+ All Categories
Home > Documents > Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad –...

Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad –...

Date post: 28-Mar-2015
Category:
Upload: leslie-brady
View: 218 times
Download: 1 times
Share this document with a friend
Popular Tags:
20
Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, Wilocity Slide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors: N am e A ffiliations A ddress Phone em ail G alB asson Wilocity [email protected] Cordeiro Carlos Intel Cordeiro,[email protected] RolfD e V egt Qualcom m rolfv@ qca.qualcomm.com G aiusY ao H uang W ee Panasonic YaoHuang.W ee@ sg.panasonic.com Jam esY ee Mediatek james.yee@ mediatek.com Sven M esecke Nitero Sven.mesecke@ nitero.com Ism ailLakkis Tensorcom [email protected] SaiN andagopalan A deptence [email protected] Brad Lynch Peraso Technologies [email protected] Lochan V erm a Peraso Technologies Lochan@ perasotech.com U riParker Wilocity [email protected] A m ichaiSanderovich Wilocity [email protected] H uang Lei Panasonic Lei.Huang@ sg.panasonic.com Jam es W ang Mediatek James.wang@ mediatek.com
Transcript
Page 1: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0November 2013

Gal Basson, WilocitySlide 1

Beyond 802.11ad – Ultra High Capacity and Throughput WLAN

Name Affiliations Address Phone email

Gal Basson Wilocity [email protected]

Cordeiro Carlos Intel Cordeiro,[email protected]

Rolf De Vegt Qualcomm [email protected]

Gaius Yao Huang Wee Panasonic [email protected]

James Yee Mediatek [email protected]

Sven Mesecke Nitero [email protected]

Ismail Lakkis Tensorcom [email protected]

Sai Nandagopalan Adeptence [email protected]

Brad Lynch Peraso Technologies

[email protected]

Lochan Verma Peraso Technologies

[email protected]

Uri Parker Wilocity [email protected]

Amichai Sanderovich Wilocity [email protected]

Huang Lei Panasonic [email protected]

James Wang Mediatek [email protected]

Authors:

Page 2: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0November 2013

Gal Basson, WilocitySlide 2

Abstract

We want to initiate the discussion about creating a new Study Group to explore modifications to the IEEE 802.11ad-2012 PHY and MAC layers, so that modes of operation in the 60 GHz band (57-66 GHz) can be enabled that are capable of a maximum throughput of at least 30 Gbps as measured at the MAC data service access point (SAP), while maintaining the excellent capacity attribute of the 60GHz band.

Page 3: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

Agenda

• 802.11ad Radio/Antenna implementations

• Existing 802.11ad systems capacity

• Beyond 802.11ad• High data rates usages

• Channel bonding at 60GHz

• MIMO options for 60GHz• Traditional MIMO

• “Spatial orthogonal MIMO”

• Possible achievable rates in 60 GHz

Slide 3

November 2013

Page 4: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

802.11ad Antenna implementation

• 32 antennas- 17.5x7.9mm, 3D radiation

• Not using tradition planner array• Can form orthogonal streams

Slide 4

November 2013

Single Wi-Fi antenna

60GHz 32 antenna array

Page 5: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, WilocitySlide 5

November 2013

Page 6: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

Existing 802.11ad systems capacity

• 60GHz transmission is directive• Beam width depends on the antenna implementation and can be

narrow ( 10 degrees)

• Directivity in many situations dramatically reduces or eliminates OBSS interference

• Directivity increases the network capacity

• Simulation test case• Hall size 20x20x2.5 meters (65x65x8.2 feet)

• 48 Wireless pairs (Different BSSs), 96 transceivers

• All pairs use the same channel (auto channel is also available)

Slide 6

November 2013

Page 7: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

802.11ad capacity example

• Room dimension• 20mx20m

• 48 pairs (PBSSs)• Client and AP

• 96 transceivers

• 2 meters separation

• Propagation model• 60 GHz is using ray tracing

simulation

• BF and TPC were used

• Simulation result• TPT per user

• Aggregated TPT of the entire network

Slide 7

November 2013

Network topology

Page 8: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

802.11ad capacity example

• Aggregated TPT across all PBSSs: ~200 Gbps!

Slide 8

November 2013

• Efficiency• Efficiency= aggregated TPT/Maximum

achievable TPT

• Overall efficiency ~90%!

Page 9: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

Results

• The 11ad capacity is high due to the following:• 11ad operating SNR is on the order of 10 dB

• 11ad 4.6 Gbps requires 13 dB SNR

• Less sensitive to Interference• SINR required is ~20 dB

• Directivity reduces OBSS interference

• One more small detail• Directivity with steering ability can only be achieved with

an array of antennas (unless we use a motor )

• http://www.youtube.com/watch?v=4M4ngJsQF70

Slide 9

November 2013

Page 10: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

Beyond 11ad

Slide 10

November 2013

Page 11: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

High data rates usages

• Display• DisplayPort Data rates:

• 2 screens support is baseline today

• HDMI 2.0 support ultra HD or 4k• Data rates up to 20 Gbps

• Wired bus• USB 3.1 speed is 10 Gbps

• http://www.engadget.com/2013/08/01/usb-alliance-finalizes-10gbps-specification-as-usb-3-1/

• PCIe gen 4.0 goes all the way till 16 GT/s

• Thunderbolt 1.0: 10Gbps per lane

• Assuming docking needs to have a display and a wired bus: > 10 Gbps per dock!

Slide 11

November 2013

Page 12: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

Channel bonding at 60 GHz

• Channel bonding can be done with minor algorithmic complexity on the PHY• Bond 2 or 4 channels.

• SC: modem can double the chip rate, or even slightly more to fill the channel gaps

• OFDM: can simply double the number of tones and fill the channel frequency spacing, or can double the sub carrier spacing (maintain the sane number of tones)

• Pros and cons can be debated later

• Control PHY increasing the rate is definitely not a requirement, suggest to increase sensitivity

• MAC changes will require effort• Coexistence under directivity

Slide 12

November 2013

Page 13: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

Channel bonding feasibility

• Obviously 60GHz RF is wide enough to support the 4 available channels today• Assuming the above, no change in the RF

• ADC/DAC: looking into the literature Figure of merit (FOM)• Digitally assisted ADCs are

common in the industry

• ADCs running in 5GHz BW, assuming 6 bits

• Power estimated is 32 mW

Slide 13

November 2013

Page 14: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

MIMO (>1 stream) at 60 GHz

• Reminder: 4.6 Gbps can be achieved at 13 dB SNR

• “Traditional” MIMO is feasible at 60GHz• Channel feedback is already

supported in 802.11ad

• Multi antenna array is also supported

• Full SVD:

• Can we create “spatial orthogonal streams”• A diagonal channel matrix on the receiver

Slide 14

November 2013

Tablet integrated with 4 arrays

Secto

r #1

Sector #2

Sector #3Sector #4

Sector #N

Sector #1Sector #2

Sector #3Sector #4

Sector #N

RED – best ray and best pair of TX-RX sectorsGreen – second best pair of sectors

Blue – third best pair of sectors

TX RX

Page 15: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

MIMO at 60 GHz: can we simplify?

• Reminder: 4.6 Gbps can be achieved at 13 dB SNR

• Can we create “spatial orthogonal streams”• A diagonal channel matrix on the receiver

• 60 GHz require 10 dB SNR for decoding 3Gbps

• Training should be done via BF mechanismSector sweep and BRP

• Low cost/complexity receiver• lower digital complexity

Slide 15

November 2013

Secto

r #1

Sector #2

Sector #3Sector #4

Sector #N

Sector #1Sector #2

Sector #3Sector #4

Sector #N

RED – best ray and best pair of TX-RX sectorsGreen – second best pair of sectors

Blue – third best pair of sectors

TX RX

Signal #1 Signa

l #2

Σ Σ

Antenna elements

RF signal Summators (RX)

or Multiplexors (TX)

Radio frequency to Baseband

transformation

RFToBB

RFToBB

Phase shiftersΦ Φ Φ Φ Φ Φ Φ Φ

Σ Interference cancellation block

Channel estimation and

weights calculation

Antenna array #1 Antenna array #2

Σ

Page 16: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

MIMO Channel measurement at 60GHz

• Planar array-16 elements

• Channel matrix was measured (16x16)• LOS and NLOS

• Antenna channel correlation-

• LOS-conductive 0.996-meaning all antennas see same channel

• LOS-0.724- not fully correlated

• Channel model D (IEEE 11n)- 0.4-0.5

Slide 16

November 2013

0 20 40 60 80 100 120 1400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LOS-planar array

Page 17: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

MIMO feasibility

• MIMO can be achieved in 60 GHz with lower complexity than legacy bands• By a much smaller footprint antenna

• Much lower digital complexity

• Even on a single array

• Protocol already have the infrastructure to support channel feedback, hence SVD

• Enhancing BF to support MIMO is needed

Slide 17

November 2013

Page 18: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

Example: rate table

Slide 18

November 2013

π/2-BPSK 1 SC 1/2 0.77 1.54 3.1π/2-BPSK 1 SC 3/4 1.155 2.31 4.6π/2-QPSK 1 SC 1/2 1.54 3.08 6.2π/2-QPSK 1 SC 3/4 2.31 4.62 9.2

π/2-16QAM 1 SC 1/2 3.08 6.16 12.3π/2-16QAM 1 SC 3/4 4.62 9.24 18.5

64QAM 1 OFDM 3/4 6.2 12.4 24.8π/2-BPSK 2 SC 1/2 1.54 3.08 6.2π/2-BPSK 2 SC 3/4 2.31 4.62 9.2π/2-QPSK 2 SC 1/2 3.08 6.16 12.3π/2-QPSK 2 SC 3/4 4.62 9.24 18.5

π/2-16QAM 2 SC 1/2 6.16 12.32 24.6π/2-16QAM 2 SC 3/4 9.24 18.48 37

64QAM 2 OFDM 3/4 12.4 24.8 49.6π/2-BPSK 4 SC 1/2 3.08 6.16 12.3π/2-BPSK 4 SC 3/4 4.62 9.24 18.5π/2-QPSK 4 SC 1/2 6.16 12.32 24.6π/2-QPSK 4 SC 3/4 9.24 18.48 37

π/2-16QAM 4 SC 1/2 12.32 24.64 49.3π/2-16QAM 4 SC 3/4 18.48 36.96 73.9

64QAM 4 OFDM 3/4 24.8 49.6 99.2

Modulation NSS PHY Code RateData Rate (Gbps)

BW=1.76GHz BW=3.52GHz BW=7.04GHz

Page 19: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

Summary

• The 60 GHz band can offer true capacity improvement for 802.11• 100 Gbps over wireless!

• 60 GHz directivity and its propagation characteristics enable high frequency reuse

• Channel bonding is more than feasible even in todays commodity design methods

• MIMO (>1 stream) can be realized with low complexity and low power

Slide 19

November 2013

Page 20: Submission doc.: IEEE 11-13/0408r0 November 2013 Gal Basson, WilocitySlide 1 Beyond 802.11ad – Ultra High Capacity and Throughput WLAN Authors:

Submission

doc.: IEEE 11-13/0408r0

Gal Basson, Wilocity

Straw polls

1. Would you like to hear more contributions on this topic at a future 802.11 mtg?

Slide 20

March 2013


Recommended