+ All Categories
Home > Documents > Subject Index - Springer978-3-642-86659-3/1.pdf · Subject Index Actinopterygian (ray-finned) fish...

Subject Index - Springer978-3-642-86659-3/1.pdf · Subject Index Actinopterygian (ray-finned) fish...

Date post: 12-Feb-2019
Category:
Upload: vannga
View: 222 times
Download: 0 times
Share this document with a friend
13
Subject Index Actinopterygian (ray-finned) fish 113 Active site of molecules 27, 28, 29, 59, 60, 71, 72, 74 Allopatric model of speciation 56 Allotetraploid 100-101 Ambiguous coding 25-29 Amino acids 8-9 (Table 1) Amniote egg 61, 116-117 Amphioxus 112, 124, 126-127 {Table 3) Anapsida line of reptiles 118, 131, 137 Anchovy ( Engraufis mordax) 128, 130 Anticodons of lransfer RNA 11, 23, 24, 25 Anticipation, evolutional mechanism of 142-145 Archaeopteryx lithographia (Jurassic bird) 39, 118 Atavism and atavistic mutation 39-40 Australopithecus (man-ape) 4, 55, 123 Autotetraplaid 99-100 Bacteriophage 21, 108 Bar locus in Drosophila 95 bobbed mutation in Drosophila 64, 95 Caiman alligator (Caiman sclerops) 136 Camelidae (camels and llamas) 58 Canary ( Serinus canarius) 135 Cattle (Bos Iaurus) 43, 51, 56, 72-74, 137, 141-142 Centromere 16 Chelonia (turtles and tortoises) 118, 137 Chimpanzee (Pan troglocytes) 36-37, 123 Chondrostean fish 117, 125, 129, 131 10* Chromosomal structure 15-19 Chromosomes of man (Homo sapiens), Fig. 3 (Plate I) - - mouse ( mus 11/Usculus), Fig. 7 (Plate II) - - tobacco mouse (mus poschiavinus), Fig. 7 (Plate II) - - tetraploid frog (Odontophrynus americanus), Fig. 17 (Plate III) - - rainbow trout ( Salmo irideus), Fig. 18 (Plate IV) - - turbot ( Pleuronichthys verticalis), Fig. 25 (Plate V) - - sunfish ( Lepomis cyanellus), Fig. 25 (Plate V) - - anchovy ( Engraufis mordax), Fig. 25 (Plate V) - - sturgeon (Scaphirhynchus platorhyn- chus), Fig. 26 (Plate VI) - - rattlesnake (Crotalus cerastes), Fig. 27 (Plate VII) - - canary (Serinus canarius), Fig. 27 (Plate VII) - - caiman alligator (Caiman sclerops), Fig. 28 (Plate VIII) - - tortoise ( Gopherus agassizi), Fig. 28 (Plate VIII) -- dog (Canisfamiliaris), Fig. 28 (Plate VIII) - - vole ( Microtus oregoni), Fig. 28 (Plate VIII) Chromosomal changes in evolution 41-42 Chymotrypsin 28, 72, 73, 74, 85, 104, 141, Figs. 5 and 11
Transcript

Subject Index

Actinopterygian (ray-finned) fish 113 Active site of molecules 27, 28, 29, 59, 60,

71, 72, 74 Allopatric model of speciation 56 Allotetraploid 100-101 Ambiguous coding 25-29 Amino acids 8-9 (Table 1) Amniote egg 61, 116-117 Amphioxus 112, 124, 126-127 {Table 3) Anapsida line of reptiles 118, 131, 137 Anchovy ( Engraufis mordax) 128, 130 Anticodons of lransfer RNA 11, 23, 24, 25 Anticipation, evolutional mechanism of

142-145 Archaeopteryx lithographia (Jurassic bird)

39, 118 Atavism and atavistic mutation 39-40 Australopithecus (man-ape) 4, 55, 123 Autotetraplaid 99-100

Bacteriophage 21, 108 Bar locus in Drosophila 95 bobbed mutation in Drosophila 64, 95

Caiman alligator (Caiman sclerops) 136 Camelidae (camels and llamas) 58 Canary ( Serinus canarius) 135 Cattle (Bos Iaurus) 43, 51, 56, 72-74, 137,

141-142 Centromere 16 Chelonia (turtles and tortoises) 118, 137 Chimpanzee (Pan troglocytes) 36-37, 123 Chondrostean fish 117, 125, 129, 131

10*

Chromosomal structure 15-19 Chromosomes of man (Homo sapiens), Fig. 3

(Plate I) - - mouse ( mus 11/Usculus), Fig. 7 (Plate II) - - tobacco mouse (mus poschiavinus),

Fig. 7 (Plate II) - - tetraploid frog (Odontophrynus

americanus), Fig. 17 (Plate III) - - rainbow trout ( Salmo irideus), Fig. 18

(Plate IV) - - turbot ( Pleuronichthys verticalis),

Fig. 25 (Plate V) - - sunfish ( Lepomis cyanellus), Fig. 25

(Plate V) - - anchovy ( Engraufis mordax), Fig. 25

(Plate V) - - sturgeon (Scaphirhynchus platorhyn­

chus), Fig. 26 (Plate VI) - - rattlesnake (Crotalus cerastes), Fig. 27

(Plate VII) - - canary (Serinus canarius), Fig. 27

(Plate VII) - - caiman alligator (Caiman sclerops),

Fig. 28 (Plate VIII) - - tortoise ( Gopherus agassizi), Fig. 28

(Plate VIII) -- dog (Canisfamiliaris), Fig. 28

(Plate VIII) - - vole ( Microtus oregoni), Fig. 28

(Plate VIII) Chromosomal changes in evolution 41-42 Chymotrypsin 28, 72, 73, 74, 85, 104, 141,

Figs. 5 and 11

148 Subject Index

Clonal selection 79 - derivation of somatic cells 145 Codons, (Table 2) 10, 11, 23 Colchicine 30, 31, 75, 76 Color vision 39-40 Complementality between purine and pyri­

midine bases 4--7, 21 Convergent evolution 37, 38, 74, 76 Crocodylia (alligators and crocodiles) 118,

134, 136 Crossopterygian (lobe-finned) fish 4, 115 Cyclic AMP (adenosine 3', 5' monophos-

phate) 84 Cyprinidae (carp and allies) 128, 130, 136 Cytochrome C 28, 49, 76

Deer mouse ( Peromysctts} 42, 44, 46, 51 Diapsida line of reptiles 118, 134--137 Dinosaurs 118, 136 Diploidization of tetraploids 101-104 Disulfide bridge 23, 29, 74 Dog (Canis familiaris) 45, 56, 137, 138 Donkey ( Equus asinus) 34, 44, 45, 91, 100 Dosage compensation for X-linked genes

17, 45, 66 - effect of structural genes 66-67 --- regulatory genes 104--105 Drosophila (fruit fly) 1, 60, 61, 64, 95

Electrophoresis, Figs. 8, 10. 24, 50 Escherichia co!i 11, 18, 27, 35, 41, 83-85,

105 Esterase 65-66, 142, 144 Euchromatin 17 Eukaryote 13, 15, 16, 19, 82

Favored mutation 30-31, 35-37 Fibrinepeptide 34 Forbidden mutation 2, 26-31, 34, 48-50,

62-63, 72, 74, 76, 141 Frame-shift mutation 21-22, 27, 39, 80

Galactosemia 31 Generation time, effect of 57-58 Genome (haploid set) 16, 26, 59, 96, 97,

98, 100, 107, 108, 139 - size of vertebrates, Tables 3, 4, 5, 6

124--131 Germ line 3-4 - cells 17, 99 Gibbon ( Hylobates lar !ar} 37, 122-123 G-6-PD (glucose-6-phosphate dehydro-

genase) 41, 45, 66 Goldfish (Carassius auratus) 51, 70, 143 Gorilla (Gorilla gori/la) 32, 123

Hamster ( Mesocricetus auratus) 31, 138 Haptoglobin 79-80, 92, 94

Hemoglobin, Figs. 4, 6. 3, 19, 25, 27, 32, 36, 42, 66, 76-77, 85, 90, 91, 94-96, 104, 140, 141, 142

Heterochromatin 17-18, 138 Heterozygous advantage 36, 65, 95 Himalaya mutation of mammals 30, 38 Histocompatibility genes 51, 108-109 Histones 18-19, 34, 82-83, 85 Holostean fish 113, 125, 129, 131 Homo neanderthalensis 57, 123, 143-144 Hormones 19, 30, 83, 84 Horse ( Equus caba!lus), Fig. 6. 25, 32, 34,

44, 45, 77, 91, 100, 138, 140, 142 Hybridization of nucleic acid 14

Ichthyostega (first amphibian) 115, 131 Ictidosaurus (mammal-like reptiles) 120 Immuneglobulin Figs. 13, 19. 36-37, 42,

46, 69, 77-80, 91, 92, 94--96, 140, 145 Inbreeding, necessity of 32, 55 Inducer (of transcription and translation)

83, 84 Intragenie recombination 50-53, 72, 144,

145 Inversion of chromosomes 42, 44--45, 101 Isozyme 41, 67-70, 71, 76, 77

Jawless fish ( Agnatha) 86 - hagfish 76, 77, 86, 125, 128 - lamprey 76, 77, 86, 125 - ostracoderms 113

Labyrintheclont amphibian 116, 131, 132, 134

LDH (Iactate dehydrogenase) 28, 46, 51, 67-68, 71, 103, 139-141

/ac-operon of E. coli 41, 83, 105 Lamarckian illusion 55 Lemuroid primates 39, 121 Lepospondyls amphibian 129, 131, 132, 133 Lethality of tetraploid zygote 104, 105 Life span of somatic cells 3 Linkage of genes 41-42, 45-46, 91, 94,

96, 141 -- nucleotides 2'-5' 4, 7

3'-5' 4, 7 5'-5' 4, 7

Living fossil 53-54 Lungfish (Dipnoa) 53, 96, 97, 113, 125,

129, 130, 133 Lysogeny 92, 108-109

man (Homo sapiens) 16, 32, 34, 36-37, 39, 45, 46, 50, 55, 56, 64, 69, 76, 77, 79, 85, 91, 92, 94, 95, 99, 104, 123, 137, 138, 140, 141, 142, 143-145

Marsupials 53, 121, 138

Subject Index 149

Master-slave theory 63, 64, 97 Melanin 38 Mierechromosomes 131, 135, 136, 137 Microtinae (rodent family) 58 Microtubule protein 30, 74--76 Minimum-sized genome of vertebrates

125, 128, 129, 133, 137 Minute mutation of Drosophila 64 Missense mutation 22-23, 27, 48, 50, 53 Monkey, Old World and New World

39-40, 121 Monosomy 104, 107 Monotremes 120, 131, 138 Mouse (Mus musculus) 30, 35, 38, 43, 45,

46, 51, 56, 79, 91, 140, 143 Mutation affecting structural genes 21-24,

27-30 - - transfer RNA 24--26, 26-27 Myoglobin, Fig. 4. 27, 28, 76-77

Neoplastic cells 3, 79, 105 Neutralmutation 32, 34--35, 54, 57 Nonsense mutation 22, 27, 39, 80 Nucleolar organizer of chromosomes 14,

17, 18, 60-61, 64, 65, 96

Octaploid frog 100, 134 Odontophrynus americonus (South American

frog) 100 Operator base sequence 83

Paedomorphosis 112, 124 Phenylketonuria 30 Pithecanthropus (Homo erectus) 55, 57, 123,

143 6-PGD (6-phosphogluconate dehydro-

genase 41, 51, 52, 66, 70, 128-129 Pleiottopic effect of genes 30 Polycistronic messenger RNA 11, 25, 41, 83 Polymotphism, alleHe 35, 37, 50 Polyphyletic origin of terrestrial vertebrates

130-131 Polyribosome 13 Population size, effect of 50, 57 Prokaryote 13, 15, 18, 41, 83, 84

Quail (Cotttrnix c.japonica) 51, 52

Rahbit (Oryctolagu.rcuniculus} 30, 38, 79, 91, 142, 144

Rainbow trout (Salmo irideus} 51, 102, 104, 130

Rat ( Rattus norvegims) 35, 46, 51, 85, 136 Ratdesnake (Crotalus cerastes) 135 Recurrent mutation 37-38 Receptor base sequence 84, 85, 86, 87, 96 Redundancy of codons 10, 23

- - genes 59, 72, 74, 96, 124, 129, 136, 142

Redundant replication of DNA 92-94 Regulatory gene 67, 82-87, 96, 104--105 - protein 83, 84--85 Revertant mutation 38-40 Ribosome 13-14 Ribosoma/RNA 12,13-14,60-61,

62-64, 95, 96 - protein 60 Robertsonian fusion or translocation

43-45, 56, 102

Salamander (Urodela) 18, 62, 96, 97, 100, 130

Salmonoidea (smelt, ttout, salmon, etc.) 102, 103, 104, 125, 130

samesense mutation 23-24, 49 Self-replication of nucleie acid - DNA

4--6 - in "prebiotic condition" 6-7 Sex chromosomes and sex determining

mechanism 16, 98-99, 134, 135, 137 Siekle-eeil anemia 36 Somatic amplification of gene dosage

60-61, 144--145 Spontaneaus mutation rate 48-50 Squamata (lizards and snakes) 118, 134,

135, 136 Sterility barrier 44-45, 56 Sturgeon ( Scaphirhynchus platorhynchus) 131 Sunfish ( Lepomis cyanellus) 128 Supernumerary chromosome 107-108 Suppressor mutation 24--25 Sympatric model of speciation 56 Synapsida line of reptiles 118, 119, 120,

136-137, 138

Teleost fish 113, 125-131, 139-140 Tetraploid fish 70, 101-105, 130, 136,

137, 141 - frog 100, 102 Tetrasomie inheritance 103 Tolerablemutation 32-40, 48-50, 57, 59,

144 Tortoise (Gopherus agassizi) 137 Transduction, viral 109 Triploid bird 99 - lizard 99 - salamander 100 Trisomy 104, 107 Tobacco mouse (Mus poschiavinus) 43, 56 Transfer RNA 7-12, 13, 21, 24--27, 49,

61-62, 64, 91 Tunicate 112, 124 Trypsin, Figs. 5, 11. 28, 72-74, 85, 104 Tyrosinase (C-locus) 30, 38

150 Subject Index

Tyrosine transamiaase 83 Turbot ( Pleuronichth)'S verticali.r) 128

Unequal exchange between chromatids Fig. 15. 64, 89-92, 95, 134

- crossing-over during meiosis, Figs. 9, 16. 64, 95, 96, 134

Untranscribable (non.ren.re) base sequence of DNA 17, 18, 138

Vole ( Microtu.r oregoni) 138

Xenopu.r laevi.r (African water frog) 14, 60-61, 62, 134

Plates I-VIII

153

Plate I (Fig. 3). 46 chromosomes in the diploid complement of anormal human male. Top row left: The 1-3 group of the three largest pairs of metacentric autosomes. Top row right: The 4- 5 group of two subterminal autosomal pairs. Second row: The 6-12 group is made of 7 pairs of metacentric autosomes. Third row left: The 13- 15 group of six acrocentric auto­somes. Although all of them carry the nucleolar organizer on their short arms, in this photograph, the nucleolar organizer is actually seen only on the 14th pair. Third roll' right: The 16- 18 group of metacentric and subterminal autosomes. Bottom roll' left: The 19-20 group of four metacentrics. Bottom row middle : The 21- 22 group. Although both pairs of acrocentrics carry the nucleolar organizer on their short arms, the secondary constriction is actually seen only on the 21st pair. Bottom row right: The !arge metacentric X and the

small acrocentric Y

154

ßh AA d( nt Dn R~ at u na e1.

0 I U 01

lt .. • ••

u

••

tf

s..., H

,.

PJate li (Fig. 7). The male karyotype of theordinary hause mause (Musmumtlus,2n ~ 40) shown in the top two rows is compared with the male karyotype of the tobacco mause (Alus poschia­vinus, 2n ~ 26) shown in the third and fourth rows. The X- and V-chromosomes of each species are placed at the extreme right of the lower row. A male 1st meiotic metaphase figure at the bottom is from an inrerspecific F1-hybrid. Seven trivalents are seen, each being made of one poschia11inus metacentric and two muscu/us acrocentrics (Courtesy of Professor

ALFRED GROPP, Bonn, Germany)

S).L

~ ~ X

j.'

A

""

Pla

te II

I (Fi

g. 1

7). T

he

kary

otyp

e o

f the

tetr

aplo

id fr

og s

peci

es, O

dont

ophr

ynus

am

eric

anus

( 4

n =

44),

and

a m

ale

mei

otic

fig

ure.

Bol

iom

: In

the

kar

yoty

pe,

44 c

hrom

osom

es a

re

sort

ed o

ut t

o fo

ur h

omol

ogue

s ea

ch o

f the

11

diff

eren

t kin

ds.

Top

: In

this

fir

st m

eiot

ic

met

apha

se f

igur

e, 1

0 qu

adri

vale

nts

and

two

biv

alen

ts (

10 a

nd

12

O'c

lock

) ar

e se

en.

An

elo

ngat

ed b

ody

is a

spe

rm h

ead.

The

se p

hoto

mic

rogr

aphs

wer

e ta

ken

from

a

mic

rosc

opic

sli

de k

indl

y gi

ven

to u

s by

Pro

fess

or W

rLL

Y BE

CAK

an

d D

r. M

AR

IA

Lur

zA B

ECA

K,

Sao

Pau

lo,

Bra

zil

ft

)<..

A,.

,. ~

·"i"

S).L

-lJ1 U1

Pla

te I

V (

Fig

. 18)

. T

wo

ka­

ryot

ypes

an

d tw

o m

ale

firs

t m

eiot

ic m

etap

hase

fig

ures

o

fth

e ra

inbo

w tc

out(

Salm

o ir

ideu

s),

whi

ch i

s be

liev

ed

to b

e a

tetr

aplo

id sp

ecie

s in

th

e pr

oces

s o

f di

ploi

diza

­ti

on.

Du

e to

ext

ensi

ve R

o­be

rtso

nian

po

lym

orph

ism

, so

mat

ic c

ells

fro

m d

iffe

rent

ti

ssue

s o

f th

e sa

me

fish

sh

owdi

ffer

ent c

hrom

osom

e nu

mbe

rs,

and

mei

otic

fig

u­re

s fr

om

th

e sa

me

fish

con

­ta

in

vary

ing

num

bers

o

f m

ulti

vale

nts.

Top

thre

erow

s:

Th

e ka

ryot

ype

of a

Ii ve

r cel

l. 61

chr

omos

omes

. 43

met

a­ce

ntri

cs a

nd

18

acro

cent

rics

m

ake

up

th

e to

tal

of 1

04

chro

mos

ome

arm

s. F

ourt

h to

six

thro

ws:

The

kary

otyp

e o

f a s

plee

n ce

ll.

59 c

hrom

o­so

mes

. 45

met

acen

tric

s an

d 14

ac

roce

ntri

cs

mak

e up

th

e to

tal

of

104

chro

mo­

som

e ar

ms.

F

irst

m

eiot

ic

met

apha

se f

igu r

e at

bo

tiom

le

ft :

F

ou

r qu

adri

vale

nts

(Z,

3 an

d

7 O

'clo

ck a

nd

le

ft c

ente

r) a

re co

nspi

cuou

s.

Fir

st m

eiot

ic m

etap

hase

figur

es

at b

otio

m r

ight

: 2

8 bi

vale

nts

and

on

ly o

ne

quad

eiva

lent

(1

1 O

'clo

ck)

l

K

' ~ f; t

J ~

6

' ~ [ I t a

t

,,

~ 1

l !

)\r

t l

I ~

ö f\

' "

n "

<1 n

n

tlt\

(\

" {

)tf

'\

t")

-· "' S

J.L

Pla

te V

(F

ig.

25).

App

aren

tly

iden

tica

l di

ploi

d co

mpl

emen

ts m

ade

of

48 a

croc

entr

ic c

hrom

osom

es p

osse

ssed

by

thre

e te

leos

t spe

cies

bel

ongi

ng t

o th

ree

diff

eren

t or

ders

. To

p tw

o ro

ws:

Th

e ho

myh

ead

turb

ot

repr

esen

ting

the

ord

er H

eter

osom

ata.

Th

e ge

nom

e is

18

% o

fth

at o

f pl

acen

tal m

amm

als.

il

fidd

le tw

o ro

ws:

Th

e gr

een

sunf

ish

repr

esen

ting

Per

com

orph

i. T

he

geno

me

is 3

1 o/o

. Bot

tom

two

row

s: T

he

Cal

ifor

nia

anch

ovy

repr

esen

ting

Clu

peoi

dea.

T

he

geno

me

is 4

3%.

See

Tab

le 3

. T

he

hagf

ish

also

has

48

acro

cent

rics

, b

ut

the

geno

me

size

is

80

% o

fth

at o

f pl

acen

tal m

amm

als

- ~

158

1------,5::-)J.---l ,

• • . .. • • ,;. ·:/ . . t 1 '1_• ••

• 1/}

• •

Place VI (Fig. 26). A diploid mitotic metaphase figure of the shovelnose sturgeon (Zn= 112). Of the 112 chromosomes, 48 are truly dot-like microchromosomes

• •

• '

..

• .

. . .

. . •

• •

,. -.

• :,

,u

~,

.. P

late

VII

(F

ig. 2

7).

Th

e ka

ryot

ype

of

the

fem

ale

side

win

der r

attl

e-sn

ake

( Cro

talu

s ct

rast

es, 2

n =

36) r

epre

sent

ing

the

Dia

psid

a li

ne o

f li v

ing

rept

iles

is

com

pare

d to

tha

t o

f th

e fe

mal

e ca

nary

(Se

rinu

s ca

nari

us,

2n

= 80

±)

repr

esen

ting

bir

ds d

esce

nded

fro

m t

he J

uras

sie

rept

ile

of

the

Dia

psid

a li

ne.

Top

row

: C

rota

lus

cera

stes

: 10

pai

rs o

f m

icro

chro

mos

omes

. Th

e 4

th p

air

from

th

e le

ft is

the

het

erom

orph

ic Z

W-p

air.

Bol

iom

row

s: S

erin

us c

anar

ius:

A

bo

ut

30 p

airs

of

mic

roch

rom

osom

es.

In t

his

spec

ies

too,

th

e 4

th p

air

from

the

lef

t is

the

het

erom

orph

ic Z

W-p

air.

Th

e Z

-chr

omos

om

es o

f bo

th s

peci

es a

re a

bout

the

sam

e ab

solu

te s

ize

,_

<J1

\Q

160

,

'

Plate VIII (Fig. 28). Mitotic figures of the spectacled Caiman (Caiman sclerops, 2n = 42) repre­senting a side branch of the Diapsida line, and the desert tortoise ( Gopherus agassizi, 2n =52) representing the A napsida line are compared to the mitotic figures of two placental mammals descended from the Synapsida line. The genome sizes of these four species are about the same. Top /eft: Caiman sclerops: 2n = 42. Top right: Gopherus agassizi: 2n = 52 (including micro­chromosomes). Bottom left: Canis fami/iaris: 2n ~ 78 (the female dog). Only the two X­chromosomes are metacentrics. Bottom right: .Microtus oregoni: 2n = 17 (the female creeping

vole). The female is normally XO


Recommended