+ All Categories
Home > Documents > Studies of Plasma Exhaust Scenario and DivertorDesign for ......⇒Conducting shell design (vertical...

Studies of Plasma Exhaust Scenario and DivertorDesign for ......⇒Conducting shell design (vertical...

Date post: 30-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
19
National Institutes for Quantum and Radiological Science and Technology (QST), Rokkasho, Aomori, Japan a National Institutes for Quantum and Radiological Science and Technology (QST), Naka, Ibaraki, Japan b Graduate School of Engineering, Nagoya Univ., Nagoya, Japan c Graduate School of Engineering, Osaka University, Osaka, Japan Studies of Plasma Exhaust Scenario and Divertor Design for JA DEMO Nobuyuki Asakura, K. Hoshino, H. Utoh, Y. Someya, S. Suzuki a , H. Kudo, S. Tokunaga, Y. Homma, Y. Sakamoto a , R.Hiwatari, K. Tobita, K. Ezato a , Y. Seki a , N. Ohno b , Y. Ueda c , and Joint Special Design Team for Fusion DEMO IAEA 2nd Technical Meeting on Divertor Concepts Suzhou, China, 13-16 November 2017
Transcript
  • NationalInstitutesforQuantumandRadiologicalScienceandTechnology(QST),Rokkasho,Aomori,JapanaNationalInstitutesforQuantumandRadiologicalScienceandTechnology(QST),Naka,Ibaraki,JapanbGraduateSchoolofEngineering,NagoyaUniv.,Nagoya,JapancGraduate SchoolofEngineering,OsakaUniversity,Osaka,Japan

    StudiesofPlasmaExhaustScenarioandDivertor DesignforJADEMO

    NobuyukiAsakura,K.Hoshino,H.Utoh,Y.Someya,S.Suzukia,H.Kudo,S.Tokunaga,Y.Homma,Y.Sakamotoa,R.Hiwatari,

    K.Tobita,K.Ezatoa,Y.Sekia,N.Ohnob,Y.Uedac,andJointSpecialDesignTeamforFusionDEMO

    IAEA2ndTechnicalMeetingonDivertor ConceptsSuzhou,China,13-16November2017

  • Contents

    2.PowerexhaustinJADEMO,andthedivertor simulation

    3.EngineeringdesignforJADEMOdivertor

    4.Summary,futureworkandissues

    1. Introduction:DEMOspecialdesignteaminJapanBADEMOdesignactivity,andpowerexhaustconcepts

    Joint Special Design Team for Fusion DEMO

  • 1.DEMOdesignactivityinJapan:BADDA,SpecialdesignteamJoint Special Design Team for Fusion DEMO

    Total83members(incl.site&visiting,2017June)QST28,NIFS3,Univ.28,NIMS 1,Makers/Industries23

  • Similarsize(8-9m),Pfusion (1.7-2GW),Pheat (430-460MW)

    Parameters JADEMO EUDEMO1 ITER(inductive)

    Size&Con

    figuration Rp / ap (m) 8.5/2.42 9.1/2.94 6.2/2.0

    A 3.5 3.1 3.1k95 1.75 1.59 (1.70)q95 4.1 3.2 3Ip (MA) 13.5 19.6 14BT /BTmax (T) 5.94/12.1 5.7/12.3 5.3/12

    AbsolutePerform

    ance

    Operation Steady-state Pulsed 2hrs ~400sPfusion (MW) 1694 2037 500Pgross (MWe) 588 914 --Paux (MW) 96 50 73Q 18 41 10

    Pa+Paux (=Pheat MW) 435 457 173Neutron(MWm-2) ~1 ~1 0.5

    Norm

    alize

    dPerfo

    rmance HH98y2 1.3 1.1 1.0

    bN 3.4 2.6 1.8fBS 0.61 0.35 0.15ne/nGW 1.2 1.2 ~0.9

    EUDEMO1(pulsed2hrs)[Wenninger,etal.Nucl.Fusion2017]

    JapanDEMO(steady-state)(increasingk95 andseeding)[Sakamoto,etal.IAEAFEC2014,Asakura,etal.Nucl.Fusion2017]

    Joint Special Design Team for Fusion DEMO

    CommonmissionsforJAandEUDEMOs:・Electricgeneration,・Fuelgeneration,・Highduty-cycle,・ Remote-maintenanceinhighneutrondose,・Safety,・ Plasmacontrol&Power handlinginlong-pulse/steady-state

  • PowerexhaustscenarioanddesignconceptinJAandEU

    EUPowerexhaust(pulse2hours):HigherIp =20MA,andne =8.7x1019m-3,⇒ Largeradiationlossinmainplasmausinghigh-Zimpurityseeding,toreducePsep/Rto17MW/m(ITER-level)

    Parameters JADEMO EUDEMO1 ITER (Q=10)

    Powerexhaust

    line-ave. ne (1019m-3) 8.5 8.7 ~10nimp/ne (%) 0.60 (Ar) 0.039(Xe) N2,Ne,Ar…

    Pa+Paux(=PheatMW) 435 457 173

    Pradmain (MW) 177 306 ~70

    Pradmain/Pheat 0.41 0.67 0.40

    Psep (MW) 258 154 ~100

    Psep/Rp (MWm-1) 30 17 16

    PowerexhaustscenarioforDEMOplasmasandthebaselinedivertordesign havebeenstudiedwithahighpriorityinJAandEU.・ EUandJAstudieshavecovereddivertor physicsandengineeringaspects:Water-cooledsingle-nulldivertor,operatingwithPlasmadetachment.・ Bothconceptsrequirehighlyradiation(frad =Prad/Pheat~80%)tohandlewithITER-levelpeakheatload(10MWm-2),whilebalanceoffradmain andfraddiv isdifferent:

    Systemcodepredictions(JA:TPC,EU:PROCESS)

    JAPowerexhaust(steady-state):LowerIp =13.5MAduetohigherq95(4.1),andexpectinggoodplasmaperformance,⇒ Largepowerhandlinginthedivertor:

    Psep/R~30MW/m

    CommonandComplementalworksweresummarizedinAsakura,etal.ISFNT-132017.

    Joint Special Design Team for Fusion DEMO

    ⇒ Twoapproacheswillprovideimportantcase-studiesforfuturedecisionofthedivertor design.

  • ImpurityseedingintoJADEMO2014 (Ip=12MA,k95=1.65,Pfusion~1.5MW,HH98(y2)=1.3):・ Fusionpower (Pfusion)wasreduced1.4)wasrequiredtomaintainWth andbN.k95=1.75 isproposedtoincreaseIp =13.5MA, =7.2x1019m-3,Pfusion >1.5GW⇒ Conductingshelldesign(verticalstabilitycontrol)isimproved(Utoh,ISFNT-13,2017)

    2.PowerexhaustandImpurityseedinginJADEMOscenario

    k95=1.75:=7.2x1019m-3

    PowerexhaustbyAr seeding:increasingnAr/ne=0.5-0.75%⇒ Pradmain=150-205MWand Pfusion =1.75-1.65GW

    fradmain =Pradmain/Pheat =0.35-0.45(ITER-level)⇒ Psep=285-205MW,i.e Psep/R=34-25MW/m

    (assumingnHe/ne=7%,nW/ne=10-5)

    systemcodestudy

    LargepowerhandlingisrequiredforJAdivertor,whileHH98(y2)~1.3,bN =3.4,Pfusion>1.5GW ismaintained.

    Joint Special Design Team for Fusion DEMO

    Note:L-HPth (Martin,J.Phys.:Conf.Ser.2008):need databaseofHtoLthresholdpoweratZeff >2-3,andPth atfGW >1?(Huber,Nucl.Metter.Energy2017)

  • SONICsimulation:self-consistentlysolvedbyiterationofplasmafluid(SORDOL),neutral(D)MC(NEUT2D)andimpurity(Ar)MC(IMPMC)codes

    Longlegdivertor:Ldiv-out=1.6and2.0mwasinvestigatedtodeterminethesize

    ・Atcore-edgeboundaryr/a=0.95: exhaustedpower(Pout=250MW),particle(GoutD+=1x1022s-1)・Transportcoefficients:ce=ci=1m2/s,D=0.3m2/s(sameasITERcalc.),Driftsarenotincorporated.・CoveringtheconnectingSOL:rmid <3.2cm.

    Divertor physicsstudybySONICsimulations

    Pout=250MW

    Spump=63m3/s

    SONIC:K.Shimizu,etal.,J.Nucl.Mater.2003,H.Kawashima,etal.J.PlasmaFusionRes. 2006,T.Eich ‘sscaling:Nucl.Fusion2013

    Ldiv=1.6m

    Joint Special Design Team for Fusion DEMO

    1.9mm

    5.3mm

    Tesep=350eV

    Tisep=740eV

    nesep=2.4x1019m-3

    Tesep& Tisep areincreased:2-3timeslargerthanITER⇒ lq// near-sep. becomessmallwhilec isthesame:lq//=1.9mmisstilllargerthanEich’s scaling(1.3mm).c & Dto1/2-1/4(Kikushkin JNM2013)isinprogress.

  • OptimizationofAr seedingrateatPradedge+sol+div/Pout=0.8nesep isincreased(1.8to2.4x1019m-3),Ar puffrateisminimized(4.2to3.3x1020/s),whereradiationpowerfraction,(Pradedge+Pradsol+Praddiv )/Pout =0.8,isfixed.⇒ Pradsol isincreasedfrom26to36MW,andPraddiv isdecreasedfrom162to150MW.Innertarget: TotalpowerPtarget = 52-66MW,andpeakqtarget =5-8MW/m2Outertarget:Ptarget isreducedfrom80to60MWandpeakqtarget from8to4MW/m2,

    sincetheplasmadetachmentisextendedtoupstreamandwider(next).

    Joint Special Design Team for Fusion DEMO

    nAr/ne inSOL decreasesto0.42%(comparabletomainnAr/ne =0.5-0.7%:systemcode),imp. shielding,(nAr/ne)div/(nAr/ne)SOL,isimproved⇒ appropriatefuel&Ar puffrates

    (nAr/ne)div/(nAr/ne)SOL,nAr/nePtarget qtarget

  • Psep=235MW

    Targetheatload

    Pradmain =180MW(Pradmain/Pheat =0.41)

    PradSOL+div =186MW(PradSOL+div/Pheat =0.43)

    Pheat (=Pa+Padd)= 430MW

    PradSOL =33MW

    Praddiv =153MW

    Pdiv=202MW

    PowerexhaustforPradedge+sol+div/Pout=0.8,D2puff:100Pam3/sPowertodivertors (Pdiv):202MW(>2xITER),Divertor radiation(Praddiv):153MW(~3xITER)innertarget:Fulldetachment(Te,i~1eV)outertarget:Partialdetachment(r<14cm)

    Praddiv-Out=81MW

    RadiationandelectrontemperatureprofilesforLdiv=1.6mdivertor case

    Praddiv-In=72MW

    (Dpuff:100Pam3/s)

    Wrad

    Te

    Joint Special Design Team for Fusion DEMO

    Pradtot/Pheat =0.84(systemcode&SONIC)

  • Controlofradialpeakanddetachment:SimulationvsExperiments・ Controlofthestrongradiation(detachment)inthedivertor leg(Ldiv >1mITER-level)isnecessarytoproposethepowerexhaustconceptanddivertor design.

    RadiationisenhancedneartheX-pointanddetachmentexpandsatthetarget⇒ reducinginTeped,HH98(y2)

    ・ InDEMO(andITER)withhighTe andq//,radiationpeakcanbemaintaininthedivertor.・ Pressurelossatthedetachmentissmall:n(Te+Ti)+mini(Vi)2:(Xp)3.4x103 ->(div)1.6x103Pa

    0.6m1.0m

    Praddiv/Pheat >0.6Nseeding:H98=0.9frad ≤90%Type-IIIELMs

    H98=0.7frad ≤75%

    Type-I/noELMs

    Ar seeding:H98=0.7-1frad ≤90%Type-IIIELM

    Krseeding:H98=0.65frad ≤60%

    H/Ltransitions

    M.Bernert,Nucl.Mater.Energy2017

    JET-ILWAUG

  • DetachmentplasmaatinnerandoutertargetsInnertarget:plasmaheatloadisreduced,whileionizationstilloccursatTe =1-2eV.⇒ peakqtarget ~5MW/m2:surfacerecombinationloadisadominantcomponent.Outertarget:“partial”detachmentisproducedinrtarget <14cm.⇒ peakqtarget ~5MW/m2:plasmaheatloadisdominantattheattachedregion, and

    radiationloadisalsolargeduetosignificantradiationlossnearthetarget(above<10cm).

    Pintotal =41MW Pouttotal=66MW

    Joint Special Design Team for Fusion DEMO

    Note:W-targeterosionintheouterattachedareaisanissueforSteady-Stateoperation.

    attachdetach detachDetach:recomb.

    attach:ionization

  • LowerPrad case:Pradedge+sol+div/Pout=0.75(Pradtot/Pheat~0.8)

    Outertarget:narrower“partial”detachmentregion(rtarget <10cm).⇒ peakqtarget ~6.5MW/m2:Tediv andTidiv attheattachedregionbecamehigher.

    Innertarget:ionizationstilloccursatTe =1-2eV.⇒ peakqtarget ~8MW/m2:surfacerecombinationloadisdominant.

    Joint Special Design Team for Fusion DEMO

    attachdetach

    detach

    qtargettot =6.5MWm-2qtargettot =8.3MWm-2

    Ar seedinginPout =250MW,frad=0.75,i.e.increasingPout-Prad from50to62.5MWAr puffrateisdecreased(4to3x1020/s)⇒ Psep~240MWiscomparable,Praddiv =150MWislower

    Largerqtarget (duetosurfacerecom.)isseenattheinnertarget?・ needimprovementofA&Mand/orelastic-collisionprocesses・ in-outasymmetryinpowerdistributionmayberequired.

  • 3.EngineeringdesignforJADEMOdivertor

    0.8m

    0.8m

    W-monoblock&Cu-alloypipeunits

    W-monoblock&F82Hpipeunits

    Heatsinkunitandcooling-piperoutinginacassettestructureareinvestigated:(1) Remotemaintenance:onecassettecovers7.5° toroidalarea⇒ 3cassettesarereplacedfrom1port(total16portsandTFCs)[Utoh,etalFED2015](2)Fuel/Heexhaust,pumpingroute⇒ privatepumping,openingatthebottom(tentative)(3)Powerexhaustdesignundern-irradiation⇒ ApplicationofITERtechnologyisinvestigated:

    W-monoblock &Cu-alloycoolingpipe⇒ Cooling-pipearrangementinacassette⇒ Analysisoftheheatsinkof~10MWm-2(4)CassettedesignandReplacement

    Joint Special Design Team for Fusion DEMO

  • •Neutronics analysis(MCNP-5codewithFENDL-2.1nucleardatabase)showsW-nonoblock &CuCrZr heatsinkcanbeappliedathighheatfluxandlown-fluxarea:~1dpa/fpy (inner)and~1.5dpa/fpy (outer)onCuCrZr pipenearthestrikepoints.

    DesignconceptofWandCuCrZr/F82Hunitinneutroncondition

    ITERtechnology(W/CuCrZr-target)canbeapplied(ITERlifetimedoseonW:0.54dpa,CuCrZr:2.5dpa),whilethereplacementis1-2yearsinDEMOcondition,duetoincreasingoperationtimeaswellastheneutronflux.

  • •HeatremovalconceptofW-monoblock &CuCrZr/F82H cooling-pipes wasdesignedforlargemargincaseonthetarget(Pdivthermal:380MW+Pdivneutron:118MW),wherePdivthermal is1.7timeslargerthanSONICsimulation(Pdivthermal =Psep – PradSOL =220MW).

    Designconceptofthewater-coolingrouting(2015)

    Asakura etal.Nucl.Fusion2017

    •PressurizedwaterfortheCuCrZr-pipe:200°C,5Mpa,andfortheF82H-pipe:290°C,15MPa(similartopressurizedwaterreactor:PWR)isusedinthedifferentroutes.Note:PWRwaterwillbeusedfortheelectricgeneration

    byturbinesystemsimilartoaPWR.

  • HeatanalysisinW-monoblock &CuCrZr-pipeheatsink•Base-Temp.(200 °C)ofthepressurizedwaterandNuclearheatlargerthanITER.•Heatloadprofiles(plasma,radiation,neutral) withthepeakheatload10MWm-2,areusedfor3DFEMcalculationofheatfluxandthermalstress.

    •Max.temperaturesofW-surface1021°C (lowerthanrecrystalization Temp.1200°C),andCu-alloy-pipe331°C arewithinoperationrange.

    +NuclearHeatTotalpeakheatload:10MWm-2

    ABAQUS 3DFEManalysisofW/Cu-alloy(four)monoblock unit:

    Joint Special Design Team for Fusion DEMO

  • HeattransportinWandCuCrZr pipe,andmax.heatflux•Max.heatfluxtocoolant:18MWm-2 is2/3oftheCriticalheatflux(27MWm-2).Heatfluxtocoolingpipeislocalizedatsidesurface:25MWm-2⇒ acceptablelevel

    •ThermalstressisincreasedatupperinnersurfaceofCuCrZr-pipebyelasticanalysis:maximumstress-strainisevaluatedwithelasto-plasticstressanalysis,consideringresidualstress-strainafterthebrazeprocessfrom950°:notapparentin10MWm-3.

    Joint Special Design Team for Fusion DEMO

  • Summary1:Powerexhaustanddivertor designforJADEMOPowerhandlingwithAr seedinghasbeeninvestigatedin steady-stateJADEMO:Pheat=Pa+Padd~435MW,Rp=8.5m,Psep~258MW,Psep/R~30MW/m,wherenAr/ne~0.6%.Theconceptwasrevisedtoincreasek95 from1.65to1.75(andincreaseIp),andtoimprovetheplasmaperformancefortheimpurityseeding(Pradmain/Pheat~0.4).

    Joint Special Design Team for Fusion DEMO

    (1)Divertor (largerthanITER)hasbeeninvestigatedusingSONICwithAr seeding.increasing PradSOL+div/Pheat =0.43 inlong-legdivertor (Lleg=1.6m)⇒ (nAr/ne)SOL=0.4-0.5%,Thepowerexhaustscenarioprovidespeak-qtarget isreducedlessthan10MWm-2⇒ ITERdivertor technology(W-monoblock&Cu-alloy pipe)isapplicable.

    •Improvementofplasma&neutralmodellinginthedetachment,andthedivertoroperation(lowerfrad,c andD, geometry,impurityselection)arehighpriorityissues.

    PhysicsissuesoftheJADEMOpowerexhaustdesign(atthisstage):•PossibilityanditsmarginofhighfGW inimpurityseeding(ne iswithinexp.database).•PthL-HandH-L anditsmargininZeff =2-3(andfGW >1).•Controlofradiationpeakanddetachfrontindivertor leg(leglength,powerflux?)•Scenario(model)oftheedgeplasmawhentheX-pointradiationisenhanced.•Appropriatec &DprofilesforDEMO,anddissipationinthedetachment(Sdiv).•Impurityconcentration(nimp/ne) atedge-SOL–divertor,andtheshieldingefficiency.

  • Summary2:Powerexhaustanddivertor designforJADEMOJoint Special Design Team for Fusion DEMO

    (2)HeatremovalofW-monoblock/cooling-pipeandwater-coolingarrangementinacassettewerestudiedforseverecase(Pdivthermal:300MW+Pdivneutron: 128MW):

    •Neutronics analysisshowedW/CuCrZr heatsinkcanbeappliedathighheatfluxandlown-fluxarea⇒ frequentremote-maintenance(1-2year)willberequired.

    •3DheattransportanalysisshowedMax.temp.onW(1021°C)andCu-alloy(331°C)andHeatfluxwereinoperationrange:appropriateforpeakqtarget = 10MWm-2-level.

    •Cassettedesign,consideringnucl.heatcooling,n-shield,exhaustopeningandtargetunitreplacement,ishighpriorityissuein2016-2017.

    EngineeringandmaterialissuesoftheJADEMOdivertordesign(atthisstage):•ApplicationofCuCrZr athighirradiationdose(>2dpa)asaheatsink(structure)•Appropriatewatertemperature(150-200C)forW/Cu-alloyheatexhaustunit.•EvaluationofRMperiod(lifetime)evenwithoutmelting:erosion,re-crystallizationofbothWandCuCrZr andthermalfatiguebytransientevents.

    •ReplacementdesignofCuCrZr coolingunitinthecassette(inhotcell)•Divertor cassettedesignasaneutronshieldforthevacuumvessel.


Recommended