid• Chromatin• Chromosome

Page 3: Structure of Informational Molecules: DNA and RNA

Polymeric Structure

• Polymer ideal for informational molecule

• Ribose and deoxyribose

• Numbering system

Page 4: Structure of Informational Molecules: DNA and RNA

Directionality

• 5’  3’ directionality by convention

• 3’  5’ phosphodiester linkage

Page 5: Structure of Informational Molecules: DNA and RNA

Base Structure• Purines and pyrimidines• Aromatic• Tautomers

Page 6: Structure of Informational Molecules: DNA and RNA

Nucleosides• Ribonucleosides and deoxyribonucleoside• Purine = osine; pyrimidine = idine (watch cytosine)

Page 7: Structure of Informational Molecules: DNA and RNA

Nucleotides

• Phosphorylated on 2’, 3’, or 5’

• 5’ unless noted• Letter abbreviations

• Draw these:– dA– ADP– ppAp

Page 8: Structure of Informational Molecules: DNA and RNA

Nucleotides

• pA is normally called _______ or ____________

Page 9: Structure of Informational Molecules: DNA and RNA

Problem

• List 4 ways that ATP differs from 3’‐dGMP.

Page 10: Structure of Informational Molecules: DNA and RNA
Page 11: Structure of Informational Molecules: DNA and RNA

Polynucleotides

• Phosphate diesters• polyanion• Abbreviation is pdApdGpdTpdC

• Tetranucleotide• Oligonucleotide• Exonucleases and  endonucleases

Page 12: Structure of Informational Molecules: DNA and RNA

Double Helix

• B‐DNA• Chargoff’s Rule• Antiparallel• Right handed twist ladder

Page 13: Structure of Informational Molecules: DNA and RNA

Complementary Base Pairs

Mismatching may occur with tautomers

N

N

HN

N N

N

NH

N

O

H

H

H

H

Adenine tautomer Cytosine

Page 14: Structure of Informational Molecules: DNA and RNA

Double Helix Structure

• Dimensions‐10 bp/turn• Major/minor grooves• Sugar phosphate backbone toward solvent

• Base pairs stacked, perpendicular

• Edges of bases exposed in grooves for recognition

Page 15: Structure of Informational Molecules: DNA and RNA

Weak Forces Stabilize Double Helix

• Stacking interactions (vdW forces)

• Hydrophobic effect• Charge‐charge• Hydrogen bonding

– Little contribution to stability

– Large contribution to selectivity

Page 16: Structure of Informational Molecules: DNA and RNA

Denaturation

• Melting point• Melting curve• UV‐absorption• cooperative

Page 17: Structure of Informational Molecules: DNA and RNA

Problem

• True or False: Because a G:C base pair is stabilized by three hydrogen bonds, whereas an A:T base pair is stabilized by only two hydrogen bonds, GC rich DNA is harder to melt than AT‐rich DNA.

Page 18: Structure of Informational Molecules: DNA and RNA

A/T Rich and G/C Rich strands

• GC rich strands harder to denature due to STACKING (not H‐bonds)

• Cooperativity due to initial unstacking, which exposes bases to water, which destabilizes H‐bonds, which leads to further denaturation

Page 19: Structure of Informational Molecules: DNA and RNA

Helical Forms

• B‐ form is major• A‐form is similar to RNA/RNA and hybrid DNA/RNA structures

• Z‐DNA not understood, but shows flexibility of structure

Page 20: Structure of Informational Molecules: DNA and RNA

Major/Minor Groove in B‐DNA

• Many pictures show ladder with backbone at 180o

• Actually a distorted ladder with poles closer to each other, on one side

Page 21: Structure of Informational Molecules: DNA and RNA

Semiconservative Replication

• Meselson and Stahl• Density gradient equilibrium centrifugation

Page 22: Structure of Informational Molecules: DNA and RNA

Explain the Results

Page 23: Structure of Informational Molecules: DNA and RNA

Bacterial DNA• Closed, circular DNA

• Supercoiling• Topology and topoisomerases

Page 24: Structure of Informational Molecules: DNA and RNA

Eukaryotic DNA

• Highly compacted (by factor of 104) into chromatin (DNA/protein complex)

Page 25: Structure of Informational Molecules: DNA and RNA

RNA Structure

Page 26: Structure of Informational Molecules: DNA and RNA

RNA Structure, Stability, and Function

• Structural difference of 2’ hydroxyl– H‐bonding in RNA structure

– Reactions of catalytic RNA (rare)

– Hydrolysis• Structure dictates role difference in DNA/RNA

Page 27: Structure of Informational Molecules: DNA and RNA

Why does DNA not contain U?

• DNA damage from UV light, hydrolysis, oxidation

• If DNA contained U, it would be unable to recognize a hydrolyzed cytosine

• In RNA, damage not as important, and T production is costly

Page 28: Structure of Informational Molecules: DNA and RNA

Recombinant DNA Techniques

Optional Lecture

Page 29: Structure of Informational Molecules: DNA and RNA

DNA Sequencing• DNA Polymerase: 5’  3’• Sanger method• dideoxynucleotides

Page 30: Structure of Informational Molecules: DNA and RNA
Page 31: Structure of Informational Molecules: DNA and RNA
Page 32: Structure of Informational Molecules: DNA and RNA

Pyrosequencing

• Attach DNA to a solid surface• Run dNTPs over DNA one at a time• If reaction occurs, PPi is produced• Linked to a luciferase• Light detected

Page 33: Structure of Informational Molecules: DNA and RNA

Polymerase Chain Reaction

• PCR– Denature– Anneal primer– Polymerase– Repeat

• Taq polymerase• Exponential production

Page 34: Structure of Informational Molecules: DNA and RNA

Recombinant DNA technology

• Recombinant DNA– Allows incorporation of gene(s) into other DNA– Cut with exonucleases, anneal, and ligate

• Recombinant DNA serves as a cloning vector– Incorporate into cells– Select cells that have been transformed

Page 35: Structure of Informational Molecules: DNA and RNA

Catalytic Hydrolysis: Nucleases

• Enzymes can catalyze hydrolysis

• Very important reactions!

• Nucleases– RNase vs DNase

• Single/double strand– Exonuclease vsEndonuclease

– Orientation of hydrolysis

Page 36: Structure of Informational Molecules: DNA and RNA

Endonuclease

Page 37: Structure of Informational Molecules: DNA and RNA

Restriction Enzyme• Endonucleases recognize palindromes• Sticky ends and blunt ends

Page 38: Structure of Informational Molecules: DNA and RNA

ProblemRestriction enzymes are used to construct restriction maps of DNA. These are diagrams of specific DNA molecules that show the sites where the restriction enzymes cleave the DNA. To construct a restriction map, purified samples of DNA are treated with restriction enzymes, either alone or in combination, and then the reaction products are separated by agarose gel electrophoresis. Use the results of this gel to construct a restriction map for this sample of DNA.

Page 39: Structure of Informational Molecules: DNA and RNA

Making a Cloning Vector 

Page 40: Structure of Informational Molecules: DNA and RNA

Making a Cloning Vector 

• ampR is gene for ampicillin resistance

• LacZ encodes galactosidase

Page 41: Structure of Informational Molecules: DNA and RNA

Selecting Transformed Bacteria• Some plasmids are recombinant, and some are not

• Some cells accept a plasmid, some accept recombinant plasmid, and some don’t accept any

• Transformed cells selected by growing on a petri dish with ampicilin and galactose derivative

• Explain

Page 42: Structure of Informational Molecules: DNA and RNA

Site‐directed Mutagenesis

• Point mutations• Examine importance of a residue

• Modify protein function


Recommended