+ All Categories
Home > Documents > Study of the opto-electronic properties of Cu ZnXS (X=Sn,Ge [email protected] Study of the...

Study of the opto-electronic properties of Cu ZnXS (X=Sn,Ge [email protected] Study of the...

Date post: 05-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
1
[email protected] Study of the opto-electronic properties of Cu 2 ZnXS 4 (X=Sn,Ge,Si) kesterites as input data for solar cell efficiency modelling Thomas Ratz 1,2 , Jean-Yves Raty 1,3 , Guy Brammertz 4 , Bart Vermang 2,4,5 , Ngoc Duy Nguyen 1 1. CESAM | Q-MAT | Solid State Physics, Interfaces and Nanostructures, Physics Institute B5a, Allée du Six Août 19, B-4000 Liège, Belgium 2. Institute for Material Research (IMO), Hasselt University, Agoralaan gebouw H, B-3590 Diepenbeek, Belgium 3. University of Grenoble Alpes | CEA-LETI | MINATEC Campus | Rue des Martyrs 17, F-38054 Cedex 9 Grenobles, France 4. IMEC division IMOMEC | partner in Solliance, Wetenschapspark 1, B-3590 Diepenbeek, Belgium 5. Energyville, Thor Park 8320, B-3600 Genk, Belgium ! ! S-3p Cu-3d S-3p Cu-3d Sn-5s S-3p Sn-5p S-3p S-3p Cu-3d S-3p Cu-3d Si-3p S-3p S-3p Cu-3d S-3p Cu-3d Ge-4s S-3p Ge-4p S-3p Cu 2 ZnSnS 4 Cu 2 ZnGeS 4 Cu 2 ZnSiS 4 In a nutshell Insights of Sn substitution by Ge and Si in S-kesterite compounds using DFT approach Solar cell modelling Correlation between non-radiative recombination rate and solar cell characteristics !"#$ = "#$ (1 − % ) % Fig. 1: Cell efficiency with respect to the absorber layer thickness Fig. 2: Cell efficiency with respect to ! for an optimal absorber thickness value à Structural properties: Materials [] [ + ] [] [%] CZTS 1.32 1 27.68 1.06 25.88 10 -4 27.19 0.70 15.88 CZGS 1.89 1 13.54 1.58 19.94 10 -4 13.45 1.22 14.98 CZSS 3.06 1 1.24 2.67 3.11 10 -4 1.23 2.31 2.66 ! ! ! ! ! ! à Electronic properties: à Optical properties: Kesterite lattice contraction Significant bandgap increase and slight increase of Absorption coefficients of the order of 10 4 cm -1 , (), = 1 − exp(−2) !"# (), $!"# ( % , !"# ) , &’ , (’ , Improved Shockley-Queisser model [1] DFT input data: Model param.: = 300, [1] Blank et al., Phys. Rev. App., 8(2), 024032 (2017) (, % ) Fig.1 )*+ ( % ) % : # !"# Fig.2 Modelling of the non-radiative recombination rate via an external parameter: % Optimal absorber layer thicknesses between 1.15 and 2.68 Disparity between the Si and the two other compounds in the reported cell efficiencies due to /0 limitations Distinguishable behaviour between !"#$ =0 % =1 and !"#$ > 0 ( % < 1) with respect to the absorber thickness Decrease of the cell efficiency taking into account the materials reflectivity The kesterite absorptance fixes the absolute efficiency loss with respect to % (Fig. 2) From Sn to Si kesterite, decreases explained by the /0 drop not compensated by the increase of 10 (Fig. 3) Fig. 3: JV cruves for = 1.5 with respect to ! Methodology: Possible efficiency imrpovement of 10% (CZTS) and 4.96% (CZGS) via the reduction of !"#$ With higher bandgap and interesting efficiencies, CZGS could be used in tandem approach CZSS might be implemented for PW windows Submitted to Solar Energy Materials and Solar Cells journal
Transcript
  • [email protected]

    Study of the opto-electronic properties of Cu2ZnXS4 (X=Sn,Ge,Si) kesterites as input data for solar cell efficiency modelling

    Thomas Ratz1,2, Jean-Yves Raty1,3, Guy Brammertz4, Bart Vermang2,4,5, Ngoc Duy Nguyen1

    1. CESAM | Q-MAT | Solid State Physics, Interfaces and Nanostructures, Physics Institute B5a, Allée du Six Août 19, B-4000 Liège, Belgium2. Institute for Material Research (IMO), Hasselt University, Agoralaan gebouw H, B-3590 Diepenbeek, Belgium

    3. University of Grenoble Alpes | CEA-LETI | MINATEC Campus | Rue des Martyrs 17, F-38054 Cedex 9 Grenobles, France4. IMEC division IMOMEC | partner in Solliance, Wetenschapspark 1, B-3590 Diepenbeek, Belgium

    5. Energyville, Thor Park 8320, B-3600 Genk, Belgium

    !! ↘

    S-3pCu-3d

    S-3pCu-3d

    Sn-5sS-3p

    Sn-5pS-3p

    S-3pCu-3d

    S-3pCu-3d

    Si-3pS-3p

    S-3pCu-3d

    S-3pCu-3d

    Ge-4sS-3p

    Ge-4pS-3p

    Cu2ZnSnS4

    Cu2ZnGeS4

    Cu2ZnSiS4

    In a nutshell

    Insights of Sn substitution by Ge and Si in S-kesterite compounds using DFT approach

    Solar cell modelling

    Correlation between non-radiative recombination rate and solar cell characteristics

    𝑅!"#$ = 𝑅"#$(1 − 𝑄%)𝑄%

    Fig. 1: Cell efficiency with respect to the absorber layer thickness

    Fig. 2: Cell efficiency with respect to 𝑄! for an optimal absorber thickness value

    à Structural properties:

    Materials 𝑬𝑮[𝒆𝑽] 𝑸𝒊𝑱𝑺𝑪

    [𝒎𝑨𝒄𝒎+𝟐]𝑽𝑶𝑪[𝑽]

    𝜼[%]

    CZTS 1.321 27.68 1.06 25.88

    10-4 27.19 0.70 15.88

    CZGS 1.891 13.54 1.58 19.94

    10-4 13.45 1.22 14.98

    CZSS 3.061 1.24 2.67 3.11

    10-4 1.23 2.31 2.66

    !! ↘

    !! ↘

    !! ↘

    à Electronic properties:

    à Optical properties:

    Kesterite lattice contraction

    Significant bandgap increase and slight increase of 𝑚∗

    Absorption coefficients of the order of 104 cm-1

    𝛼 𝐸 , 𝑛(𝐸),𝑅 𝐸

    𝐴 𝐸 = 1 − 𝑅 exp(−2𝛼𝑑)

    𝑅!"#(𝑛), 𝑅$!"#(𝑄% , 𝑅!"#)

    𝜂, 𝐽&' , 𝑉(' , 𝐹𝐹

    Improved Shockley-Queisser model[1]

    DFT input data: Model param.:

    𝑇 = 300𝐾,𝑑

    [1] Blank et al., Phys. Rev. App., 8(2), 024032 (2017)

    𝜂(𝑑, 𝑄%)

    Fig.1𝑑)*+(𝑄%)

    𝜂 𝑄% :#!"#

    Fig.2

    Modelling of the non-radiative recombination rate via an external parameter: 𝑄%

    • Optimal absorber layer thicknesses between 1.15 and 2.68 𝜇𝑚

    • Disparity between the Si and the two other compounds in the reported cell efficiencies due to 𝐽/0 limitations

    • Distinguishable behaviour between 𝑅!"#$ = 0 𝑄% = 1 and 𝑅!"#$ > 0 (𝑄% < 1) with respect to the absorber thickness 𝑑

    • Decrease of the cell efficiency taking into account the materials reflectivity

    • The kesterite absorptance fixes the absolute efficiency loss with respect to 𝑄% (Fig. 2)

    • From Sn to Si kesterite, 𝜂 decreases explained by the 𝐽/0 drop not compensated by the increase of 𝑉10 (Fig. 3)

    Fig. 3: JV cruves for 𝑑 = 1.5 𝜇𝑚 with respect to 𝑄!

    Methodology:

    • Possible efficiency imrpovement of 10% (CZTS) and 4.96% (CZGS) via the reduction of 𝑅!"#$

    • With higher bandgap and interesting efficiencies, CZGS could be used in tandem approach

    • CZSS might be implemented for PW windows

    Submitted to Solar Energy Materials and Solar Cells journal

    mailto:[email protected]

Recommended