+ All Categories
Home > Documents > STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews,...

STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews,...

Date post: 01-Mar-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
24
Transcript
Page 1: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris
Page 2: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

STUDENT MATHEMATICAL LIBRARY Volume 42

Invitation t o Ergodic Theory C. E. Silva

ojSSSAgb

#AMS AMERICAN MATHEMATICA L SOCIET Y

Providence, Rhode Islan d

http://dx.doi.org/10.1090/stml/042

Page 3: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Editorial Boar d Gerald B . Follan d Bra d G . Osgoo d Robin Forma n (Chair ) Michae l S ta rb i r d

2000 Mathematics Subject Classification. P r i m a r y 37A05 , 37A25 , 37A30 , 37A40, 37B10 , 28A05 , 28A12 , 28A20 , 28D05 , 54E52 .

For addi t iona l informatio n an d upda te s o n thi s book , visi t w w w . a m s . o r g / b o o k p a g e s / S T M L - 4 2

Library o f C o n g r e s s Cataloging-in-Publicatio n D a t a

Silva, Cesa r Ernest o [date ] Invitation t o ergodi e theor y / C.E . Silva .

p. cm . — (Studen t mathematica l library , ISS N 1520-912 1 ; v. 42 ) Includes bibliographica l reference s an d index . ISBN 978-0-8218-4420- 5 (alk . paper ) 1. Ergodi e theory . I . Title .

QA313.S555 200 7 515'.48—dc22 200706084 0

Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t libraries actin g fo r them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o copy a chapte r fo r us e i n teachin g o r research . Permissio n i s grante d t o quot e brie f passages fro m thi s publicatio n i n reviews , provide d th e customar y acknowledgmen t o f the sourc e i s given .

Republication, systemati c copying , o r multipl e reproductio n o f any materia l i n thi s publication i s permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Requests fo r suc h permissio n shoul d b e addresse d t o th e Acquisition s Department , American Mathematica l Society , 20 1 Charles Street , Providence , Rhod e Islan d 02904 -2294, USA . Request s ca n als o b e mad e b y e-mai l t o [email protected] .

© 200 8 b y th e America n Mathematica l Society . Al l right s reserved . The America n Mathematica l Societ y retain s al l right s

except thos e grante d t o th e Unite d State s Government . Printed i n th e Unite d State s o f America .

@ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability .

Visit th e AM S hom e pag e a t h t t p : //www. ams. o rg/

10 9 8 7 6 5 4 3 2 1 1 3 1 2 1 1 1 0 0 9 0 8

Page 4: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Contents

Preface

Chapter

Chapter

§2.1.

§2.2.

§2.3.

§2.4.

§2.5.

§2.6.

§2.7.

§2.8.

Chapter

§3.1.

§3.2.

§3.3.

1. Introductio n

2. Lebesgu e Measur e

Lebesgue Oute r Measur e

The Canto r Se t an d Nul l Set s

Lebesgue Measurabl e Set s

Countable Additivit y

Sigma-Algebras an d Measur e Space s

The Bore l Sigma-Algebr a

Approximation wit h Semi-ring s

Measures fro m Oute r Measure s

3. Recurrenc e an d Ergodicit y

An Example : Th e Baker' s Transformatio n

Rotation Transformation s

The Doublin g Map : A Bernoull i Noninvertibl e

vii

1

5

5

10

17

23

26

34

38

47

59

60

67

Transformation 7 5

§3.4. Measure-Preservin g Transformation s 8 3

§3.5. Recurrenc e 8 6

in

Page 5: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

IV Contents

§3.6. Almos t Everywher e an d Invarian t Set s 9 1

§3.7. Ergodi c Transformation s 9 5

§3.8. Th e Dyadi c Odomete r 10 2

§3.9. Infinit e Measure-Preservin g Transformation s 10 9

§3.10. Factor s an d Isomorphis m 11 5

§3.11. Th e Induce d Transformatio n 12 0

§3.12. Symboli c Space s 12 3

§3.13. Symboli c System s 12 7

Chapter 4 . Th e Lebesgu e Integra l 13 1

§4.1. Th e Rieman n Integra l 13 1

§4.2. Measurabl e Function s 13 4

§4.3. Th e Lebesgu e Integra l o f Simple Function s 14 1

§4.4. Th e Lebesgu e Integra l o f Nonnegative Function s 14 5

§4.5. Application : Th e Gaus s Transformatio n 15 0

§4.6. Lebesgu e Integrabl e Function s 15 5

§4.7. Th e Lebesgu e Spaces : L\ L 2 an d L°° 15 9

§4.8. Eigenvalue s 16 6

§4.9. Produc t Measur e 17 0

Chapter 5 . Th e Ergodi c Theore m 17 5

§5.1. Th e Birkhof f Ergodi c Theore m 17 6

§5.2. Norma l Number s 18 8

§5.3. Wey l Equidistribution 19 1

§5.4. Th e Mea n Ergodi c Theore m 19 2

Chapter 6 . Mixin g Notion s 20 1

§6.1. Introductio n 20 1

§6.2. Wea k Mixin g 20 5

§6.3. Approximatio n 20 9

§6.4. Characterization s o f Weak Mixin g 21 4

§6.5. Chacon' s Transformatio n 21 8

§6.6. Mixin g 22 6

Page 6: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Contents v

§6.7. Rigidit y an d Mil d Mixin g 22 7

§6.8. Whe n Approximatio n Fail s 23 1

Appendix A . Se t Notatio n an d th e Completenes s o f R 23 5

Appendix B . Topolog y o f R an d Metri c Space s 24 1

Bibliographical Note s 25 1

Bibliography 25 5

Index 25 9

Page 7: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

This page intentionally left blank

Page 8: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Preface

This boo k provide s a n introductio n t o th e growin g field o f ergodi c theory, als o know n a s measurabl e dynamics . I t cover s topic s suc h a s recurrence, ergodicity , th e ergodi c theore m an d mixing . I t i s aime d at student s wh o have completed a basic course i n undergraduate rea l analysis coverin g topic s suc h a s basi c compactnes s propertie s an d open an d close d set s i n the rea l line . Measur e theor y i s not assume d and i s develope d a s needed . Reader s les s familia r wit h thes e topic s will find a discussion o f the relevant materia l fro m rea l analysi s in th e appendices.

I have used early versions of this book in courses that ar e designed as capston e course s fo r th e mathematic s major , includin g student s with a variety o f interests and backgrounds . Th e study o f measurabl e dynamics ca n b e used t o reinforce an d appl y th e student' s knowledg e of measure theor y an d rea l analysi s whil e introducing som e beautifu l mathematics o f relativel y recen t vintage . Measur e theor y i s devel -oped a s neede d an d applie d t o stud y notion s i n dynamics . Whil e i t has les s emphasis , som e metri c spac e topology , includin g th e Bair e category theorem , i s presente d an d applie d t o topologica l dynamics . Several example s ar e develope d i n detai l t o illustrat e concept s fro m measurable an d topologica l dynamics .

This boo k ca n b e use d a s a special-topic s cours e fo r upper-leve l mathematics students . I t ca n als o b e use d a s a shor t introductio n

vn

Page 9: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

vm Preface

to Lebesgu e measur e an d integration , a s a n introductio n t o ergodi c theory, and for independent study . Th e Bibliographical Note s provide some guideline s fo r furthe r reading .

An introductor y cours e coul d star t wit h a shor t revie w o f th e topology on the rea l line and basi c properties o f metric spaces as cov-ered i n Appendix B or with the constructio n o f Lebesgue measure o n the rea l lin e i n Chapte r 2 . Th e reade r wh o want s t o ge t t o ergodi c theory quickl y needs to cover only Section s 2.1 through 2. 4 and coul d then star t wit h Chapte r 3 , perhap s omittin g Section s 3.1 0 throug h 3.12. Topologica l dynamic s i s closel y relate d t o measurabl e dynam -ics, an d th e boo k introduce s som e topic s fro m topologica l dynamics . This i s not necessar y fo r th e mai n developmen t o f th e book , an d th e reader ha s th e optio n o f omitting th e topologica l dynamic s topic s o r of usin g the m t o lear n som e metri c spac e topolog y an d som e elegan t ideas from topologica l dynamics. A more advanced course could cover Chapters 2 and 3 in more detail . Som e of the measur e theor y notion s that ar e covere d includ e th e Caratheodor y extensio n theorem , prod -uct measure s an d L p spaces . Lebesgu e integratio n i s introduce d i n Chapter 4 , an d som e o f thes e notion s ar e use d t o stud y th e eigen -values o f measure-preservin g transformations . Th e chapte r o n th e ergodic theorem , i n additio n t o bein g o f intrinsi c interest , provide s a beautifu l exampl e fo r application s o f various theorem s o f Lebesgu e integration. Th e final chapte r o n mixing uses ideas from al l the othe r chapters.

The boo k contain s bot h simpl e exercises , calle d questions , de -signed t o tes t th e reader' s immediat e gras p o f th e ne w material , an d more challengin g exercise s a t th e en d o f eac h section . Harde r exer -cises are marked wit h a star (*) . Partia l solution s an d hint s fo r som e of the exercise s wil l b e availabl e a t th e book' s webpag e liste d o n th e back cover . Som e section s als o contai n ope n question s designe d t o suggest t o th e reade r som e avenue s o f research . Th e bibliograph y i s not intende d t o b e exhaustive ; i t i s ther e t o provid e suggestion s fo r additional readin g an d t o acknowledg e th e source s I have used .

I a m indebte d t o man y peopl e wh o throug h thei r conversation s and writing s hav e taugh t m e measur e theor y an d ergodi c theory . I firs t learne d analysi s fro m Cesa r Carranza . I wa s introduce d t o

Page 10: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Preface IX

ergodic theor y b y Doroth y Mahara m an d late r wa s influence d b y Shizuo Kakutani an d Joh n Oxtoby . I have also learned muc h from al l my coauthor s an d th e student s I hav e supervise d i n researc h an d i n courses. I a m indebte d t o severa l anonymou s reviewer s an d reader s at variou s stage s o f thi s wor k wh o hav e provide d advic e an d sugges -tions. I n particula r I woul d lik e t o than k m y William s colleague s OUie Beaver, E d Burger , Satya n Devadoss , Fran k Morga n an d Miha i Stoiciu, an d m y editor , Serge i Gelfand . I als o than k Blair e Mador e and Kari n Reinhold , wh o use d a n earl y versio n wit h thei r student s and sen t m e helpfu l suggestions .

I hav e use d earl y version s o f thi s boo k i n courses , tutorial s an d summer SMAL L REU projects an d would like to thank th e many stu -dents wh o correcte d errors , discovere d typo s an d mad e suggestions , in particula r Katherin e Acton , Al i Al-Sabah , Ami e Bowles , Joh n Bryk, Joh n Chatlos , Tega n Cheslack-Postava , Alexandr a Constantin , Jon Crabtree , Michae l Daub , Sara h Day , Chri s Dodd , Jaso n Enelow , Lukasz Fidkowski , Thoma s Fleming , Artu r Fridman , Ily a Grigoriev , Brian Grivna , Kat e Gruher , Fre d Hines , Sara h lams , Catali n lor -dan, Nat e Ince , O n Jesakul , Ann e Jirapattanakul , Jef f Kaye , Eri c Katerman, Bria n Katz , Mi n Kim , Jame s Kingsbery , Dav e Klein -schmidt, Thoma s Koberda , Ros s Kravitz , Gar y Lapon , Ale x Levin , Amos Lubin , Am y Marinello , Earl e McCartney , Ab e Menon , Eric h Muehlegger, Kar l Naden, Nar a Narasimhan , Deepa m Patel , Rav i Pu -rushotham, And y Raich , Hyeji n Rho , Beck y Robinson , Richar d Ro -driguez, Davi d Roth , Charle s Samuels , Bria n Simanek , Pete r Speh , Anita Spielman , Joh n Spivack , Noa h Stein , Josep h Stember , An -drea Stier , Bria n Street , Danie l Sussman , Mik e Touloumtzis , Pau l Vichyanond, Rober t Waelder , Kirste n Wickelgren , Ale x Wolfe , an d Wenhuan Zhao . Thank s ar e du e mos t especiall y t o Darre n Creutz , Daniel Kane, Jennife r James , Kathry n Lindsey , an d Anatol y Preygel .

Finally, I woul d lik e t o dedicat e thi s boo k t o m y wif e an d tw o daughters an d th e memor y o f my parents .

Cesar E . Silv a

Page 11: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

This page intentionally left blank

Page 12: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Bibliographical Note s

Chap te r 2

For furthe r informatio n abou t thes e topic s th e reade r i s referre d to [67 ] an d [56] .

Our definitio n o f Lebesgu e measurabl e se t i s a s i n [70 ] an d ou r presentation follow s [56 ] an d [70] . Ou r definitio n o f semi-ring s i s a s in [68] . Fo r the sections on <r~algebras, measure spaces and the mono-tone class theorem w e have followed [28 ] and [68] . Fo r Section 2. 8 we have followe d [68] , [6] , [18 ] an d [28] . Th e quotatio n i n Sectio n 2. 7 on Littlewood' s Thre e Principle s i s from [61] . Fo r a shor t accoun t o f the histor y o f measur e an d integratio n wit h extensiv e reference s se e [18].

Chap t e r 3

For furthe r informatio n abou t thes e topic s th e reade r i s referre d to [24] , [58 ] an d [69] . A n introductio n t o severa l topic s i n dynamic s can b e foun d i n [31 ] an d the n i n [10 ] (includin g a n applicatio n o f ergodic theory to Interne t searches) . Fo r entropy theory , whic h i s not covered here , th e reade r ma y star t wit h th e entrop y chapte r i n [50 ] and the n consul t [39] , [58 ] and [69] .

The baker' s transformatio n i s a well-know n exampl e i n ergodi c theory. Fo r a higher-dimensiona l versio n o f irrationa l rotation s see

251

Page 13: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

252 Bibliographical Note s

[15] an d [57] . Fo r th e topologica l dynamic s example s w e hav e fol -lowed [69] . Fo r application s o f th e Bair e Categor y metho d t o dy -namics see [3 ] an d [56] . Fo r a discussio n o f nonmeasurabl e set s se e [56]. Th e proof o f the Baire category theorem i s standard (see , for ex-ample, [56]) . Fo r measure-presevin g transformation s an d recurrenc e we have followe d [24] , [58] and [69] . Fo r multipl e recurrenc e refe r t o [24]. Th e notion s o f Poincare sequenc e an d thic k set s ar e fro m [24] . For th e recen t proo f o f Gree n an d Ta o o n arithmeti c progression s i n the primes and th e role of Furstenberg's ergodi c theoretic methods i n this proo f se e [43] . Th e notio n o f ergodicit y goe s bac k t o a pape r o f Birkhoff an d Smit h [7] . Mos t o f the equivalence s o f Lemma 3.7. 2 ar e in, fo r example , [58] . Par t (4 ) of Lemma 3.7.2 i s probably know n bu t I learne d i t fro m Danie l Kane , a s wel l a s Exercis e 6.2.5 . Th e dyadi c odometer i s due to Kakutani an d von Neumann; a description simila r to our s ca n b e foun d i n [21] . Th e Hajian-Kakutan i transformatio n is from [27] , and weakl y wanderin g set s wer e introduced i n [26] . Fo r further result s on infinite measure-preservin g transformation s se e [1]. For factor s an d isomorphis m w e have followed [24 ] and [63] . Th e no-tion o f a Lebesgu e spac e i s due t o Rohlin ; fo r propertie s o f Lebesgu e spaces see [48 ] and [63] . Th e induced transformatio n i s due to Kaku -tani [37] . Fo r furthe r propertie s o f symbolic systems refer t o [48 ] and [46]. Furstenberg' s questio n ma y b e foun d i n [64] .

Chapter 4

Our developmen t o f Lebesgu e integratio n follow s [11] . Fo r th e Gauss transformation se e [48] . Othe r example s o f invariant measure s may b e foun d i n [8] . Fo r othe r numbe r theoreti c example s se e [16] . For th e Lebesgu e L p space s w e have followe d [11 ] an d [70] . Th e re -sults on eigenvalues ar e standard; see , for example , [69] . Fo r produc t measure w e have followe d [6 ] and [68] .

Chapter 5

The Birkhof f ergodi c theore m ha s ha d a lon g histor y o f differen t proofs. Fo r ou r firs t proo f o f th e ergodi c theore m w e hav e followe d [66], whic h wa s influence d b y [54 ] an d [35] ; these argument s ca n b e extended t o th e rati o subadditiv e ergodi c theore m [66] . Ou r secon d proof o f th e ergodi c theore m follow s [29] . Fo r anothe r proo f o f th e

Page 14: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Bibliographical Note s 253

maximal ergodi c theorem du e to Garsi a see , e.g., [57] . A more recen t proof o f the ergodic theorem with references t o other proofs i s in [41] . For a comprehensiv e surve y o f development s relate d t o th e ergodi c theorem see [45 ] an d [60] . Fo r th e proo f o f th e L 2 ergodi c theore m we followe d [57] . Th e proo f o f Lemm a 5.4. 1 i s fro m [67] . A proo f of Theore m 5.4. 5 ca n b e foun d i n [69] . Th e proo f o f Lemma 5.4. 3 i s from [71] . Fo r additiona l materia l o n equidistributio n se e [57] . Fo r other exposition s o f the ergodi c theore m se e [39] , [58] , [65] , [69].

Chap te r 6

Many o f th e characterization s o f wea k mixin g g o back t o Koop -man an d vo n Neumann an d alread y appea r i n [29] . W e have followe d [19], [24] , [58] , [69] . Th e notio n o f doubl e ergodicit y an d it s equiv -alence t o wea k mixin g appear s i n [24] ; i t wa s generalize d t o infinit e measure-preserving transformation s i n [9] . Fo r a proo f o f th e exis -tence o f sequences o f density on e for a weakly mixin g transformatio n see [20] , [69 ] an d [58] . Fo r Sectio n 6. 4 w e hav e followe d [58 ] an d [63]. Chacon' s transformatio n appear s i n [19] , an d appeare d i n a modified for m i n [13] . Th e transformatio n i n [13 ] i s lightl y mixin g (hence weakl y mixing ) bu t no t mixin g [22] . Th e transformatio n i n [13] is weakly mixing (an d mildl y mixing [22] ) bu t no t lightl y mixin g [19], [22] . Th e proo f o f Theore m 6.5. 2 follow s [13 ] an d [19] . Th e proof o f Lemm a 6.5. 4 (doubl e approximation ) follow s a proo f i n [2 ] and [17] . Th e proof of Theorem 6.5.5 follows a proof in [2 ] of a similar result i n infinit e measure . Anothe r proo f o f wea k mixin g i s i n [63] . Other example s of weakly mixing and no t mixin g transformations ar e in [40 ] and [38] . Th e canonica l Chaco n transformatio n wa s shown t o be prime (n o nontrivial factors ) an d t o commute only with it s power s in [36] . Th e notio n o f mild mixin g an d rigidit y i s from [25] . Fo r th e proof o f Lemma 6.7. 3 we followed [2] , where i t i s in the mor e genera l context o f nonsingula r transformations . Fo r th e proo f o f Proposi -tion 6.7. 5 w e followed [32] . Sectio n 6. 8 i s from [51] . Exercis e 6.8. 5 i s from [47] .

Appendix A

For basi c propertie s o f set s se e [44] . Fo r a n introductio n t o se t theory se e [30] . Fo r propertie s o f th e rea l number s th e reade r ma y

Page 15: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

254 Bibliographical Note s

consult [44] , [49] , [62] . Fo r measurabl e dynamic s o n othe r metri c completions o f the field Q se e [12 ] an d [42] .

Appendix B

The proo f o f th e Heine-Bore l Theore m (Theore m B.1.5 ) follow s Borel's proo f a s in [56 , p. 4] . Fo r th e se t M w e followed [51 ] an d a n early versio n o f [51] . Fo r th e othe r topic s se e [44] , [49] , [62].

Page 16: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Bibliography

[1] J . Aaronson , An Introduction to Infinite Ergodic Theory, America n Mathematical Society , 1997 .

[2] T . Adams , N . Friedman , an d C E . Silva . Rank-on e wea k mixin g fo r nonsingular transformations , Israel J. Math. 10 2 (1997) , 269-281 .

[3] S . Alper n an d V.S . Prasad , Typical dynamics of volume preserving homeomorphisms, Cambridge , 2000 .

[4] V.I . Arnol d an d A . Avez , Ergodic Problems of Classical Mechanics, W.A. Benjamin , 1968 .

[5] P . Billingsley , Ergodic Theory and Information, Wiley , 1965 .

[6] P . Billingsley , Probability and Measure, Wiley , 1986 .

[7] C D . Birkhoff , Collected Mathematical Papers, 3 vols. , America n Mathematical Society , Ne w York , 1950 .

[8] A . Boyarsk i an d P . Gora , Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Birkhauser , 1997 .

[9] A . Bowles , L. Fidkowski, A . Marinello , an d C E . Silva , Double ergod -icity o f nonsingula r transformation s an d infinit e measure-preservin g staircase transformations , Illinois J. Math. 4 5 (2001) , no . 3 , 999 -1019.

[10] M . Bri n an d G . Stuck , Introduction to Dynamical Systems, Cam -bridge, 2002 .

[11] A . Bruckner , J . Bruckner , an d B . Thomson , Real Analysis, Prentic e Hall, 1997 .

[12] J . Bry k an d C E . Silva , Measurabl e dynamic s o f simpl e p-adi c poly -nomials, Amer. Math. Monthly 11 2 (2005) , no . 3 , 212-232 .

255

Page 17: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

256 Bibliography

[13] R.V . Chacon , Weakl y mixin g transformations whic h ar e no t strongl y mixing, Proc. Am. Math. Soc. 2 2 (1969) , 559-562 .

D.C. Cohn , Measure Theory, Birkhauser , 1980 .

LP. Cornfeld, S.V . Fomin, and Ya. G. Sinai , Ergodic Theory, Springer -Verlag, 1982 .

K. Dajan i an d C . Kraaikamp , Ergodic Theory of Numbers, Mathe -matical Associatio n o f America , 2002 .

S. Day, B . Grivna , E . McCartney , an d C.E . Silva , Powe r weakl y mix -ing infinit e transformations , New York J. Math. 5 (1999) , 17-24 .

R.M. Dudley , Real Analysis and Probability, Wad s worth & ; Brooks/Cole, 1989 .

N. Friedman , Introduction to Ergodic Theory, Va n Nostran d Rein -hold, 1970 .

N. Friedman , Mixin g o n sequences , Canad. J. Math. 3 5 (1983) , no . 2, 339-352 .

N. Friedman, Replicatio n and stacking in ergodic theory, Amer. Math. Monthly 9 9 (1992) , no . 1 , 31-41 .

N. Friedma n an d J.L . King , Ran k on e lightl y mixing , Israel J. of Math. 7 3 (1991) , no . 3 , 281-288 .

H. Furstenberg , Stric t ergodicit y an d transformatio n o f th e torus , Amer. J. Math. 8 3 (1961) , 573-601 .

H. Furstenberg , Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeto n Univ . Press , 1981 .

H. Furstenberg an d B . Weiss, The finite multiplier s o f infinite ergodi c transformations, The Structure of Attractors in Dynamical Systems, Lecture Note s i n Mathematics , Vol . 668 , Springer , Berlin , 1978 , 127 -132.

A. Hajia n an d S . Kakutani , Weakl y wanderin g set s an d invarian t measures, Trans. Amer. Math. Soc. 11 0 (1964) , 136-151 .

A. Hajia n an d S . Kakutani , A n exampl e o f a n ergodi c measure , pre -serving transformatio n define d o n a n infinit e measur e space , Contri-butions to Ergodic Theory and Probability, Lectur e Note s i n Mathe -matics, vol . 160 , Springer , Berlin , 1970 , 45-52 .

P.R. Halmos , Measure Theory, Va n Nostrand , 1950 .

P.R. Halmos , Lectures on Ergodic Theory, Chelsea , 1956 .

P.R. Halmos , Naive Set Theory, Va n Nostrand , 1960 .

B. Hasselblat t an d A . Katok , A First Course in Dynamics, Cam -bridge, 2003 .

Page 18: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Bibliography 257

[32] J . Hawkin s an d C.E . Silva , Characterizin g mildl y mixin g action s b y orbit equivalenc e of products, New York J. Math. 3 A (1997/98) , Pro -ceedings o f th e Ne w Yor k Journa l o f Mathematic s Conference , Jun e 9-13, (1997) , 99-115 .

[33] E . Hopf , Ergodentheorie, Verlag , 1937 .

[34] F . Jones , Lebesgue Integration on Euclidean Space, Jone s an d Bartlett, 1993 .

[35] R.L . Jones , Ne w proof s fo r th e maxima l ergodi c theore m an d th e Hardy-Littlewood maxima l theorem , Proc. Amer. Math. Soc. 8 7 (1983), no . 4 , 681-684 .

[36] A . de l Junco , A simple measure-preservin g transformatio n wit h triv -ial centralizer , Pacific J. Math. 7 9 (1978) , 357-362 .

[37] S . Kakutani , Induce d measure-preservin g transformations , Proc. Japan Acad. 1 9 (1943) , 635-641 .

[38] S . Kakutani , Example s o f ergodi c measur e preservin g transforma -tions whic h ar e weakl y mixin g bu t no t strongl y mixing , Recent ad-vances in topological dynamics, Lectur e Note s i n Mathematics , Vol . 318, Springer , Berlin , 1973 , 143-149 .

[39] A . Kato k an d B . Hasselblatt , Introduction to the Modern Theory of Dynamical Systems, Cambridge , 1995 .

[40] A.B . Katok an d A.M . Stepin , Approximatio n i n ergodic theory , Rus-sian Mathematical Surveys 2 2 (1967) , 77-102 .

[41] M . Kean e an d K . Petersen , Easy and Nearly Simultaneous Proofs of the Ergodic Theorem and Maximal Ergodic Theorem, IM S Lectur e Notes-Monograph Series , Vol . 48 , Inst . Math . Stat. , 2006 , 248-251 .

[42] A.Y . Khrenniko v an d M . Nilson , P-adic deterministic and random dynamics, Kluwe r Academi c Publishers , Dordrecht , 2004 .

[43] B . Kra , Th e Green-Ta o theore m o n arithmeti c progression s i n th e primes: a n ergodi c poin t o f view . Bulletin Amer. Math. Soc. (N. S.) 43 (2006) , 3-23 .

[44] S . Krantz , Real Analysis and Foundations, CR C Press , 1991 .

[45] U . Krengel , Ergodic Theorems, d e Gruyte r Studie s i n Mathematics , Vol. 6 , Walte r d e Gruyte r & Co. , Berlin-Ne w York , 1985 .

[46] D . Lin d an d B . Marcus , An introduction to Symbolic Dynamics and Coding, Cambridg e Universit y Press , 1995 .

[47] D . Maharam , O n orbit s unde r ergodi c measure-preservin g transfor -mations, Trans. Amer. Math. Soc. 11 9 (1965) , 51-66 .

[48] R . Mane , Ergodic Theory and Differentiable Dynamics, Springer -Verlag, 1987 .

Page 19: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

258 Bibliography

F. Morgan , Real Analysis, Amer . Math . Soc , 2005 .

D. Witt e Morris , Ratner's Theorems on Unipotent Flows, Univ . o f Chicago Press , 2005 .

E. Muehlegger , A . Raich , C.E . Silva , an d W . Zhao , Lightl y mixin g on dens e algebras , Real Anal. Exchange 2 3 (1997/8) , 259-266 . M.G. Nadkarni , Basic Ergodic Theory, Secon d Edition , Birkh"auser , 1995.

D. Ornstein , Ergodic Theory, Randomness and Dynamical Systems, Yale Univ . Press , 1974 .

D. Ornstei n an d B . Weiss, The Shannon-McMillan-Breima n theore m for a class of amenable groups , Israel J. Math. 4 4 (1983) , no. 1 , 53-60. J. Oxtoby , Ergodi c sets , Bull Amer. Math. Soc. 5 8 (1952) , 116-136 . J. Oxtoby , Measure and Category, Secon d Edition , Springer-Verlag , 1980.

W. Parry , Topics in Ergodic Theory, Cambridge , 1981 . K. Petersen , Ergodic Theory, Cambridge , 1983 . V.A. Rokhlin , O n th e fundamenta l idea s o f measure theory , Mat. Sb. 25, 107-50 . Amer . Math . Soc . Transl . 71 , 1952. J.M. Rosenblat t an d M . Wierdl , Pointwis e ergodi c theorem s vi a har -monic analysis , Ergodic theory and its connections with harmonic analysis (Alexandria, 1993), Londo n Math . Soc . Lectur e Not e Ser. , 205, 3-151 , Cambridge , 1995 . H.L. Ro y den, Real Analysis, Macmillan , 1988 .

W. Rudin , Principles of Mathematical Analysis, MacGraw-Hill , 1976 . D. Rudolph , Fundamentals of Measurable Dynamics, Oxford , 1990 . D. Rudolph , x 2 an d x 3 invarian t measure s an d entropy , Ergodic Theory Dynam. Systems 1 0 (1990) , no . 2 , 395-406 . P.C. Shields , The Ergodic Theory of Discrete Sample Paths, Amer . Math. Soc , 1996 .

C.E. Silv a an d P . Thieullen , Th e subadditiv e ergodi c theore m an d recurrence propertie s o f Markovia n transformations , J. Math. Anal. Appl. 15 4 (1991) , no . 1 , 83-99 .

E.M. Stei n an d R . Shakarchi , Real Analysis, Princeton , 2005 . S.J. Taylor , Introduction to Measure and Integration, Cambridge , 1966.

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag , 1981 . R. Wheeden an d A. Zygmund, Measure and Integral: An Introduction to Real Analysis, Dekker , Ne w York-Basel , 1977 .

[71] D . Williams , Probability with Martingales, Cambridge , 2004 .

Page 20: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Index

(1 - S)-Ml, 98 L2 inner product, 162 L°°-norm, 162 Z^-norm, 193 T-invariant, 9 2 T-invariant mo d /i , 9 2 a-algebra, 26 , 2 7 cr-algebra generate d by , 3 4 <x-finite, 2 9 cr-ideal, 8 2 d-dimensional Lebesgu e oute r

measure, 5 1 d-volume, 5 1 p-norm, 160 , 19 3 rn -odometer , 10 8

a.e., 9 1 absolutely continuous , 15 1 absolutely normal , 19 0 accumulation point , 24 3 algebra, 3 6 almost disjoint , 2 5 almost everywhere , 9 1 atom, 3 0

Baire Categor y Theorem , 7 9 Bernstein set , 7 5 Boole's transformation , 8 5 Borel measurable , 12 6 Borel measurabl e function , 13 4

Borel sets , 3 5 Borel-Canteili, 3 3 bounded above , 23 8 bounded below , 23 7 bounded interval , 23 7

canonical atomi c spaces , 2 9 canonical Chaco n transformation ,

219 canonical Lebesgu e measur e space ,

30 canonical nonatomi c Lebesgu e

measure space , 2 9 canonical representatio n o f a

simple function , 14 2 Cantor middle-third s set , 1 0 Cantor set , 1 4 Cartesian product , 5 1 Cauchy sequence , 23 9 Cesaro convergenc e o f sequences ,

202 characteristic function , 7 7 closed set , 24 3 closure, 24 3 column, 10 4 compact, 24 6 complete, 24 6 complete measur e space , 2 9 compressible, 8 8 conjugate, 16 0

259

Page 21: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

260 Index

conservative, 8 7 continued fractio n expansion , 15 4 continuous, 7 1 continuous spectrum , 16 9 converge i n density , 20 4 convergence o f sequences , 23 9 converges, 24 3 copy, 22 0 countable basis , 16 6 countably subadditive , 4 8 counting measure , 3 0 cutting an d stacking , 11 4

dense, 24 3 dense algebra , 4 4 dense ring , 4 4 density one , 20 3 doubling map , 7 6 doubly ergodic , 20 7 dyadic interval , 9 dynamical property , 11 8

eigenfunction, 16 6 eigenvalue, 16 6 eigenvalue group , 16 8 eigenvector, 16 6 element, 23 5 empty set , 23 5 equal almos t everywhere , 13 7 equivalent mo d 1 , 6 7 equivariance, 11 8 ergodic, 9 6 essential supremum , 16 2 exhaustive, 11 2

factor, 11 9 fiber, 17 1 finite measur e space , 2 9 finite measure-preserving , 8 3 finitely additive , 4 7 first category , 7 8 first retur n tim e ,12 1 full measure , 11 6

Gauss map , 15 2 Gelfand's question , 7 2 generate mo d 0 , 4 4

height, 10 4

homeomorphism, 13 0

improper d-algebra , 2 7 incompressible, 8 8 indicator function , 7 7 induced transformation , 12 1 infimum, 23 8 infinite measure-preserving , 8 3 integrable, 15 6 interior point , 24 8 interval, 23 7 invariant, 9 2 invariant measure , 6 9 inverse image , 6 9 invertible measurabl e

transformation, 6 9 invertible measurabl e

transformation mod^t , 9 4 invertible measure-preserving , 7 0 invertible transformation , 6 7 isolated point , 24 3 isomorphic, 116 , 11 8 isomorphism, 11 8

least period , 6 8 Lebesgue integrable , 145 , 15 6 Lebesgue integra l o f a

characteristic function , 14 1 Lebesgue integra l o f a measurabl e

function, 15 6 Lebesgue integra l o f a nonnegativ e

function, 14 5 Lebesgue integra l o f a simpl e

function, 14 2 Lebesgue measurable , 1 7 Lebesgue measurabl e function , 13 4 Lebesgue measure , 2 3 Lebesgue oute r measure , 6 Lebesgue space , 11 7 length, 23 7 level, 10 4 lightly mixing , 22 5 Liouville number , 1 6 lower bound , 23 7

meager, 7 8 mean convergence , 19 3 measurable function , 13 4 measurable rectangle , 17 1

Page 22: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Index 261

measurable transformation , 6 9 measure, 2 8 measure space , 2 9 measure-preserving, 6 9 measure-preserving dynamica l

system, 83 , 11 8 measure-preserving isomorphis m

mod 0 , 11 6 mesh, 13 1 metric, 24 2 metric space , 24 2 mildly mixing , 22 9 minimal, 7 2 mixing sequence , 21 4 monotone class , 3 6 monotone clas s generate d by , 3 6 monotone se t function , 4 8 multiply recurrent , 8 9

negatively nonsingular , 15 2 nonsingular, 15 2 norm, 16 1 normal t o bas e 2 , 18 9 normed linea r space , 16 1 nowhere dense , 14 , 7 8 null set , 9

odometer map , 12 7 open, 24 2 open ball , 24 2 open bounde d interval , 23 7 open set , 24 1 orbit, full , 6 8 orbit, positive , 6 8 orthogonal collection , 16 4 orthogonal complement , 19 4 orthogonal functions , 16 4 orthonormal collection , 16 4 outer measure , 4 8

pair wise disjoint , 23 6 partially rigid , 22 8 partition, 13 1 perfect set , 24 3 period, 6 8 periodic, 6 8 periodic point , 6 8 Poincare Recurrenc e Theorem , 8 8 Poincare sequence , 9 0

positive density , 20 3 positively invariant , 9 1 power set , 2 7 pre-image, 6 9 probability space , 2 9 probability-preserving, 8 3 product measure , 17 1 projection, 19 5

rational eigenvalue , 16 8 real an d imaginar y par t o f a

function, 16 0 recurrent, 8 6 residual, 8 2 Riemann integrable , 13 2 rigid, 22 7 ring, 4 4 ring generate d by , 4 6 rotation b y a , 6 7

semi-ring, 3 9 separable metri c space , 24 6 set function , 4 7 sets restricte d t o Y , 2 8 shift, 12 7 simple eigenvalue , 16 7 simple function , 14 1 simply norma l number , 7 7 simply norma l t o bas e 2 , 18 8 spacers, 110 , 11 4 square integrable , 15 9 strictly invarian t mo d /i , 9 2 strictly invariant , 9 2 strictly periodic , 6 8 strong Cesar o convergenc e o f

sequences, 20 2 sublevels, 22 0 subset, 23 5 sufficient ring , 20 9 sufficient semi-ring , 4 1 supremum, 23 8 sweeps out , 9 7 symbolic binar y representation , 7 6 symmetric difference , 23 5

tent map , 7 8 thick set , 9 0 topologically transitive , 7 8 totally disconnected , 1 4

Page 23: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

262 Index

totally ergodic , 10 1 tower, 10 4 transformation, 6 7 triadic interva l o f orde r n , 22 2 trivial cr-algebra , 2 7

unbounded interval , 23 7 uniformly distributed , 19 1 upper bound , 23 7

wandering, 90 , 11 2 weakly mixing , 20 5 weakly wandering , 11 2

zero density , 20 3

Page 24: STUDENT MATHEMATICAL LIBRARY · 2019. 2. 12. · passages from this publication in reviews, provided the customary acknowledgment of ... Jon Crabtree, Michael Daub, Sarah Day, Chris

Recommended