+ All Categories
Home > Documents > Strut & Tie Theory

Strut & Tie Theory

Date post: 03-Jun-2018
Category:
Upload: aserbia1
View: 254 times
Download: 6 times
Share this document with a friend

of 28

Transcript
  • 8/11/2019 Strut & Tie Theory

    1/28

    Application of Strut and Tie

    Models to PrestressedMembers Anchorages

    Presented by: Antonio SerbiUniversity of South Florida

  • 8/11/2019 Strut & Tie Theory

    2/28

    Content:

    Problem DefinitionStress Distribution TheoryB & D RegionsStrut & Tie Model Theory

    S & T Model Application to Anchorage ZoneQ & A

  • 8/11/2019 Strut & Tie Theory

    3/28

  • 8/11/2019 Strut & Tie Theory

    4/28

  • 8/11/2019 Strut & Tie Theory

    5/28

    Stress Distribution Theory:

    St. Venant's Principle - states that " the localizedeffects caused by any load acting on the body willdissipate or smooth out within regions that aresufficiently away from the location of the load

    "

  • 8/11/2019 Strut & Tie Theory

    6/28

    Stress Distribution Theory:

  • 8/11/2019 Strut & Tie Theory

    7/28

    B and D regions :

    D region B region

  • 8/11/2019 Strut & Tie Theory

    8/28

    Strut & Tie Theory :

    Concept - Use of uniaxially stressed trussmembers to model stressflow

  • 8/11/2019 Strut & Tie Theory

    9/28

    Strut & Tie Theory :

    Elements of a Strut & Tie Model:

    Nodes - Concrete

    Struts - Concrete Ties - Steel

    P

    P/2

    P/2

  • 8/11/2019 Strut & Tie Theory

    10/28

    Strut & Tie Theory :

    Geometry of a Strut & Tie Model:

    P

    P/2

    P/2

    F

    T=P/2 tan (F

  • 8/11/2019 Strut & Tie Theory

    11/28

    Strut & Tie Theory :

    Important Considerations:

    Equilibrium must be maintained

    Tension in concrete is neglected

    Forces in struts and ties are uni-axialExternal forces applied ONLY at nodesPrestressing is treated as a loadDetailing for adequate anchorage (detailing)

  • 8/11/2019 Strut & Tie Theory

    12/28

    Strut & Tie Theory :

    P

    P/2

    P/2

    Stress - Strain Compatibility RelationConcrete StressMild Steel StressPT Bars...

  • 8/11/2019 Strut & Tie Theory

    13/28

    Strut & Tie Theory :

    Constructing the Model:Sketch Force FlowDetermine Truss GeometryDetermine Forces

    Node SizeStrut SizeTie Location

  • 8/11/2019 Strut & Tie Theory

    14/28

    Strut & Tie Theory :Sketch Force Flow:

    Join St. Venants stressareas with Bernoullistress areas.(For ALL Cases)

  • 8/11/2019 Strut & Tie Theory

    15/28

    Strut & Tie Theory :Truss Geometry:

  • 8/11/2019 Strut & Tie Theory

    16/28

    Strut & Tie Theory :Truss Geometry:

    Use Direct Load Paths

  • 8/11/2019 Strut & Tie Theory

    17/28

  • 8/11/2019 Strut & Tie Theory

    18/28

    Strut & Tie Theory :Size Nodes:

    CCC NodeStress = 0.85 ffc

    CCT NodeStress = 0.75 ffc

    f= 0.70 (Concrete Bearing)

    CTT NodeStress = 0.60 ffc

  • 8/11/2019 Strut & Tie Theory

    19/28

  • 8/11/2019 Strut & Tie Theory

    20/28

    Strut & Tie Theory :Validate Model:

    P

    P/2

    P/2

    F T=P/2 tan (F )

    C=(P/2)

    /cos(F

    )

    ITERATIVEPROCESS

  • 8/11/2019 Strut & Tie Theory

    21/28

    Anchorage Zone :Design Example (Collins & Mitchell Ex 9.7):

    DATA:1/2 in. diameter, Lo-Lax strandsfpu = 270 ksi0.75 fpu at jackingfc = 5000 psi

  • 8/11/2019 Strut & Tie Theory

    22/28

    Anchorage Zone :Design Example, cont. (Collins & Mitchell Ex 9.7):

    1. Find PP = 4 x 0.153 x 270 = 165 kip

    2. Check Bearing Pressure Under PlatesA = 7 x 7 - p x 22/4 = 45.9 in2

    fb= 165/45.9 = 3.60 ksiAllowable Nodal Stress = 0.85 f fc

    = 0.85 x 0.9 x 5= 3.83 ksi > 3.60 ; OK

  • 8/11/2019 Strut & Tie Theory

    23/28

    Anchorage Zone :Design Example, cont. (Collins & Mitchell Ex 9.7):

    3. Bernoulli Stresses and Forcesfc= 4 strands x 165 kip / 966 in

    2= 0.683 ksi

    A of flanges = 40 x 7 = 280 in2A of web = 7 x 58 = 406 in2

    Force in flanges = 240 x 0.683= 191 kipForce in web = 406 x 0.683= 277 kip

  • 8/11/2019 Strut & Tie Theory

    24/28

    Anchorage Zone :

    (c) Plan

    Forces:(kip)

    CD = 126.7DE = 173.9

    GH = 39.4

    Design Example, cont. (Collins & Mitchell Ex 9.7):

  • 8/11/2019 Strut & Tie Theory

    25/28

    Anchorage Zone :Design Example, cont. (Collins & Mitchell Ex 9.7):

    6. Detail Reinforcement#4 closed stirrups can resist:Fs = 0.9 x 60 x (2 x 0.20) = 21.6 kip

    Member DE (web), T = 173.9 kip therefore173.9/21.6 = 8.1, use 9 closed #4 stirrups

    Member GH (flange), T = 39.4 kip therefore39.4/ 10.8 = 3.6, use 4 (single leg) #4

  • 8/11/2019 Strut & Tie Theory

    26/28

    Anchorage Zone :Design Example, cont. (Collins & Mitchell Ex 9.7):

  • 8/11/2019 Strut & Tie Theory

    27/28

    Anchorage Zone :Design Example, cont. (Collins & Mitchell Ex 9.7):

  • 8/11/2019 Strut & Tie Theory

    28/28


Recommended